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Towards an AC Optimal Power Flow Algorithm
with Robust Feasibility Guarantees

Daniel K. Molzahn∗ and Line A. Roald†

Abstract—With growing penetrations of stochastic renewable
generation and the need to accurately model the network physics,
optimization problems that explicitly consider uncertainty and
the AC power flow equations are becoming increasingly im-
portant to the operation of electric power systems. This paper
describes initial steps towards an AC Optimal Power Flow
(AC OPF) algorithm which yields an operating point that is
guaranteed to be robust to all realizations of stochastic generation
within a specified uncertainty set. Ensuring robust feasibility
requires overcoming two challenges: 1) ensuring solvability of
the power flow equations for all uncertainty realizations and
2) guaranteeing feasibility of the engineering constraints for
all uncertainty realizations. This paper primarily focuses on
the latter challenge. Specifically, the robust AC OPF problem
is posed as a bi-level program that maximizes (or minimizes)
the constraint values over the uncertainty set, where a convex
relaxation of the AC power flow constraints is used to ensure
conservativeness. The resulting optimization program is solved
using an alternating solution algorithm. The algorithm is illus-
trated via detailed analyses of two small test cases.

I. INTRODUCTION

The optimal power flow (OPF) problem is an important
tool for power system operations that minimizes generation
cost subject to constraints that model the power flow physics
and enforce engineering limits. The need to maintain security
despite the forecast uncertainty and short-term fluctuations that
are inherent to many renewable energy sources has prompted
the development of methods to account for possible adverse
effects of uncertainty within the OPF problem. Significant
research efforts have focused on uncertainty modeling in the
DC OPF problem, where the linearity of the “DC” power flow
approximation simplifies the uncertainty modeling and yields
an easier optimization problem. However, applications such as
distribution grid optimization and transmission grid security
assessment call for network models that use the non-linear
“AC” power flow equations, which necessitates solution of
non-convex AC OPF problems under uncertainty. This paper
focuses on robust feasibility in the AC OPF problem, meaning
that the chosen operating point must be secure against all
uncertainty realizations within a specified uncertainty set.

Even deterministic AC OPF problems are non-convex and
generally NP-Hard [1], [2]. A wide variety of algorithms
have been applied in order to find locally optimal AC OPF
solutions [3]. Recent efforts have provided a broad range of
“convex relaxation” techniques for AC OPF problems, which
replace the AC power flow constraints by a convex outer
approximation. See [4] for a comprehensive survey. Convex
relaxations yield a lower bound on the optimal objective value
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for the original non-convex problem, can certify problem in-
feasibility, and, if certain conditions are satisfied for exactness
of the relaxation at its solution point, provide the globally
optimal solution to the original non-convex problem.

Despite substantial progress in AC OPF solution techniques,
the development of rigorous algorithms with probabilistic or
robust guarantees for AC OPF problems remains difficult. The
non-convexity of the constraints challenges existing methods
that provide guarantees for a continuous uncertainty set based
on, e.g., samples or decomposition methods. Most existing ap-
proaches circumvent the issue of non-convexity by represent-
ing the AC power flow equations using either a linearization or
a convex relaxation, combined with either a sample-based or
analytic chance-constrained representation [5]–[8], a two-stage
robust optimization method that exploits conic duality [9],
or two-stage stochastic programs based on a sample-average
approximation [10] or Benders’ decomposition [11]. Refer-
ence [12] uses a sampling approach that provides a posteriori
probabilistic guarantees regarding chance-constraint satisfac-
tion for the non-convex AC OPF problem. Recently, [13]
proposed an approach to guarantee robust feasibility through
an inner approximation; however, the method seems unable
to handle nodal power balance constraints on buses without
generation or adjustable loads. One of the most comprehensive
approaches to date remains [14]. Based on the full non-convex
AC power flow equations, the approach in [14] uses scenario
generation to build a set of worst-case scenarios, which are
found by maximizing infeasibility of the non-convex AC OPF
problem subject to uncertainty and contingencies.

Our approach separates the problem of enforcing robust
feasibility into two aspects:

1) Guarantee solvability of the AC power flow constraints
for all realizations within the uncertainty set.

2) Ensure feasibility of the individual engineering con-
straints for all realizations within the uncertainty set.

Although several of the above mentioned approaches provide
solutions that perform well, none of them provide rigorous
guarantees for the robust feasibility of the underlying, non-
convex AC power flow constraints. Since several of the al-
gorithms, e.g., [14], search for worst-case realizations subject
to the AC power flow constraints, there is no guarantee that
realizations which lead to AC power flow insolvability will
be discovered. Further, none of the above robust approaches
truly provide robust feasibility guarantees for the original non-
convex problem. Some rely on the (strong) assumption that
their linearization or relaxation provides an exact representa-
tion of the AC power flow for all uncertainty realizations or is
consistently accurate in identifying the worst-case scenarios.
The robust approach in [14] with the full, non-convex AC
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power flow constraints might run into a local optimum and
incorrectly declare robust feasibility while some infeasible
scenarios remain. Thus, to the best of our knowledge, no robust
AC OPF solution algorithm that is guaranteed to satisfy either
aspect has yet been published.

We aim to develop an algorithm that addresses this gap. As
a first step, the AC OPF algorithm that is the main contri-
bution of this paper focuses on the latter aspect of ensuring
engineering constraint satisfaction for all realizations in a
specified uncertainty set. This is accomplished by formulating
the robust AC OPF problem as a bi-level program where each
robust constraint is replaced by a limit on the extreme value
achievable within the set of uncertainty realizations. These
extreme values are obtained by solving a maximization (or
minimization) problem over the uncertainty set, subject to AC
power flow constraints. To guarantee conservative estimates
of the extreme values, i.e., that the impact of uncertainty
is not underestimated, the power flow equations in the con-
straint maximization problems are replaced by a combination
of convex relaxations [15]–[21] (formulated as semidefinite
programs (SDP) and second-order cone programs) that balance
computational complexity with accuracy. Note that by apply-
ing the convex relaxations in this way, we guarantee feasibility
of the engineering constraints without any assumptions on the
relaxation’s exactness or ability to find worst-case scenarios.

To solve the resulting bi-level AC OPF problem, we adapt
an alternating algorithm that has been successfully applied to
other stochastic AC OPF problems [6], [7]. The algorithm
alternates between 1) solving a deterministic, single-level
problem with tightened constraint limits and 2) evaluating
an optimization problem for each engineering constraint to
compute constraint tightenings that ensure feasibility for all
uncertainty realizations. The constraint tightenings’ depen-
dence on the operating point (and vice versa) naturally leads
to an alternating algorithm. The algorithm has converged to
a robustly feasible solution when the tightenings no longer
change between iterations.

This paper is organized as follows. Section II describes how
we model uncertainty and the system’s response to distur-
bances. Section III formulates the robust AC OPF problem.
Section IV details our iterative solution algorithm. Section V
provides numerical results. Section VI concludes the paper.

II. SYSTEM MODELING UNDER UNCERTAINTY

Based on typical system characteristics, this section presents
our models of the power system, the uncertain power injec-
tions, and the system’s response to fluctuations. Note that our
approach can accommodate a range of variants in addition to
our selected modeling choices.

A. Notation and System Modeling

We consider a power system where N and L denote the
sets of buses and lines, with |N | = n. The set of buses
with uncertain demand or renewable generation is denoted by
U ⊆ N , and the set of conventional generators is represented
by G. To simplify notation, we consider one conventional
generator, one composite uncertainty source, and one known

injection per bus, such that |G| = |U| = |N | = n. The network
admittance matrix is denoted Y = G+ jB, where j =

√
−1.

Each bus i ∈ N has active and reactive power injections pi
and qi as well as a voltage phasor with magnitude vi and
angle θi. To represent the steady-state behavior of typical
power system devices, we use subscripts ( · )PQ, ( · )PV , and
( · )θV to distinguish between PQ buses (specified active and
reactive power injections), PV buses (specified active power
and voltage magnitude), and a single θV (specified voltage
magnitude and angle reference) bus. Each generator i ∈ G has
a quadratic cost function with coefficients c2,i, c1,i and c0,i.
Each line (`,m) ∈ L has current flows into each terminal

given by
[
i`m
im`

]
= Ŷ`m

[
v`
vm

]
, where Ŷ`m is the line’s

admittance matrix. We use MATPOWER’s line model [22].

B. Uncertainty Modeling

The active and reactive power injections at each bus i ∈ N
consist of specified forecasted components, denoted as pinj,i
and qinj,i, and fluctuations due to uncertain generation and
load demand. Fluctuations in the active power injections,
denoted as ω, belong to a specified uncertainty set W . For
simplicity, we consider a box uncertainty set, i.e., each entry of
ω lies within a pre-defined interval, ωi ∈

[
ωmin
i , ωmax

i

]
where

ωmin
i ≤ 0 ≤ ωmax

i . More general uncertainty sets (e.g., budget
uncertainty [23]) can also be modeled. Additionally, while this
paper does not explicitly consider voltage-dependent loads,
extension to more general load models (e.g., ZIP models [24]
and induction machine models [25]) is straightforward.

We model the fluctuations as having constant power factors
cosφi, such that the reactive power fluctuations are given by
γi ωi where γi =

√
(1− cos2 φi)/ cosφi. Reactive power

could also be controlled in a variety of other ways, e.g.,
as injections that are constant, dispatchable, or participate in
voltage control. These types of control can be included in the
formulation without any conceptual changes.

C. Generation and Voltage Control

Setpoints pG0, qG0, and vG0 for the active and reactive
generation dispatches and voltage magnitudes are scheduled
by the system operator based on the forecasted injections,
corresponding to ω = 0. During fluctuations ω 6= 0, active
power deviations from the scheduled setpoints are determined
by an Automatic Generation Control (AGC) scheme [26]
that divides the mismatch in total active power generation
Ω =

∑
i∈U ωi among the generators according to a vector

of prespecified participation factors α, where
∑
i∈G αi = 1.

While the deviation Ω due to uncertainty is the main source
of power imbalance in the system, there is also an additional
power mismatch due to changes in the active power losses.
The total change in active power loss, denoted by δp, is also
split among the generators according to α such that the active
power generation is pG,i(ω) = pG0,i − αi (Ω− δp).

The reactive power outputs of generators at PV and refer-
ence buses, qG(ω), change to keep their voltage magnitudes
constant during fluctuations, whereas generators at PQ buses
keep their reactive outputs constant at qG0. Conversely, the
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voltage magnitudes vG0 are kept constant by the generators
at the reference and PV buses, but vary as functions of the
fluctuations at PQ buses, v(ω).

III. ROBUST OPTIMIZATION PROBLEM

This section describes the robust AC OPF problem and
explains the problem’s challenges.

A. Problem Formulation

Formalizing the system and uncertainty models described
in Section II, the robust AC OPF problem is

min
∑
i∈G

(
c2,i p

2
G0,i + c1,i pG0,i + c0,i

)
(1a)

subject to (∀i ∈ N , ∀ (`,m) ∈ L, ∀ω ∈ W)

pG,i(ω) = pG0,i − αi

(∑
i∈U

(ωi)− δp(ω)

)
, (1b)

vj(ω) = vG0,j , ∀j ∈ {NPV ,NθV } , (1c)
qk(ω) = qG0,k, ∀k ∈ NPQ, (1d)

pG,i(ω) + pinj,i + ωi = vi(ω)

n∑
k=1

vk(ω)
[
Gik cos

(
θi(ω)

−θk(ω)
)

+ Bik sin
(
θi(ω)− θk(ω)

)]
, (1e)

qG,i(ω) + qinj,i + γi ωi = vi(ω)

n∑
k=1

vk(ω)
[
Gik sin

(
θi(ω)

−θk(ω)
)
− Bik cos

(
θi(ω)− θk(ω)

)]
, (1f)

θθV (ω) = 0, (1g)

pminG,i ≤ pG,i (ω) ≤ pmaxG,i , (1h)

qminG,i ≤ qG,i(ω) ≤ qmaxG,i , (1i)

vmini ≤ vi(ω) ≤ vmaxi , (1j)
|i`m(ω)| ≤ imax`m , |im`(ω)| ≤ imax`m . (1k)

The objective (1a) minimizes the cost of the scheduled active
power generation. Constraints (1b)–(1d) model the generators’
responses to fluctuations ω 6= 0 as described in Section II-C.
The power flow equations (1e) and (1f) enforce power balance
for all uncertainty realizations. Constraint (1g) sets the angle
reference. The generation constraints (1h) and (1i) limit the
generator power outputs, while (1j) keeps the voltage magni-
tudes within bounds. The transmission constraints (1k) limit
the magnitudes of the current flows on every line.

The variables in (1) can be classified into two categories:
1) control variables pG0, qG0, and vG0 which represent
scheduled setpoints determined by the optimization problem
and 2) dependent variables pG(ω), qG(ω), vG(ω), θ(ω), i(ω),
and δp(ω) which are implicitly determined by the control
model (1b)–(1d) and the power flow equations (1e)–(1g) for
all uncertainty realizations ω ∈ W .

B. Discussion of Challenges

The robust AC OPF problem (1) is a semi-infinite program
since the constraints must be satisfied for all realizations within
the continuous uncertainty set W . Developing a tractable
representation requires reformulating (1) to obtain a finite set

of constraints. The requirement of robust feasibility in (1) can
be condensed into two key challenges:

1) The power flow equations (1e)–(1g) must be guaranteed
to have a solution for all uncertainty realizations ω ∈ W .

2) No uncertainty realization ω ∈ W may result in viola-
tions of the engineering constraints (1h)–(1k).

The remainder of this paper focuses on an algorithm for
addressing the latter challenge of preventing engineering con-
straint violations, with the task of rigorously addressing the
former challenge left as a subject for future work. To set up the
development of our algorithm for ensuring engineering con-
straint satisfaction, we reformulate (1) as a bi-level program:

min
∑
i∈G

(
c2,i p

2
G0,i + c1,i pG0,i + c0,i

)
(2a)

subject to (∀i ∈ N , ∀ (`,m) ∈ L, ∀ω ∈ W) ,

Constraints (1e)–(1g) for all ω ∈ W, (2b)

min
ω∈W

{pG,i (ω) s.t. (1b)–(1g), v(ω) ≥
˜
v} ≥ pminG,i , (2c)

max
ω∈W

{pG,i (ω) s.t. (1b)–(1g), v(ω) ≥
˜
v} ≤ pmaxG,i , (2d)

min
ω∈W

{qG,i (ω) s.t. (1b)–(1g), v(ω) ≥
˜
v} ≥ qminG,i , (2e)

max
ω∈W

{qG,i (ω) s.t. (1b)–(1g), v(ω) ≥
˜
v} ≤ qmaxG,i , (2f)

min
ω∈W

{vi (ω) s.t. (1b)–(1g), v(ω) ≥
˜
v} ≥ vmini , (2g)

max
ω∈W

{vi (ω) s.t. (1b)–(1g), v(ω) ≥
˜
v} ≤ vmaxi , (2h)

max
ω∈W

{|i`m(ω)| s.t. (1b)–(1g), v(ω) ≥
˜
v} ≤ imax`m , (2i)

max
ω∈W

{|im`(ω)| s.t. (1b)–(1g), v(ω) ≥
˜
v} ≤ imax`m . (2j)

The first challenge of ensuring power flow feasibility is evident
by the presence of constraints (1e)–(1g) in (2b). The second
challenge of guaranteeing the satisfaction of the engineer-
ing constraints for all uncertainty realizations appears in the
subproblems in (2c)–(2j). The formulation requires that each
constraint is enforced for the ω that maximizes (or minimizes)
the respective constraint value, which guarantees feasibility of
each separate constraint for all ω ∈ W .

Note that the optimization problems in (2c)–(2j) follow
the generation and voltage control model (1b)–(1d) and the
power flow constraints (1e)–(1g), and include a lower bound
on the voltage magnitude

˜
v. The lower bound

˜
v is selected

to be significantly below practical operating regimes, e.g.,
0.5 per unit (p.u.). This bound precludes the possibility of
undesirable “low-voltage” solutions in the absence of other
engineering constraints (which are not enforced to avoid
circular arguments).1 Imposing this bound is not restrictive
in practice since the system model is invalid for very low
voltages due to under-voltage protection schemes that would
disconnect loads and generators prior to reaching such low
voltage magnitudes.

1When feasible, the power flow equations (1e)–(1g) are typically satisfied
by one “high-voltage” solution with near-nominal voltage magnitudes and
possibly many “low-voltage” solutions. These low-voltage solutions are un-
desirable since they are generally unstable and typically violate engineering
constraints (1h)–(1k). Since we do not enforce (1h)–(1k) in the subprob-
lems (2c)–(2j), imposing a lower bound of

˜
v screens out these solutions to

avoid unnecessary conservatism that would result from considering them.
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IV. AN ALGORITHM ENSURING ROBUST FEASIBILITY OF
THE ENGINEERING CONSTRAINTS

The robust AC OPF problem requires that the engineering
constraints (1h)–(1k) are satisfied for all possible uncertainty
realizations ω ∈ W . This section explains our algorithm for
enforcing these constraints in three steps. First, we describe
our procedure for evaluating each individual constraint at
a given scheduled operating point pG,0, qG,0, vG,0. Next,
we use our constraint evaluation procedure to represent the
robust AC OPF problem as a deterministic AC OPF problem
with tightened constraints. Finally, we present our alternating
algorithm that leverages the prior two steps to find an oper-
ating point that ensures robust feasibility of the engineering
constraints.

A. Evaluation of the Robust Feasibility Constraints

The optimization problems (2c)–(2j) maximize (or mini-
mize) the constraint value with ω ∈ W as an optimization
variable, subject to our uncertainty response model governing
the balancing behavior of generators and the AC power flow
equations. Since the AC power flow equations are non-convex,
the optimization problems may return a locally optimal solu-
tion that underestimates the impact of uncertainty. Therefore,
we replace the non-convex problems (2c)–(2j) with convex
relaxations that are guaranteed to return conservative bounds
on the worst-case uncertainty impacts. While any relaxation
is acceptable, we specifically use a combination of the sparse
SDP relaxation [15]–[17] and the QC relaxation [18] along
with a variety of improvements [19]–[21]. This choice of
relaxations balances computational complexity with tightness
in order to avoid overly conservative solutions (i.e., that the
impacts of uncertainty are significantly overestimated due to
the use of relaxations that are too loose).

The QC relaxation [18] requires specified angle difference
limits θmin`m ≤ θ`(ω)−θm(ω) ≤ θmax`m , ∀ (`,m) ∈ L, satisfying
−90◦ < θmin`m ≤ θmax`m < 90◦. We impose these limits in (2c)–
(2j). Thus, our implementation implicitly assumes that no
uncertainty realization results in very large angle differences.
Similar to the assumed prohibition of unreasonably small
voltage magnitudes in Sections III, we choose extreme values
for θmax`m and θmin`m , e.g., ±60◦, in order to avoid eliminating
relevant portions of the subproblems’ feasible spaces.

We iteratively solve the optimization problems:

Step 1–Initialization: Solve relaxations of all optimization
problems (2c)–(2j) as well as similar problems for the angle
differences ∆θ`,m(ω) = θ`(ω) − θm(ω) in order to obtain
initial bounds on pG(ω), qG(ω), v(ω), i(ω), and ∆θ`,m(ω).

Step 2–Iterative Tightening: The tighter bounds on pG(ω),
qG(ω), v(ω), i(ω), and ∆θ`,m(ω) from the previous itera-
tion facilitate the construction of tighter relaxations. Using
these tighter relaxations, we again solve relaxed versions
of (2c)–(2j) and the problems associated with the angle
differences.

Similar to “bound tighening” techniques [19], [20], we repeat
step 2 until the relaxations cannot be tightened further.

Note that the bounds on the voltage magnitudes v(ω) and
the angle differences ∆θ`,m(ω) resulting from this iterative
process are typically substantially tighter than the initially
imposed limits,

˜
v and θmin`m , θmax`m . This suggests that that our

initial assumptions v(ω) ≥
˜
v and θmin`m ≤ ∆θ`,m(ω) ≤ θmax`m

are sufficiently mild, and do not restrict the feasible spaces
of (2c)–(2j).

B. Representation as Tightened Constraints

After evaluating the robust constraints, we compute the
difference between the worst-case values and the values for a
given scheduled operating point. For active power, this yields

λpmax
G,i

= max
ω∈W

{pG,i (ω) s.t. (1b)–(1g), v(ω) ≥
˜
v} − pG0,i,

(3a)
λpmin

G,i
= pG0,i − min

ω∈W
{pG,i (ω) s.t. (1b)–(1g), v(ω) ≥

˜
v}
(3b)

By definition, λpmax
G,i

and λpmin
G,i

are non-negative and represent
the range within which the corresponding value might vary.
Analogous values λqmax

G,i
, λqmin

G,i
, λvmax

i
, λvmin

i
, λi`m , and

λim`
, ∀i ∈ N and ∀ (`,m) ∈ L, are computed for all

constraints.
The robust constraints (2c)–(2j) are tighter than the cor-

responding deterministic constraints, i.e., considering robust
feasibility shrinks the feasible space. As a consequence, λ ≥ 0,
and one can interpret λ as providing constraint tightenings
that account for uncertainty. We use this interpretation to
reformulate (2) as

min
∑
i∈G

(
c2,i p

2
G0,i + c1,i pG0,i + c0,i

)
(4a)

subject to (∀i ∈ N , ∀ (`,m) ∈ L)

Constraints (1e)–(1g) for ω = 0, (4b)

pminG,i + λpmin
G,i
≤ pG0,i ≤ pmaxG,i − λpmax

G,i
, (4c)

qminG,i + λqmin
G,i
≤ qG0,i ≤ qmaxG,i − λqmax

G,i
, (4d)

vmini + λvmin
i
≤ v0,i ≤ vmaxi − λvmax

i
, (4e)

|i0,`m| ≤ imax`m − λi`m , (4f)
|i0,m`| ≤ imax`m − λim`

. (4g)

where pG0, qG0, v0,i, i0,`m, and i0,m` denote the generator
outputs, voltage magnitudes, and current flows corresponding
to the scheduled operating point, rather than being functions of
the uncertainty realizations ω. Note that (4) is not equivalent
to (2) since the AC power flow constraints (4b) are enforced
only for the scheduled operating point, i.e., (4b) only considers
ω = 0 rather than ensuring power flow solvability for all
ω ∈ W . This reformulation reduces the optimization problem
from a semi-infinite program to a problem with a finite set of
constraints. Under the assumption that power flow solvability
for all uncertainty realizations (i.e., existence of a solution
to (4b) for all ω ∈ W) is implied by feasibility of the
engineering constraints for all ω ∈ W and satisfaction of the
AC power flow equations at the scheduled operating point,
a solution to (4) guarantees robust feasibility for the original
problem (2). Although we expect this assumption to hold for



5

Initialize: k = 0 and constraint tightenings λ̂0 = 0

Solve deterministic, single-level AC OPF:(
pkG0, q

k
G0, v

k
G0

)
= arg min (4)

with specified tightenings λ̂k

Compute constraint tightenings:
λ̂k+1 = λ(pkG0, q

k
G0, v

k
G0)

Check convergence:
Is max(|λ̂k+1 − λ̂k|) ≤ η ?

Converged to a secure operating point!

k ← k + 1

Yes

No

Fig. 1. Alternating algorithm for robust AC OPF problems.

many practical systems, providing more rigorous guarantees
regarding power flow solvability is an important aspect of our
ongoing work.

Reformulating problem (2) as (4) does not directly indicate
a viable solution algorithm since the tightenings λ do not
have explicit representations. However, as described above,
computing appropriate tightenings λ for a given scheduled
operating point pG0, qG0, vG0 is tractable. Moreover, the
optimization problem (4) is a tractable deterministic, single-
level problem if the values of the tightenings λ are specified.
We next present an algorithm that exploits these observations
to ensure robust feasibility of the engineering constraints.

C. Algorithm Description

Fig. 1 summarizes our algorithm for solving (4). This
algorithm (which is similar to an algorithm previously applied
to chance-constrained AC OPF in [6], [7]) alternates between
1) solving a deterministic, single-level AC OPF problem based
on a given set of constraint tightenings, λ̂k, to obtain a solution(
pkG0, q

k
G0, v

k
G0

)
at iteration k, and 2) computing the constraint

tightenings λ̂k+1 for this solution by evaluating (3) for each
constraint. The algorithm is initialized with λ̂0 = 0, such
that the first iteration solves the deterministic, single-level
problem associated with the forecasted values (ω = 0). For
the deterministic, single-level AC OPF problems (4) solved
in each iteration, any solution algorithm can be applied. The
algorithm converges when the changes in the constraint tight-
enings between subsequent iterations are within a specified
threshold η > 0, i.e.,

∣∣∣λ̂k+1 − λ̂k
∣∣∣ ≤ η.

While this algorithm may fail to converge or yield a sub-
optimal solution, it has been observed to perform well for
other AC OPF problems under uncertainty, such as chance-
constrained AC OPF [6], [7], and the empirical results dis-
cussed in the following section are promising.

V. NUMERICAL RESULTS

A. Implementation

The algorithm is implemented using MATPOWER [22] to
solve the deterministic AC OPF problem in each iteration. The
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(a) Feasible space for the deterministic AC OPF problem.
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(b) Uncertainty realizations.
Fig. 2. Projections of the feasible space and uncertainty realizations for
case6ww.

computation of the tightenings using the relaxations in [15]–
[21] is implemented in Matlab and YALMIP [27] with Mosek
as a solver. We choose equal participation factors αi = 1/ |G|,
∀i ∈ G. In our experiments, the algorithm typically converges
in two to five iterations. For small systems, such as the 6-
bus system “case6ww” and the IEEE 14-bus system [22], a
solution is obtained within two minutes on a laptop with a
quad-core 2.70 GHz processor and 16 GB of RAM. Larger
systems, such as the IEEE 30-bus or EPRI 39-bus systems,
had solution times on the order of 10 to 20 minutes. Rather
than being inherent to the algorithm, these solution times
are a rough indication of complexity. There are several ways
of significantly improving computational speed, particularly
by reducing the time required to compute the constraint
tightenings. Improving computational speed is an important
topic for future work.

B. 6-Bus Illustrative Example

Fig. 2 illustrates algorithmic performance using the 6-bus
system “case6ww” from [22]. The uncertainty set considered
for this example is ±5% variation around the forecasted value
at every load bus. The algorithm converges in three iterations.

1) Impact of Robustness on AC OPF Solution: The colored
region in Fig. 2a is a projection of the feasible space for the
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TABLE I
GENERATOR OUTPUTS FOR CASE6WW

Deterministic Problem Alternating Algorithm
Generator PG (MW) QG (MVAr) PG (MW) QG (MVAr)

1 66.46 29.40 97.24 19.21
2 76.72 61.26 56.16 71.03
3 73.57 85.79 64.05 88.45

“case6ww” system computed using the approach in [28]. The
region surrounded by the blue dashed curve corresponds to the
feasible space of the deterministic AC OPF problem solved in
the final iteration of the alternating algorithm. The solid black
line indicates the original deterministic limit on the line flow
i4,2 while the dashed black line indicates the tightened flow
limit. The red square and blue star correspond to the solution
of the original deterministic AC OPF problem and the robust
solution based on the alternating algorithm, respectively.

The robust algorithm introduces non-zero constraint tight-
enings λ to account for the impact of uncertainty, hence
reducing the feasible space of the deterministic problem (4)
that optimizes the operating point for ω = 0. This results in
1.2% higher operating cost for the robust operating point (blue
star) relative to the solution without considering uncertainty
(red square). Table I compares the generator outputs for the
solution to the original deterministic AC OPF problem and the
result of the alternating algorithm. Ensuring robustness results
in substantially different operation for this test case.

2) Evaluation of Robust Feasibility: Fig. 2b shows the
operating points corresponding to 1000 randomly sampled un-
certainty realizations based on the solutions from the original
deterministic AC OPF problem (red) and the robust algorithm
(blue). While many of the red dots indicate violations of
the operational limit on i4,2 (i.e., they are above the current
limit indicated by the black line), all uncertainty realizations
associated with the output of the alternating algorithm result
in feasible operation (remain below the black line). This result
shows the robustness of the solution from our algorithm.

The yellow triangles in Fig. 2b correspond to points where
the SDP relaxation used in the last iteration of the alternating
algorithm is exact and therefore yields a physically meaningful
extreme uncertainty realization. In particular, the SDP relax-
ations associated with maximizing current flow magnitudes
are exact. As a result, the corresponding yellow triangles are
at the extrema of the uncertainty realizations denoted by the
blue dots. If the relaxations for these constraints had not been
exact, the strict bounds resulting from the relaxations would
yield tighter constraints and thus a more conservative operating
point (i.e., the feasible space enclosed by the blue dashed line
in Fig. 2a would shrink, and the largest uncertainty realizations
in Fig. 2b would shift down, away from the limit).

C. IEEE 14-Bus System

We next present results for the IEEE 14-bus system [29]
with ±1 to ±30% variation relative to the forecast for every
load. We reduce the line flow limits to 25% of the nominal
values specified in [29] to obtain interesting behavior.

1) The Impact of Uncertainty on Cost: Fig. 3 shows the
cost of the robust AC OPF solution for varying levels of
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Fig. 3. Cost of the robust AC OPF solution for the IEEE 14-bus system with
varying levels of uncertainty. The cost is shown relative to the deterministic
solution.
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Fig. 4. Tightenings for the binding constraints corresponding to reactive power
(left) and current magnitude (right) limits for various levels of uncertainty. The
black dashed lines correspond to the R-Tightenings for each active constraint,
computed based on the relaxations. The green lines show the maximum
differences among the binding constraints between the R-Tightenings and the
power flow solutions for the corresponding worst-case scenarios.

uncertainty. We observe that the cost increases for larger uncer-
tainty ranges. This cost increase is due to the larger constraint
tightenings λ, which are required to ensure security against
larger fluctuations. To avoid unnecessarily high costs, it is
important to obtain tightenings that are not overly conservative
by using relaxations that are as tight as possible.

2) Conservativeness of Constraint Tightenings: To assess
whether the tightenings provide accurate bounds or are overly
conservative, we perform an experiment to assess the differ-
ences between the bounds obtained from (3) using the power
flow relaxations and the bounds we would obtain if we solved
the AC power flow equations for the operating point corre-
sponding to the worst-case uncertainty realizations returned
by the power flow relaxations (i.e., the decision variables ω
returned by the relaxed problems (2c)–(2j)). We denote the
former tightenings (used in the iterative algorithm) as the
robust tightenings (R-tightenings) and the latter tightenings
based on the power flow equations as power flow tightenings
(PF-tightenings). The differences between the R-tightenings
and the PF-tightenings for the binding constraints provide
estimates of the conservativeness introduced by the relaxation.

Fig. 4 shows both the values of the R-tightenings and
the maximum differences between the R-tightenings and the
PF-tightenings for the set of binding constraints. We only show
results for constraints on the reactive power injections and
current flows because the generator active power constraints
are non-binding and the binding voltage constraints correspond
to buses where the voltage magnitudes are held constant
(PV buses), resulting in tightenings that are equal to zero.
The R-tightenings are close to exact for the reactive power



7

injections (differences < 0.1 MVAr), and are also accurate
for the current flows (differences ≈ 0.01 p.u.). Although the
tightenings increase with increasing uncertainty, the differ-
ences between the R-tightenings and the PF-tightenings remain
small, indicating that the size of the uncertainty set does not
strongly influence the tightness of the relaxations.

VI. CONCLUSION AND FUTURE WORK

This paper proposed the first AC OPF algorithm which
provides robust feasibility guarantees for the engineering
constraints in the full, non-convex AC OPF problem under
uncertainty. To achieve this, we reformulate the problem as
a bi-level program where robust feasibility of the individual
constraints is enforced by bounding the extreme values that
each constrained variable can achieve for any uncertainty real-
ization. We evaluate these extreme values by solving optimiza-
tion problems based on convex relaxations of the AC power
flow equations, which guarantees conservative estimates. We
then use the observation that the robust constraints represent a
tightening of the deterministic constraints in order to formulate
the robust AC OPF as a deterministic problem with tightened
constraints, where the tightenings are computed based on the
optimization problems. To find a robustly feasible solution that
considers the scheduled generation cost, we apply an alter-
nating solution algorithm which first solves the deterministic
AC OPF problem with tightened constraints and then updates
the tightenings based on the obtained solution. When the
algorithm converges, the solution guarantees robust feasibility
of the engineering constraints, provided that the power flow
equations are feasible for all uncertainty realizations.

The effectiveness of the algorithm is illustrated using two
small test cases. The results show that ensuring robustness
changes both the solution and the associated cost. Further,
although the method uses convex relaxations to guarantee
conservativeness, the resulting bounds are sufficiently accurate
in order to avoid being overly conservative.

In future work, we plan to improve computational tractabil-
ity by identifying and focusing on the most relevant bounds.
We also intend to consider more general uncertainty sets and
device models. Importantly, we will also extend the method to
provide rigorous guarantees on power flow solvability (i.e., the
first challenge identified in the introduction) and demonstrate
these guarantees using test cases where power flow solvability
is crucial to ensuring robustness.
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