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Abstract 
Recently, a semidefinite programming relaxation of 

the power flow equations has been applied to the 

optimal power flow problem. When this relaxation is 

“tight” (i.e., the solution has zero duality gap), a 

globally optimal solution is obtained. Existing 

literature investigates sufficient conditions whose 

satisfaction guarantees zero duality gap solutions. 

However, there is limited study of non-zero duality gap 

solutions. By illustrating the feasible spaces for 

optimal power flow problems and their semidefinite 

relaxations, this paper investigates examples of non-

zero duality gap solutions. Results for large system 

models suggest that non-convexities associated with 

small subsections of the network are responsible for 

non-zero duality gap solutions. 

 

 

1. Introduction  

 
The optimal power flow (OPF) problem seeks 

decision variable values to yield an optimal operating 

point for an electric power system in terms of a 

specified objective and subject to engineering 

inequality constraints (e.g., active and reactive power 

generation, bus voltage magnitudes, line flows, etc.) 

and network equality constraints (i.e., the power flow 

equations). Total generation cost is the typical 

objective; other objectives, such as loss minimization, 

may be considered. 

The OPF problem is non-convex due to the non-

linear power flow equations [1] and is, in general, NP-

hard [2]. Non-convexity of the OPF problem has made 

solution techniques an ongoing research topic since the 

problem was first introduced by Carpentier in 1962 [3]. 

Many OPF solution techniques have been proposed; 

see [4]–[9] for relevant survey papers. Traditional 

solution methods use iterative techniques that are 

dependent on an initial guess and only guaranteed to 

obtain locally optimal solutions.  

Recent advances in optimization techniques 

provide new means for addressing power systems 

problems. Specifically, a semidefinite relaxation of the 

power flow equations has been applied to the OPF 

problem [2], [10]. Applying convex optimization 

techniques using a semidefinite relaxation allows for 

global solution of many OPF problems in polynomial 

time. When the relaxation is “tight” (i.e., satisfies a 

rank condition for obtaining a zero duality gap 

solution), a globally optimal solution is recoverable.  

Although the semidefinite relaxation yields zero 

duality gap solutions (i.e., the relaxation is “tight”) for 

many OPF problems, there are practical OPF problems 

which have non-zero duality gap solutions [11]–[13]. 

Such solutions provide lower bounds on the optimal 

objective value but do not give physically meaningful 

solutions to the original engineering quantities in the 

OPF problem. Existing literature studies cases for 

which the semidefinite relaxation of the OPF problem 

is tight by providing sufficient conditions for zero 

duality gap solutions. These conditions include highly 

limiting requirements on power injection and voltage 

magnitude limits and either radial networks (typical 

only of distribution system models) or unrealistically 

dense placement of controllable phase shifting 

transformers [14]–[17]. Research explaining why the 

semidefinite relaxation of the OPF problem may yield 

solutions with non-zero duality gap is limited to [12] 

and [13], which present test OPF problems with locally 

optimal solutions in the feasible space.  

Applications of semidefinite programming to the 

OPF and other power systems problems would benefit 

from understanding the causes of non-zero duality gap 

solutions. One potential cause of a non-zero duality 

gap solution is a disconnected feasible space with 

components near a global optimum. This cause of non-

zero duality gap solutions can be considered using the 

geometry of the feasible space of the semidefinite 

relaxation. The semidefinite relaxation forms a convex 

space that contains the entire feasible space defined by 

the power flow equations. Nearby disconnected 

components may result in the semidefinite relaxation 

finding a solution “between” the disconnected 

components of the feasible space defined by the power 

flow equations which is nonetheless in feasible space 



of the semidefinite program. This paper expands on the 

two-bus test system from [12] and provides an 

additional three-bus example system with disconnected 

feasible space that yields a non-zero duality gap 

solution. Existing work in this area includes an archive 

of test cases with local optima [13]. For these systems, 

application of the semidefinite relaxation of the OPF 

problem has limited success in obtaining zero duality 

gap solutions; eight of the ten test cases with local 

optima yield non-zero duality gap solutions for some 

choice of parameters. 

Non-zero duality gap solutions may also result 

from other types of non-convexity inherent to the 

power flow equations. The semidefinite relaxation of 

the OPF problem yields a non-zero duality gap solution 

to a five-bus example from [1], which has connected 

but non-convex feasible space. 

Using insights from these small systems, we study 

larger systems that yield non-zero duality gap 

solutions. Using the rank one matrix closest to the non-

zero duality gap solution, we evaluate the active and 

reactive power “mismatches” to the injections 

specified at load buses. For the cases studied, this 

analysis shows that small subsets of the network have 

large mismatches while the mismatches at the majority 

of the buses are insignificant. For some systems with 

non-zero duality gap solutions, we find minor 

perturbations in specified system data which result in 

zero duality gap solutions. In other words, we find that 

small problematic subsets of the network may cause 

non-zero duality gap solutions. Perturbations to these 

subsets of the network resulted in zero duality gap 

solutions. However, these perturbations were 

determined heuristically by examining the power 

injection mismatches and could only be determined for 

some systems; no robust method of identifying such 

modifications has yet been identified. 

Further analysis shows that radially connecting a 

small system with non-zero duality gap solution to a 

larger system with zero duality gap solution results in 

the solution to the merged system having non-zero 

duality gap. This also suggests that non-zero duality 

gap solutions to large system models may be due to 

non-convexity in a small subset of the system. 

This paper is organized as follows. Section 2 

presents the OPF problem. Section 3 discusses non-

zero duality gap solutions to the semidefinite relaxation 

of the OPF problem, including an exploration of the 

relevant feasible spaces. Section 4 gives concluding 

comments and future research directions. An extended 

description of this work is available in Chapter 7 of 

[18], which additionally studies non-zero duality gap 

solutions to semidefinite formulations for determining 

multiple solutions to the power flow equations [11] and 

for determining voltage stability margins [19], [20]. 

2. The Optimal Power Flow Problem 

 
There has been significant interest in applying 

semidefinite programming to the OPF problem. The 

OPF problem adds engineering limits on voltage 

magnitudes, generator active and reactive power 

injections, line flows, etc. to the physical constraints of 

the power flow equations. A typical objective is to 

minimize generation cost, which is specified as a 

convex quadratic function of generator active power 

injections. In this section, we present the OPF problem 

in both the classical and semidefinite relaxation 

formulations. 

 

2.1. The Classical Formulation of the OPF 

Problem 
 

Consider an n-bus power system, where 

n} ,… 2, {1, =  N represents the set of all buses, G 

represents the set of generator buses, and L represents 

the set of all lines. Let DkDk jQP   represent the active 

and reactive load demand at each bus Nk . Define 

qkdk jVV   as the voltage phasor at bus Nk . Let 

GkP  and GkQ  represent the active and reactive outputs 

of generator Gk . Superscripts “max” and “min” 

denote specified upper and lower limits. Let max
lmS  

represent the maximum apparent power flow allowed 

on line   Lml, . Let BGY j  denote the network 

admittance matrix. 01
2

2)( kGkkGkkGkk cPcPcPf   is 

the convex quadratic cost function for generator 

Gk .  

The classical formulation of the OPF problem is  
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Constraints (1b)–(1e) enforce engineering limits on 

active and reactive power injection, voltage 

magnitudes, and apparent-power line flows. 

Constraints (1f) and (1g) are the power flow equations 

associated with the transmission network. 

 

2.2. A Semidefinite Relaxation of the OPF 

Problem 

 
We next present a semidefinite relaxation of the 

OPF problem adopted from [2]. First define the vector 

of voltage coordinates 

 

  T
qnqqdndd VVVVVVx  21121  (2) 

 

Then define the rank one matrix 

 

 TxxW  (3) 

 

Let ie denote the ith standard basis vector in ℜn. 

Define the matrix Y
T

iii eeY  . Constant matrices 

employed in the semidefinite relaxation are then 
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The expression  WYitr , where tr is the matrix 

trace operator, gives the active power injection at bus i. 

The expressions  WYitr  and  WMitr  give the 

reactive power injection and squared voltage 

magnitude, respectively, at bus i. 

Constant matrices are also needed to represent the 

active and reactive line flows on Π model lines. Define 

the matrix T

mllm
lm

lm eey
b

Y 









2
, where lmb  is the 

total shunt susceptance and lmy  is the series admittance 

of the line. The constant matrices are 
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The expressions  WYlmtr  and  WY lmtr  give the 

active and reactive power flow from bus l to bus m, 

respectively. 

Replacement of the rank one constraint (3) by the 

less stringent constraint 0W , where   indicates the 

corresponding matrix is positive semidefinite, yields 

the semidefinite relaxation. The semidefinite relaxation 

is “tight” (i.e., has zero duality gap) if the W matrix of 

a globally optimal solution has rank one. The 

semidefinite relaxation of the OPF problem is then 
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where for notational purposes     Dkk P WYW tr .  

This formulation allows no more than a single 

generator per bus and does not allow parallel lines. 

More flexible modeling is described in [21]. A solution 

to (9) has zero duality gap if W satisfies the rank 

condition 

 
   2rank W  (10) 

 

and a matrix defined by the dual variables of the 

semidefinite optimization problem (9) has a two-

dimensional nullspace (see Theorem 2 and Corollary 1 

in [2].) 

If a solution to (9) satisfies the rank condition (10) 

and has dual variables that define a matrix satisfying 

the two-dimensional condition, a rank one matrix can 

be obtained by specifying the reference angle, which 

then allows for extracting a globally optimal voltage 

profile [2]. A solution to (9) that does not satisfy these 

conditions has non-zero duality gap. Such solutions 

lower bound the objective function value but do not 

solve the classical OPF problem (1). 

 

 



3. Non-Zero Duality Gap Solutions to the 

OPF Problem 

 
3.1. Feasible Space Exploration 

 
The semidefinite relaxation does not yield zero 

duality gap solutions for all practical OPF problems 

[11]–[13]. A solution to (9) with non-zero duality gap 

provides a lower bound on the optimal objective value 

of the OPF problem, but does not yield a physically 

meaningful solution (i.e., a non-zero duality gap 

solution does not provide a voltage profile that satisfies 

the power flow equations (1f) and (1g)). One 

explanation for non-zero duality gap solutions is non-

convexity due to a disconnected feasible space. This 

source of non-convexity is first explored using the two-

bus example system from [12], which is reproduced as 

Figure 1. 

The line in this system has impedance 

20.004.0 jjXR   per unit and does not have a 

line-flow limit. The load demand at bus 2 is 

580.3525.322 jjQP DD   per unit using a 100 

MVA base. There are no limits on active and reactive 

power injections at bus 1. The voltage magnitude at 

bus 1 is constrained to the range  05.1,95.0  per unit. 

The voltage magnitude at bus 2 has a lower bound of 

0.95 and an upper bound of max
2V . We use an objective 

of minimizing the cost of a $1/MWh active power 

generation at bus 1. 

Using bus 1 as the angle reference, 01 qV . We 

first consider the case where the upper voltage 

magnitude limit at bus 2, max
2V , is 1.05 per unit. In 

Figure 2, the entire feasible space for the non-relaxed 

problem (i.e., the squares of the three non-zero voltage 

components 2
1dV , 2

2dV , and 2
2qV ) is plotted as the red 

line with two disconnected segments. The semidefinite 

relaxation has six degrees of freedom corresponding to 

the entries in the upper triangle of the W matrix. The 

conic shape in Figure 2 results from projecting this six-

dimensional feasible space into three dimensions. The 

colors of the conic shape represent the objective value 

for each point in the space of the semidefinite 

relaxation. 

Figure 2 shows that both the semidefinite relaxation 

and the non-relaxed feasible spaces share a global 

minimum, which is marked with a square in the figure. 

Consequentially, the semidefinite relaxation has a zero 

duality gap solution. (The optimal objective value is 

$444.08 per hour.) 

Next consider the case where 02.1max
2 V  per unit. 

This limit is illustrated by the gray plane cutting 

through Figure 2. This tighter limit reduces the feasible 

space to the region that is to the right of this plane. We 

now see that the global minimum in the space of the 

semidefinite relaxation (circle with objective value 

$449.82 per hour) does not match the minimum of the 

non-relaxed problem (triangle with objective value 

$456.55 per hour). Accordingly, the solution to the 

semidefinite relaxation has non-zero duality gap.  

 

 
Figure 1. Two-bus system from [12] 

 

 
Figure 2. Feasible space for two-bus system 

 

This example illustrates how non-zero duality gap 

solutions result when the non-relaxed space has 

components that are nearby but disconnected from the 

component of the feasible space containing the global 

optimum. The semidefinite relaxation of the OPF 

problem finds a solution that is not in the feasible 

space of the non-relaxed problem but is in the feasible 

space of the semidefinite program. That is, the 

semidefinite relaxation has an optimal solution 

“between” the disconnected components of the feasible 

space defined by the power flow equations. 

A three-bus system adopted from [11] provides 

another example of a case where the semidefinite 

relaxation has a non-zero duality gap solution due to a 

disconnected feasible space. Figure 3 shows the 

diagram for this system. Bus 1 has an active power 

load of 1.0 per unit using a 100 MVA base. The 

generators at buses 1 and 2 are constrained to inject 

positive active power, but have no other limits on 

active or reactive power generation. The generator at 

bus 3 is a synchronous condenser which outputs zero 

active power and has no limit on reactive power 



output. The line parameters are given in Table 1. The 

line connecting buses 2 and 3 has an apparent-power 

line-flow limit of 1.0 per unit. This example uses cost 

functions of $3/MWh for active power generation at 

bus 1 and $1/MWh for active power generation at  

bus 2. 

 

 
Figure 3. Three-bus system 

 
Table 1. Line parameters for three-bus system 

(per unit) 

From 

Bus 

To 

Bus 

Resistance Reactance Shunt 

Susceptance 

1 3 0.065 0.62 0.45 

2 3 0.025 0.75 0.70 

1 2 0.042 0.90 0.30 

 

 
Figure 4. Feasible space for three-bus system 

 

Voltage magnitudes at each bus are fixed to 1.0 per 

unit. With fixed voltage magnitudes and bus 1 

providing an angle reference, this system has two 

degrees of freedom in the voltage angles at buses 2 and 

3 (2 and 3), which are related to the rectangular 

voltage components as 222tan dq VV  and 

333tan dq VV . In Figure 4, the feasible space for 

the non-relaxed problem is visualized in a two-

dimensional space of the voltage angles 2 and 3. The 

optimal solution to the non-relaxed problem, which is 

obtained using exhaustive search of the feasible space, 

has objective value of $235.19 per hour and is marked 

with a square in Figure 4. The space of voltage angles 

used for Figure 4 does not allow for easily representing 

the feasible space of the semidefinite relaxation. 

With an apparent-power line-flow limit of 1.0 per 

unit for the line between buses 2 and 3, the 

semidefinite relaxation yields a solution with objective 

value of $234.62 per hour, which is 0.24% smaller than 

the result obtained using exhaustive search. A non-zero 

duality gap solution results from the non-convexity 

associated with the disconnected feasible space evident 

in Figure 4.  

Note that OPF problems with a disconnected 

feasible space may still have zero duality gap solutions. 

That is, a disconnected feasible space is not a sufficient 

condition for obtaining a non-zero duality gap solution. 

For instance, a less stringent but still binding apparent-

power line-flow limit of 1.05 per unit between buses 2 

and 3 yields a disconnected feasible space with a zero 

duality gap solution. 

In addition to a disconnected feasible space, other 

sources of non-convexity may result in non-zero 

duality gap solutions to the semidefinite relaxation of 

the OPF problem. This is next illustrated with a five-

bus example system from [1] (reproduced as Figure 5), 

which has a connected but non-convex feasible space. 

All buses in this system are constrained to have 1.0 per 

unit voltage magnitude. All line flows are 

unconstrained, and the line reactances are specified in 

Figure 5. (The system is lossless since all line 

resistances are set to zero.) The generators at buses 1 

and 2 have non-negative active power generation, and 

the generators at buses 3, 4, and 5 are synchronous 

condensers with zero active power generation. There 

are no limits on reactive power injection for any 

generator. The load demand at bus 3 is allowed to be 

any non-negative value 03 DP . Equations describing 

the feasible space for the corresponding OPF problem 

in terms of the voltage angles are given in [1]. 

 

 
Figure 5. Five-bus system from [1] 



Since the network is lossless, the system-wide 

active power balance imposes the equality 

 

 
213 GGD PPP   (11) 

 

 
Figure 6. Feasible space for five-bus system 

 

Figure 6 shows the feasible space of active power 

injections in the 2GP vs. 1GP  plane. Observe that the 

feasible space is connected but non-convex. Projecting 

the semidefinite relaxation into this space yields the 

region enclosed by the solid black line in Figure 6. The 

semidefinite relaxation is tight when viewed in this 

space for the boundary points on the right side of the 

feasible space.  

For this problem, the semidefinite relaxation 

appears to form the convex hull of the injection region 

in Figure 6 (i.e., the black line appears to form the 

convex hull of the non-convex gray region). Note, 

however, that this is not always the case; the 

semidefinite relaxation does not always yield the 

convex hull of the original, non-convex feasible set of 

power injections. 

To illustrate a case where the non-convexity results 

in a non-zero duality gap solution, consider a load 

demand 17.173 DP  per unit. All combinations of 1GP  

and 2GP  that satisfy the equality (11) resulting from 

this load demand are on the red dashed line in Figure 6. 

Consider the case where the generator at bus 1 is more 

expensive than the generator at bus 2 such that the 

optimal solution occurs when 1GP  is minimized.  

The globally optimal solution to the OPF problem 

is located at the red square in Figure 6, while the 

solution to the semidefinite relaxation is located at the 

red dot. Thus, the semidefinite relaxation yields a non-

zero duality gap solution for these values of 3DP  and 

generator costs. Even though the feasible space with 

specified 3DP , which consists of the one-dimensional 

intersection between the red dashed line from (11) and 

the gray region in Figure 6, is connected and convex, 

the non-convexity of the gray region in Figure 6 still 

results in a non-zero duality gap solution to the 

semidefinite relaxation. Note that non-zero duality gap 

solutions still occur when the lines have small 

resistances (e.g., 3101   per unit). 

 

3.2. Non-Zero Duality Gap Solutions to Large 

OPF Problems 
 

With increased understanding of how non-

convexity affects the tightness of the semidefinite 

relaxation for small OPF problems, we next study non-

zero duality gap solutions to larger OPF problems. 

Solving the semidefinite relaxation for large-scale OPF 

problems requires exploitation of power system 

sparsity [21], [22]. As reported in [21], some large test 

cases exhibit non-zero duality gap solutions.  

First proposed in [21], one metric for the duality 

gap is based on the mismatch between the calculated 

and specified active and reactive power injections at 

load buses. To recover a candidate voltage profile, 

form the closest rank one matrix to the solution’s W 

matrix using the eigenvector associated with the largest 

eigenvalue of W.1 If the solution has zero duality gap, 

the matrix W is rank one and the resulting voltage 

profile will satisfy the power injection equality 

constraints at the load buses. Conversely, the closest 

rank one matrix to a solution with non-zero duality gap 

will typically not yield a voltage profile that satisfies 

the power injection equality constraints at load buses. 

Thus, the mismatch between the calculated and 

specified power injections at load buses provides a 

measure for satisfaction of the rank condition (10).  

In this paper, we specifically consider non-zero 

duality gap solutions to the IEEE 300-bus [25] and 

Polish 3012-bus [8] systems. Figures 7 and 8 show the 

mismatch between the specified and calculated active 

and reactive power injections at load buses for the 

IEEE 300-bus and Polish 3012-bus systems, 

respectively, sorted in order of increasing active power 

mismatch. (Note that minimum resistances of 4101   

per unit are enforced in accordance with [2].) The large 

                                                 
1 Despite the fact that the underlying space of rank one matrices is 

non-convex, eigen decomposition yields the closest rank one matrix 

to the higher rank W matrix as measured using the Frobenius norm 

(i.e., square root of the sum of squares of the difference in matrix 
entries) or any other unitarily invariant norm. If the matrix has non-

repeated eigenvalues, the closest rank one matrix is unique. See, e.g., 

references [23] and [24]. Pairs of repeated eigenvalues in W are 
artifacts of the lack of an angle reference specification in (9). After 

specifying an angle reference, eigen decomposition yields the unique 

closest rank one matrix to W. 



power mismatches indicate non-zero duality gap 

solutions for these systems. 

 

 
 

Figure 7. Power mismatch for IEEE 300-bus 
system  

 

 
Figure 8. Power mismatch for Polish 3012-bus 

system  
 

The voltage profile obtained from the closest rank 

one matrix to W yields small mismatches for the 

majority of buses, but a few buses display large 

mismatches in both active and reactive power 

injections. These results suggest that there are small 

subsections of the network that are responsible for the 

non-zero duality gap solutions to these systems.  

To further investigate this phenomenon, we create 

new systems by radially connecting the two and three-

bus systems shown in Figures 1 and 3 to IEEE test 

systems [25]. The OPF problems for the IEEE test 

systems have zero duality gap solutions, while, as 

shown in Section 3.1, non-convexities in the two and 

three-bus systems result in non-zero duality gap 

solutions. The semidefinite relaxations of the 

connected OPF problems have non-zero duality gap 

solutions. That is, non-convexities introduced in a 

small subset of an OPF problem may result in a non-

zero duality gap solution to a problem for which the 

semidefinite relaxation is otherwise tight. 

For example, consider a 15-bus system resulting 

from radial connection of bus 2 from the two-bus 

system in Figure 1 to bus 1 of the IEEE 14-bus system 

[25] using the same line impedance as in the two-bus 

system. If no reactive power limits are enforced for the 

generator at bus 1, the resulting 15-bus system has 

non-convexity due to a disconnected feasible space in 

the same manner as shown in Figure 2. Accordingly, 

the semidefinite relaxation has a non-zero duality gap 

solution. Connections of the two-bus system to other 

generator buses in the IEEE 14 and 30-bus systems 

also result in non-zero duality gap solutions. Similar 

test cases resulting from radial connection of the three-

bus system in Figure 3 to the IEEE 14 and 30-bus 

systems also exhibit non-zero duality gap solutions. 

These results support the conjecture that non-

convexity associated with small subsets of the IEEE 

300-bus and Polish 3012-bus systems are responsible 

for non-zero duality gap solutions. Since large systems 

have many opportunities to have such non-convex 

subsections, the semidefinite relaxations of large 

problems are likely to have non-zero duality gap 

solutions. (Limited access to large-scale system models 

precludes empirical evaluation of this conjecture. See 

[21] for duality gap analysis using the few publicly 

available large models.)  

However, non-zero duality gap solutions with non-

convexities that are limited to small regions of the 

network may provide close initial points for local 

search algorithms. Further, small perturbations to OPF 

problems may yield zero duality gap solutions. We 

next provide such perturbations for the test systems 

used in Section 3.1. 

For the two-bus system in Figure 1, changing the 

line reactance from 0.20 per unit to 0.215 per unit 

 

 
Figure 9. Feasible space for two-bus system with 

X12 = 0.215 per unit 



 

(a 7.5% increase) results in zero duality gap solutions 

for any value of 95.0min
2

max
2 VV  per unit. The 

feasible space for the two-bus system with a line 

reactance of 0.215 per unit and 05.1max
2 V  per unit is 

shown in Figure 9. Since the power flow equations for 

this problem form a connected feasible space, any valid 

choice of max
2V  will result in the semidefinite 

relaxation finding a zero duality gap solution to this 

problem. 

As mentioned previously for the three-bus system 

in Figure 3, replacing the apparent-power line-flow 

limit of 1.0 per unit with a less stringent but still 

binding limit of 1.05 per unit (a 5% increase) yields a 

zero duality gap solution. 

For the five-bus system in Figure 5, changing the 

load demand 3DP from 17.17 per unit to any value 

greater than 18.67 per unit (an 8.7% increase) results in 

a zero duality gap solution. (The OPF problem is 

infeasible for values of 3DP  greater than 20 per unit. 

The semidefinite relaxation yields non-zero duality gap 

solutions for any positive value of 3DP  smaller than 

18.67 per unit, which is shown using the blue dashed 

line in Figure 6.) 

Similar perturbations may be capable of yielding 

tight semidefinite relaxations for large OPF problems 

with non-zero duality gap solutions that result from 

non-convexities that are isolated to small subsections 

of the network. Perturbations that yield zero duality 

gap solutions for the IEEE 300-bus system include 

increasing the upper bounds on voltage magnitudes at 

buses 23 and 7023 from 1.06 to 1.08 per unit (a 1.9% 

increase) and either changing the reactance of the line 

between buses 9533 and 9053 from 0.75 to 0.1875 per 

unit (a 75% decrease) or reducing the linear cost term 

for the generator at bus 9053 from $40/MWh to 

$38/MWh (a 5% decrease). (Note that, in accordance 

with [2], minimum resistances of 4101   per unit are 

enforced on all lines.) The solutions to these perturbed 

systems have maximum active and reactive power 

mismatches less than 0.1 MW/MVAr at all load buses, 

which is the default Newton solution tolerance used by 

the commercial power flow solution package PSS/E 

[26]. 

These perturbations were obtained heuristically by 

iteratively changing constraint and cost parameters 

near buses with large mismatches (i.e., the buses 

corresponding to large values in Figures 8 and 9). 

There is no guarantee that this approach is valid for all 

systems. For instance, we were unable to obtain a set 

of perturbations that yields a zero duality gap solution 

for the Polish 3012-bus system.  

 

4. Conclusion 

 
Although the semidefinite relaxation of the optimal 

power flow (OPF) problem is often “tight,” practical 

problems may have non-zero duality gap solutions. 

This paper investigates non-convexities associated with 

non-zero duality gap solutions to the OPF problem.  

Non-convexity associated with a disconnected 

feasible space may result in a non-zero duality gap 

solution. Illustrative examples are provided along with 

visualizations of relevant feasible spaces. OPF 

problems for two and three-bus systems with 

disconnected feasible spaces exhibit non-zero duality 

gap solutions.  

This paper also presents a five-bus system with 

connected but non-convex feasible space. An OPF 

problem associated with this system has a non-zero 

duality gap solution, which demonstrates that a 

disconnected feasible space is not necessary for non-

zero duality gap solutions. 

Non-zero duality gap solutions for large OPF 

problems are also studied. Specifically, the IEEE 300-

bus and Polish 3012-bus systems are found to exhibit 

non-zero duality gap solutions as evidenced by 

matrices that have rank greater than two. The closest 

rank one matrices to these non-zero duality gap 

solutions satisfy the power injection equations at the 

majority of load buses; mismatch at a small number of 

load buses suggests that the non-convexities causing 

the non-zero duality gap are isolated to a few small 

subsections of the network. This is supported by non-

zero duality gap solutions to example cases created by 

radially connecting small test systems with non-zero 

duality gap solutions to IEEE test cases for which the 

semidefinite relaxation is tight. Non-convexity 

introduced in a small subsection of the network is 

sufficient to cause non-zero duality gap solutions. 

Further, for many cases where the semidefinite 

relaxation is not tight, heuristically-determined 

perturbations to small subsections of the network often 

result in problems with zero duality gap solutions. 

Non-convexity that is isolated to small subsections 

of the network and the ability to obtain zero duality 

gap solutions to some perturbed OPF problems suggest 

directions for future research. One potential direction is 

development of a robust method for identifying non-

convex subsections of the network before solving an 

OPF problem. A possible approach is to categorize 

common network structures that lead to non-convexity. 

Identification of common non-convexities may lead to 

future development of sufficient conditions for which 

satisfaction guarantees a non-zero duality gap solution 

to the semidefinite relaxation of the OPF problem. 



Another potential research direction is development 

of a systematic method for determining perturbations 

that result in zero duality gap solutions. Ideally, such a 

method would find the smallest perturbations 

necessary in order to obtain the “closest” OPF problem 

for which the semidefinite relaxation is tight. 

Perturbations within the uncertainty associated with 

power system data would be particularly useful in 

practice. Research on this topic may draw on such 

works as [16], [27], and [28], which claim that zero 

duality gap solutions always result for OPF problems 

modified with a sufficient number of appropriately 

placed controllable phase shifting transformers along 

with allowing for load oversatisfaction. These 

modifications may be viewed as method for perturbing 

the original OPF problem to a nearby problem that has 

zero duality gap solution. 
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