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Abstract—Recent research has applied semidefinite program-
ming (SDP) to the optimal power flow (OPF) problem. Extending
SDP formulations to include the ZIP load model, which consists of
constant impedance, constant current, and constant power com-
ponents, is necessary for many practical problems. Existing SDP
formulations consider constant power components and can be
easily extended to incorporate constant impedance components.
With linear dependence on voltage magnitude, constant current
components are not trivially formulated in a manner amenable
to SDP. This letter details an approximate representation of ZIP
loads in a SDP relaxation of the OPF problem.

Index Terms—ZIP load model, Semidefinite programming

I. INTRODUCTION

POWER system analyses benefit from flexible and detailed

representation of load behavior; specifying load models to

best capture physical behavior is an active research topic [1],

[2]. Static analyses often use ZIP load models which consist

of constant impedance, constant current, and constant power

components. [2], [3]. Many commercial software packages

(e.g., PSS/E, PSLF, and PowerWorld) model ZIP loads.

ZIP load models are often used in the optimal power flow

(OPF) problem. The non-convex OPF problem determines an

optimal operating point for an electric power system in terms

of a specified objective function, subject to both network

equality constraints and engineering limits.

Using a rank relaxation, recent research has applied

semidefinite programming (SDP) to convexify the OPF prob-

lem [4]. If the relaxed problem satisfies a rank condition, a

global optimum of the OPF problem can be determined in

polynomial time. No prior OPF solution method guarantees

calculation of the global solution in polynomial time; SDP

thus has a substantial advantage over other solution techniques.

However, the rank condition is not always satisfied, so the SDP

solution may not be physically meaningful [5].

Existing SDP formulations of the OPF problem explicitly

consider constant power load models, in which complex

power demand is independent of voltage magnitude. Constant

impedance loads, for which demands are functions of the

square of voltage magnitudes, are easily incorporated in exist-

ing SDP formulations using shunt admittances. However, con-

stant current loads are linear functions of voltage magnitude,

and hence are not easily incorporated into SDP formulations.
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Using a rank relaxation to approximate a linear function

of voltage magnitude, this letter presents an approximate

representation of constant current loads, and therefore ZIP

models, for a SDP relaxation of the OPF problem.

II. THE ZIP LOAD MODEL

The constant impedance, constant current, and constant

power components of a ZIP load are represented by a second-

order polynomial in bus voltage magnitude Vi [2], [3].

PDi (Vi) = a1iV
2

i + a2iVi + a3i (1a)

QDi (Vi) = b1iV
2

i + b2iVi + b3i (1b)

where a1i, a2i, a3i and b1i, b2i, b3i are scalar parameters

for bus i active and reactive power demand. The constant

impedance (“Z”), constant current (“I”), and constant power

(“P”) components are specified using a1i and b1i, a2i and b2i,
and a3i and b3i, respectively. This model forms the right hand

side of the power balance equations of an OPF problem.

III. A SDP FORMULATION OF THE ZIP LOAD MODEL

The ZIP load model is composed of constant, linear, and

square functions of voltage magnitude. Consider a rank one

matrix Γi to represent these terms at bus i.

Γi =

[

1

Vi

]

[

1 Vi

]

=

[

1 Vi

Vi V 2

i

]

(2)

Let matrix superscripts denote the corresponding (row, col-

umn) element. With constraints Γ
11

i = 1 and Γ
22

i = V 2

i ,

linear functions of voltage magnitude are obtained using Γ
12

i .

(Squared voltage magnitudes V 2

i are easily formulated in the

SDP relaxation of the OPF problem.)

To form a SDP-suitable convex relaxation, the rank one con-

dition on Γi is replaced by a positive semidefinite constraint

Γi � 0. This relaxation upper bounds a convex feasible space

in the Γ
22

i vs. Γ12

i plane on the curve Γ
12

i =
√

Γ22

i . Rather

than necessarily lying on this curve, the variables Γ12

i and Γ
22

i

must be within this feasible space, which is shown in Fig. 1.

An exact solution is obtained when rank (Γi) = 1.

To enforce voltage magnitudes between V min
i and Vmax

i ,

constrain
(

V min
i

)2

≤ Γ
22

i ≤ (V max
i )2. The line connecting

the points
(

(

V min
i

)2

, V min
i

)

and
(

(V max
i )

2
, V max

i

)

lower

bounds the feasible space, which is the convex hull of the

square root function between the voltage magnitude limits.
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Fig. 1. Feasible Space for Voltage Magnitude Representation

To represent the ZIP load model in terms of Γi, define

Ri =

[

a3i
a2i

2

a2i

2
a1i

]

(3a)

Ti =

[

b3i
b2i
2

b2i
2

b1i

]

(3b)

The proposed representation for ZIP loads is then

PDi = trace (RiΓi) (4a)

QDi = trace (TiΓi) (4b)

IV. EXAMPLE

Consider a two-bus system with a generator at bus 1 that

has no generation limits and a ZIP load at bus 2. The line

has impedance of 0.05+ j0.15 per unit and has no flow limit.

With a 100 MVA base, the ZIP load has per unit parameters

a12 = b12 = 0.01, a22 = b22 = 0.02, and a32 = b32 = 0.50.

Bus voltage magnitudes are in the range [0.90, 1.10] per unit.

Denote the bus i voltage phasor as Vdi + jVqi per unit.

Define an OPF problem that minimizes the active power

generation by specifying a $1/MWh generation cost. Use bus 1

to provide the reference angle (i.e., Vq1 = 0 and Vd1 = V1).

For specified V1, the feasible space has two degrees of freedom

(i.e., Vd2 and Vq2) constrained by the active and reactive power

balance equations at bus 2. Exhaustive search of the feasible

space is conducted by varying V1 between 0.90 and 1.10 per

unit while solving for Vd2 and Vq2 with the quadratic equation.

This yields a globally optimal solution to the OPF problem

with objective value of $55.82, V1 = 1.100, and V2 = 0.992
per unit (Vd2 = 0.991 and Vq2 = −0.048 per unit), which is

marked by the circle in Fig. 1.

The solution to the SDP relaxation closely approximates

this global solution obtained through exhaustive search. The

solution to the SDP relaxation has optimal objective value

$55.81 and V1 = 1.100 per unit. Γ22

2
= 0.984, which implies

that V2 = 0.992, while Γ
12

2
implies that V2 = 0.987 (i.e., a

voltage magnitude difference of 0.005 per unit or 0.5%). This

solution, which is marked by the square in Fig. 1, indicates

that the SDP relaxation selects a slightly larger value for Γ22

2

in order to minimize losses as compared to a smaller value for

Γ
12

2
to reduce the demand of the ZIP load. The matrix Γ2 has

eigenvalues of 0.005 and 1.979, so this matrix is close to being

rank one. The proposed model thus closely approximates but

does not exactly match ZIP load behavior for this system.

V. DISCUSSION

Reducing active power demand at ZIP loads often results in

lower cost solutions to OPF problems. Active power demands

of the constant current components of ZIP loads with positive

a2i are reduced by minimizing voltage magnitudes. Thus,

solutions to the SDP relaxation will tend to have smaller values

of Γ
12

i relative to the value of Vi implied by
√

Γ22

i , which

results in rank two Γi matrices. Although such solutions are

not exact, they closely approximate ZIP load behavior. The

maximum error in the voltage magnitude approximation is

max

{

√

Γ22

i − Γ
12

i

}

=

(

V max
i − V min

i

)2

4
(

V max
i + V min

i

) per unit (5)

This maximum occurs at Γ
22

i =
(

V max
i + V min

i

)2

/4. The

error is small for typical values of V max
i and V min

i (e.g., a

maximum error of 0.005 per unit occurs at Γ22

i = 1.00 and

Γ
12

i = 0.995 per unit for Vmax
i = 1.10 and V min

i = 0.90).
Note that negative a2i values in ZIP load models correspond

to constant current components that inject active power into

the network. For these cases, the SDP relaxation will typically

yield an exact solution because it tends to maximize the mag-

nitudes of these negative injections. For instance, specifying

a22 = −0.02 per unit gives the exact solution to the two-bus

example system (i.e., rank (Γ2) = 1).
Also note that some non-zero values for a2i and b2i may

result in failure to satisfy the rank condition of [4]. Experience

suggests that this is more common with larger positive a2i.
Numerical experience included cases ranging in size up to

the IEEE 118-bus system. With ZIP loads at each bus, solver

times increased by approximately 20% to 30% relative to

cases with only constant power loads. The percent increases

in solution times are relatively independent of system size.

VI. CONCLUSION

This letter presents an approximate method for incorporat-

ing ZIP load models in a SDP formulation of the OPF problem.
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