
Grid-Aware versus Grid-Agnostic Distribution System Control:
A Method for Certifying Engineering Constraint Satisfaction

Daniel K. Molzahn
Argonne National Laboratory

dmolzahn@anl.gov

Line A. Roald
Los Alamos National Laboratory

roald@lanl.gov

Abstract

Growing penetrations of distributed energy
resources (DERs) in distribution systems have
motivated the design of controllers that leverage
DER capabilities to achieve system-wide objectives.
These controllers may be either grid-agnostic or
grid-aware, depending on whether distribution network
constraints are considered. Grid-agnostic controllers
have the benefit of not requiring network models
or system measurements, but may cause dangerous
constraint violations. Rather than develop a specific
controller, this paper considers the potential impacts
of DER controllers with respect to network constraint
violations. Specifically, this paper develops an
optimization-based method to rigorously certify when
any grid-agnostic controller can be applied without
concern regarding network constraint violations, or,
conversely, when grid-aware control may be needed
to maintain distribution grid security. The proposed
method uses convex optimization techniques to bound
the impacts of load variability, given a subset of buses
with voltage measurements and control. The method
either provides a certificate for secure operation or
identifies potentially critical constraints and the need
for additional controllability. Numerical tests illustrate
the ability to certify secure operation for different
ranges of variability.

1. Introduction

Rapidly growing penetrations of distributed energy
resources (DERs) such as solar PV generators, plug-in
electric vehicles, demand response, and energy storage
are affecting the design and operation of electric
distribution systems [1–9]. Many research efforts
have focused on the development of controllers that
coordinate DERs in order to achieve system-wide
objectives, such as frequency control [2, 3], voltage
control [10–12], system stability [3, 13], and mitigating
phase unbalance [14]. We divide these controllers

into two categories. Grid-agnostic DER controllers
do not consider the distribution system’s engineering
constraints. Instead, they focus on achieving a desired
aggregated performance, such as tracking setpoints
for active and reactive power, which might be sent
from an entity that aims at balancing the grid [2, 3],
controlling the aggregate consumption across loads [15],
or responding to market prices [16]. Conversely,
grid-aware controllers actively manage DER outputs to
avoid or mitigate violations of engineering constraints
such as voltage limits [11, 12], prevent overloading of
transformers, or defer investments [4, 17], sometimes in
presence of load uncertainty [18].

These categories of controllers have inherent
trade-offs between implementation complexity and their
ability to handle grid constraints. Grid-agnostic
controllers are often beneficial as they do not require
a distribution system model or real-time measurements.
They can hence be managed by entities other than
the distribution grid operator such as the transmission
system operator or a third-party DER aggregator,
which may consolidate DER capabilities over a large
geographical area. However, use of grid-agnostic
controllers without further consideration of distribution
grid constraints may aggravate power quality concerns
and damage equipment. Conversely, while grid-aware
controllers are designed to mitigate network problems,
their requirements on information about individual
loads and network models increase implementation
complexity and might cause privacy concerns.

Distribution system operators hence need tools to
understand under which circumstances grid-agnostic
control can be applied without consequences for grid
security and, conversely, when it is necessary to invest in
the sensing, communication, and control infrastructure
required to observe and mitigate constraint violations
using grid-aware control. Existing approaches for
analyzing this question, such as [1, 7, 9], perform
multiple simulations in order to study the risk
of constraint violations associated with fluctuations
from various grid-agnostic controllers and variable
loads. These approaches provide valuable information



regarding the impacts of DERs on distribution systems,
but are limited to only considering a subset of possible
operational scenarios.

Rather than simulating a select number of scenarios,
this paper proposes a rigorous method to certify whether
distribution system operation will remain secure in the
face of a range of variability. We consider a set
of buses with voltage measurements and control as
well as specified ranges for the power injections at all
buses which represent possible realizations of variable
loads, renewable generators, and both grid-aware
and grid-agnostic DER control. Our method either
certifies that no combination of the power injections
within these considered ranges will lead to constraint
violations or identifies the possible need for additional
measurements and controls to ensure security. These
certificates help evaluate the security implications of
adding new renewable generators and the application of
grid-agnostic DER controllers.

The certificates for secure operation are obtained
by solving a minimization or maximization problem
for each constraint which bounds the impact of the
variability. We employ convex relaxations of the AC
power flow constraints to obtain valid but conservative
bounds for the extreme values obtained from these
problems. We use the QC relaxation [19–21], but other
relaxations are also applicable [22].

We illustrate our method using the 56-bus system
from [23], which is derived from the IEEE 123-bus test
case. Our method enables us to certify security for
various operating ranges, given a very limited number
of buses with voltage measurements and control.

The main contributions of this paper are:
(i) A method to certify distribution grid security, i.e., no
constraint violations can occur for any combination of
power injections within certain ranges.
(ii) A principled approach to certify secure operations
for a broader range of operational conditions, i.e., larger
ranges of load variability, given the enforcement of a
small number of voltage limits via grid-aware control.
(iii) Numerical simulations which demonstrate the
benefits of the proposed method.

The remainder of this paper is organized as follows.
Section 2 provides the problem setting, introduces
notation, and describes the problem formulation and our
solution method. Section 3 numerically illustrates the
proposed method. Section 4 concludes the paper and
discusses future work.

2. Problem Description
This paper develops a method for distribution grid

operators to certify secure operation for a range of
operational conditions, given limited measurement and

Figure 1. If not used cautiously, grid-agnostic DER

control can increase the variability in distribution

system load patterns and lead to constraint violations.

control capabilities. Secure operation in this context
refers to the situation where all engineering limits are
respected for a range of load variability, as represented
by ranges of active and reactive power injections at each
bus. The certificates for secure operations are obtained
by solving a set of optimization problems. To state
our problem of interest, we first describe the variability
which may cause distribution grid constraint violations
and then give our definitions of grid awareness and
control. We next formalize this problem and describe
our solution method.

We emphasize that we do not propose a new DER
controller, but instead certify security for distribution
grids with limited measurement and control capabilities,
independent of the specific choice of DER controller.
Also note that this paper focuses on enforcing voltage
magnitude limits, which are typically of greatest
concern in distribution grid operations [9]. A similar
methodology could be applied to investigate, e.g.,
current flow or voltage unbalance. Finally, note that
while this paper focuses on distribution systems, our
method does not require typical distribution system
characteristics such as a radial network topology.
Thus, the developed algorithm can be applied to a
broader class of systems (e.g., meshed distribution grids,
transmission systems).

2.1. Load Variability
Load variability is defined as a range of net power

injections at each bus,

P i ≤ Pi ≤ P i and Q
i
≤ Qi ≤ Qi, ∀i ∈ N , (1)

where Pi and Qi denote the net active and reactive
power injections, and N is the set of buses. The power
injection ranges P , P andQ, Qmodel different sources



of variability:

• Loading pattern variability results from the
traditional daily and seasonal consumption patterns
that the distribution grid was designed to handle.

• Uncontrolled DER variability results from
(uncontrolled) distributed energy sources such
as rooftop PV or plug-in electric vehicle charging.

• Grid-agnostic or grid-aware DER control variability
results from the changes in the DER behavior to meet
certain objectives, in a manner that may be either
agnostic or aware of grid constraints.

Note that we consider inherent variability (from
uncontrollable loads) and variability induced by DER
controllers (both exogenous control signals from
grid-agnostic controllers and control response from
grid-aware controllers) in the same manner. This allows
us to treat all kinds of variability in a single framework,
without considering further details about the source of
the inherent variability and without specific assumptions
about the type of DER control.

Our formulation and numerical results in this paper
focus on ranges of power injections that represent
fluctuations around a single nominal operating point.
Practical applications of the proposed method could
be extended to more detailed analyses that consider,
e.g., multiple nominal operating points to represent
typical daily and seasonal load patterns as well as more
complicated variability representations than simple
ranges of power injections (e.g., discrete changes
due to loads that can only be switched on or off,
P–Q capability curves for certain types of DERs,
and the power factor characteristics of variable loads).
While more detailed variability characterizations will
improve our method by ensuring that only realistic
loading scenarios are included, the certificates for secure
operation are only based on our consideration of the
power injection ranges, and hence provide potentially
conservative, but valid results.

2.2. Grid Awareness and Control

To mitigate adverse effects of load variability, the
distribution system operator can harness DER flexibility
via grid-aware control algorithms that specifically
consider constraints such as voltage limits. However,
distribution grids frequently have limited sensing,
measurement, and communication capabilities, which
means that the system operator only has limited
awareness regarding the system state. Methods for
guaranteeing secure operations while only requiring
limited information about the system state are hence of
interest to distribution grid operators.

This paper considers the following definitions:
(i) Grid awareness consists of measurements of nodal
voltage magnitudes Vj on a subset V ⊆ N of the buses
in the distribution grid.
(ii) Grid controllability is related to the operator’s ability
to control the voltage magnitudes Vj at some or all of the
buses j ∈ V to be within certain ranges

˜
Vj , Ṽj .

We assume that the voltage magnitude at the
substation is always measured by the distribution system
operator and that it is typically controlled to remain
relatively constant (e.g., Ṽj ≈

˜
Vj ≈ 1 p.u.). The set V

therefore always contains at least one bus.
In some cases, the distribution system operator has

access to measurements of the voltage magnitudes at
additional buses throughout the system, and some or
all of those voltage magnitudes may be controlled via
changes to the DER power injections. In this case, we
augment the set V to include these additional buses and
consider their corresponding voltage magnitude ranges.

Note that we do not propose a specific DER control
strategy in this paper. We merely assume that there
exists a grid-aware DER control strategy which is able to
maintain the voltage bounds

˜
Vj , Ṽj at buses j ∈ V given

the pre-specified ranges of power injections, as will be
further described in Section 2.3.4.

2.3. Certifying Secure Operations

Given the load variability defined by the power
injection ranges in (1) and the availability of voltage
magnitude measurements and control at certain buses
V ⊆ N , we investigate whether it is possible to
violate any voltage magnitude constraints. Specifically,
we ask whether there exists a combination of power
injections within the specified ranges P , P and Q,Q
that would lead to voltage violations at any bus, given
that the voltage magnitudes are kept within the specified
variability ranges

˜
Vj , Ṽj at the controllable buses j ∈

V . We next formulate an optimization problem which
enables us rule out the existence of such a combination
of power injections, hence certifying that operations will
be secure for all considered load variability realizations.

2.3.1. Notation Consider a power system with sets
of buses N and lines L. Each bus i ∈ N has
a complex voltage phasor Vi∠θi and complex power
injection Pi + jQi, where j =

√
−1. We consider a

range of power injections at each bus defined by (1). The
network admittance matrix is denoted Y = G + jB.
Voltage angle differences are denoted θlm = θl − θm,
∀(l,m) ∈ L. Subscript “ref” denotes the reference bus.

We consider three different types of voltage bounds:
(i) Upper and lower engineering limits on the voltage



magnitudes, denoted as V maxi and V mini , corresponding
to the secure operating ranges which reflect power
quality and safety requirements.1

(ii) Specified operational ranges for the voltage
magnitudes are denoted by

˜
Vj ≤ Vj ≤ Ṽj at the buses

j ∈ V with available voltage measurements and control.
These operational ranges are typically narrower than the
engineering limits, i.e.,

V minj ≤
˜
Vj ≤ Vj ≤ Ṽj ≤ V maxj , ∀j ∈ V. (2)

(iii) Maximum and minimum achievable values of
the voltage magnitudes, given the ranges of power
injections (1) and the voltage operating ranges (2),
which are denoted as V i and V i, ∀i ∈ N . The
maximum and minimum achievable voltage values
typically differ from the engineering limits, with a wider
or a narrower range depending on the system. We also
denote the maximum and minimum achievable voltage
angle differences as θlm, θlm, ∀(l,m) ∈ L.

2.3.2. Optimization Problem Formulation To
identify whether it is possible to violate any voltage
constraints for a given range of load variability, we solve
the following optimization problems that maximize and
minimize the voltage magnitudes Vn at each bus n ∈ N :

V n = min
P,Q,V,θ

Vn or V n = max
P,Q,V,θ

Vn (3a)

subject to (∀i ∈ N )

P k ≤ Pk ≤ P k, ∀k ∈ N\ref, (3b)

Q
k
≤ Qk ≤ Qk, ∀k ∈ N\ref, (3c)

˜
Vj ≤ Vj ≤ Ṽj , ∀j ∈ V, (3d)

Pi = Vi
∑
k∈N

Vk (Gik cos (θik) +Bik sin (θik)) , (3e)

Qi = Vi
∑
k∈N

Vk (Gik sin (θik)−Bik cos (θik)) , (3f)

θref = 0, (3g)
Vlb ≤ Vi. (3h)

The objective (3a) minimizes or maximizes the voltage
magnitude achievable at a particular bus n ∈ N . The
constraints (3b)–(3c) correspond to the loads’ specified
power injections ranges. Note that the power injection
at the reference bus (the substation) is unconstrained,
i.e., the distribution grid does not have limitations on
the power from the transmission grid.

The voltage magnitude limits in (3d) correspond to

1Although engineering limits on the current flows, Imax
lm ,

∀(l,m) ∈ L, could also be included in the analysis, these limits are
not considered in this paper for brevity.

the specified operational ranges. These constraints only
include buses where we are able to measure and control
the voltage magnitudes. We do not enforce voltage
magnitude constraints for other buses i /∈ V since we
have no means of identifying or mitigating constraint
violations at those buses in real time. Instead, we rely
on the optimization problem (3) to provide the minimum
and maximum achievable voltage magnitude values.

Constraints (3e)–(3h) model the AC power flow
physics. Specifically, (3e) and (3f) enforce active
and reactive power balance at each bus and (3g) sets
the voltage angle at the reference bus to zero. The
technical condition (3h) forces all voltage magnitudes
to be greater than a specified scalar parameter Vlb
that is chosen to avoid undesirable “low-voltage”
power flow solutions [24]. The lower bound Vlb is
selected to be significantly below any practical operating
voltage, e.g., Vlb = 0.7 p.u., such that all practically
meaningful power flow solutions will be considered by
the optimization problem (3).

Note that our method relies on assumptions
regarding AC power flow feasibility. Specifically, we
assume the existence of a high-voltage power flow
solution for any combination of the power injections
(i.e., the distribution grid is steady-state stable for all
power injections within the specified ranges) and that
all potential low-voltage solutions are precluded by (3h).
While these are mild assumptions for typical operating
ranges, our ongoing work aims to leverage recently
developed “convex restriction” techniques [25, 26] to
reduce our dependence on these assumptions.

Although we focus on voltage magnitude
constraints, related problems could be formulated
in order to consider other relevant engineering limits if
required (e.g., current flow limits).

2.3.3. Successful Certificate for Secure Operations
If the minimum and maximum achievable voltage
magnitudes obtained from (3) are within the specified
engineering limits V min, V max on all buses, i.e.,

V mini ≤ V i and V i ≤ V maxi , ∀i ∈ N , (4)

then the power flow solutions associated with all
possible power injections within the specified ranges (1)
will satisfy the engineering limits on the voltage
magnitudes. This result guarantees security with respect
to all voltage magnitude limits as long as the total load
variability remains within the specified ranges (1) and
the voltage magnitudes are kept within

˜
Vj , Ṽj at the

subset of controllable buses j ∈ V .

2.3.4. Mitigating Potentially Insecure Operations
The extreme achievable voltages V i and V i depend



on the considered range of load variability (1) and our
ability to measure and control the voltage magnitudes at
the specified buses (2). As the range of possible power
injections increases, we will observe more significant
changes in the voltage magnitudes. For sufficiently
large variability ranges, some achievable voltages will
eventually exceed the voltage limits, hence violating (4)
and resulting in an inability to certify secure operations
without additional grid awareness and control.

As a countermeasure to increasing variability, we
may impose tighter operational ranges as this also
decreases the ranges of voltage magnitudes that are
achievable at other buses. This corresponds to either
decreasing the operational range

˜
Vj , Ṽj for a bus j ∈ V

or adding buses to the set V . From a practical
perspective, the former corresponds to investing in more
control capability at a bus with existing measurement
and control, while the latter would require investments
in both additional sensors and control capabilities.

Restricting the range of operation considered in (3)
results in less extreme values for V i and V i. If
the resulting values for V i and V i satisfy (4), then
we successfully certify that all voltage magnitudes
will remain within their engineering limits, as long
as the specified limits on the voltage magnitudes are
satisfied and the loads remain within the specified ranges
(i.e., (3b)–(3d) are satisfied). If the resulting values for
V i and V i do not satisfy (4), we continue to tighten the
voltage magnitude ranges or further augment the set V .

Note that we do not show how to formulate
controllers that maintain the voltage magnitudes within
the operational ranges

˜
Vj , Ṽj , ∀j ∈ V , or even

guarantee that such a controller exists. Rather, we
certify that any grid-aware controller that enforces these
additional constraints by modifying the power injections
of DERs (within the load ranges specified by (1)) is
sufficient to ensure that the remaining (unobserved)
voltage magnitudes will be within the secure operating
range V min, V max. The grid-aware controllers used to
regulate the voltage can be complex optimization-based
centralized controllers or simple local control loops. We
refer the reader to existing literature, e.g., [8,10–12], for
information about relevant grid-aware controllers.

Choosing appropriate locations V and operating
ranges

˜
Vj , Ṽj for the controllable buses should

be done while accounting for the locations of
the controllable resources, existing communication
and sensing infrastructures, and other grid-specific
characteristics. While out of scope for this paper,
evaluating the possible choices of locations is part of our
ongoing work. For our further discussions, we assume
that a few candidate sets of buses V and operational
ranges

˜
Vj , Ṽj are known a-priori, and investigate the

impact of controlling the voltages at these buses.

2.4. Obtaining Valid Bounds on the Maximum
and Minimum Achievable Values

To evaluate the condition for secure operation (4),
we solve the optimization problems (3) to obtain the
extreme achievable values of the voltage magnitudes, V i
and V i, for all buses in the system. Reliably computing
these extreme values is challenging due to the AC power
flow constraints (3e), (3f). The non-convexity of these
constraints implies that there might exist several locally
optimal solutions to (3), where some solutions have
more or less extreme values of the voltage magnitudes
than others. If we find the wrong locally optimal
solution, we might underestimate the influence of the
load variability and falsely certify that operations will
remain secure. Instead, we would like to find globally
optimal solutions to the optimization problems (3),
which allow us to rigorously guarantee that the condition
for secure operations (4) holds.

Certifiably finding globally optimal solutions for
optimization problems with AC power flow constraints
is an active research topic [22], and is generally
difficult [27, 28]. Instead of directly searching for
the globally optimal solution to (3), we leverage
recently developed convex relaxation techniques that
replace non-convex constraints with convex outer
approximations to obtain a more tractable formulation.
Since a convex relaxation extends the feasible space
of the optimization problem, the objective value of
the relaxed problem provides a lower (in case of
minimization) or upper (in case of maximization)
bound on the true objective value. Specifically, if
we denote the globally optimal objective values of the
original problems (3) by V true, V true and the globally
optimal objective value of a convex relaxation of (3) by
V relax, V relax, we have the following relations:

V relax ≤ V true and V true ≤ V relax. (5)

Thus, the values obtained from convex relaxations are
conservative bounds on the extreme achievable voltage
magnitudes. We can therefore safely replace (3) with
a convex relaxation of (3), which is useful since
solvers that provide globally optimal solutions to convex
optimization problems are readily available.2

2.4.1. Choice of Convex Relaxation There are
many choices for convex relaxations of the AC power
flow equations [22]. We use two main criteria to
choose an appropriate relaxation: (i) tightness, which
refers to how well the relaxation approximates the AC

2The decision variables Pi, Qi, θi and Vi from a convex relaxation
may not satisfy the AC power flow equations (3e), (3f). However, this
is not important when we are trying to evaluate the extreme achievable
values of the voltage magnitudes since we never directly use decision
variables, but only the objective values V , V .
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magnitudes used in the QC relaxation.

power flow equations and thus how close the relaxation’s
objective value is to the true objective value, and (ii) the
computational effort required to solve the relaxation.

We employ the QC relaxation [19–21] due to its
computational tractability and tightness. The QC
relaxation is derived from the power flow equations
with voltage phasors represented in polar coordinates.
The sine and cosine functions and the squared voltage
magnitudes in (3e) and (3f) are replaced by a new set
of lifted variables that are enclosed in corresponding
convex envelopes. As an illustrative example, Figure 2
shows the feasible regions corresponding to the original
non-convex constraint as well as convex envelopes for
the squared voltage magnitudes, V 2

i .3 The feasible
regions of two different convex envelopes are shown,
each corresponding to different variable bounds on Vi.
A closer matching between the convex feasible region
(in blue) with the original constraint (in red) results
in better performance. A relaxation using envelopes
constructed with tighter variable bounds will hence
provide a better bound on the objective value of the
original non-convex problem, a property exploited by
our method. Note that the envelopes in the QC
relaxation are formulated as linear and second-order
cone constraints, resulting in problems that can be
solved via efficient commercial optimization packages.

2.4.2. Variable Bounds in the QC Relaxation The
convex envelopes for the trigonometric functions,
squared voltage magnitudes, and variable products
employed in the QC relaxation are constructed using
upper and lower bounds on the voltage magnitudes and
the angle differences between connected buses,

V i ≤ Vi ≤ V i, ∀ i ∈ N , (6)

3The envelope for V 2
i is

{
Ui | Ui ≥ V 2

i and
Ui ≤

(
Vmin
i + Vmax

i

)
Vi − Vmin

i Vmax
i

}
, where Ui is a

lifted variable representing the squared voltage magnitude at bus i.
Envelopes for the other terms in (3e) and (3f) are given in [19–21].

θlm ≤ θlm ≤ θlm, ∀ (l,m) ∈ L. (7)

Since the optimization problem (3) does not include
constraints on all voltage magnitudes and also does
not include limits on the angle differences, we need to
specify the bounds V i, V i, θlm, and θlm in order to
construct the relaxations.4 In order to avoid restricting
the relaxations’ feasible spaces, the variable bounds on
the voltage magnitudes and angle differences are chosen
to be well outside of typical operational ranges for
distribution systems, e.g.,

V i = 0.7 p.u., θlm = −30◦, (8a)

V i = 1.3 p.u., θlm = 30◦. (8b)

While we initialize our relaxation with the large
variable bounds in (8), we subsequently tighten the
variable bounds (i.e., reduce the maximum and increase
the minimum bounds on the variables Vi and θlm) using
a so-called bound tightening algorithm. This improves
the tightness of the QC relaxation, which again leads to
less conservative bounds on the extreme values V i and
V i. Bound tightening algorithms have previously been
shown to be very effective for improving relaxations
of optimal power flow (OPF) problems [20, 31, 32] and
have also been used to solve robust OPF problems [33].

2.4.3. Bound Tightening Algorithm As shown in
Algorithm 1, the bound tightening algorithm improves
the initially specified bounds (8) by iteratively solving
optimization problems that maximize and minimize the
voltage magnitudes and angle differences, tightening the
variable bounds, and then again solving the optimization
problems. This procedure is repeated until the variable
bounds do not improve between iterations.

The iterations of Algorithm 1 solve problems that are
similar to (3) for each n ∈ N and (g, h) ∈ L:

V ?n = min
P,Q,V,θ

Vn or V ?n = max
P,Q,V,θ

Vn or

θ?gh = min
P,Q,V,θ

θgh or θ?gh = max
P,Q,V,θ

θgh (9a)

subject to (∀i ∈ N , ∀ (l,m) ∈ L)

V i ≤ Vi ≤ V i, (9b)

θlm ≤ θlm ≤ θlm, (9c)
QC relaxation of (3e)–(3h). (9d)

The main difference with respect to (3) is that (9)
uses a convex relaxation of the power flow constraints

4Note that the need to define variable bounds is specific to certain
relaxations, such as the QC relaxation. Other relaxations, such as those
based on moment/sum-of-squares hierarchies [29, 30], do not require
the initial specification of these bounds.



Algorithm 1 Bound Tightening

1: Input: initial bounds V 0
n, V 0

n, θ0gh, and θ0gh,
iteration count k = 0, termination tolerance ε.

2: repeat
3: for each n ∈ N , (g, h) ∈ L do (in parallel)
4: Solve (9) with bounds V kn, V kn , θkgh, θkgh

to obtain new bounds V ?n, V ?n , θ?gh, θ?gh.

5: Update bounds: V k+1
n ← V ?n, V k+1

n ← V ?n ,
θk+1
gh ← θ?gh, θk+1

gh ← θ?gh.
6: k ← k + 1
7: until no bounds are updated, i.e.,

V kn−V
k−1
n <ε, V k−1n −V kn<ε, ∀n ∈ N ,

θkgh−θ
k−1
gh <ε, θk−1gh −θkgh<ε, ∀(g, h) ∈ L.

and includes maximization and minimization problems
for the angle differences. Moreover, (9) includes (9b)
and (9c) which bound the voltage magnitudes and
angle differences based on the corresponding extreme
achievable values, which would be redundant in (3).
These bounds are initialized by (8) and tightened in
subsequent iterations of the bound tightening algorithm.
We emphasize again that the engineering limits V mini ≤
Vi ≤ V maxi are not enforced in (9) in order to allow
for the possibility that some combination of power
injections may result in unacceptable voltages.

The voltage magnitude bounds V i and V i resulting
from Algorithm 1 are used to check whether the
sufficient condition for secure operation (4) is
satisfied. If not, we add additional measurements
and controllability as described in Section 2.3.4 and
repeat the analysis.

3. Numerical Results

We implement the QC relaxation and bound
tightening algorithm based on [19–21] using
YALMIP [34] in Matlab 2016a. The QC relaxations
are solved using Mosek v8.0. All results shown in this
paper are based on the solutions obtained via the QC
relaxation and the bound tightening algorithm.

The remainder of this section illustrates the proposed
method using the 56-bus radial test system in [23],
which is a balanced single-phase system derived from
the IEEE 123-bus system. The one-line diagram for the
56-bus system is shown in Figure 3(b). We define load
variability as a percentage of the nominal loading and
assume 1.0 p.u. voltage magnitude at the substation.

We run two different tests. First, we investigate
how the bounds on the maximum and minimum voltage
magnitudes at each bus change with an increasing range
of load variability while assuming that the substation
voltage is the only observed and controlled voltage

magnitude in the distribution system. Second, we look
into how enforcing voltage magnitude constraints on
additional buses in the system can help improve the
voltage profile throughout the distribution grid.

3.1. Impacts of Increasing Load Variability

Figure 3(a) shows the minimum and maximum
achievable voltage magnitudes, V i and V i, resulting
from Algorithm 1 considering different amounts
of load variability. The black dashed line in
Figure 3(a) represents the baseline voltage magnitudes
corresponding to the AC power flow solution at the
nominal operating point (without variability). The
buses are ordered by their baseline voltage magnitudes,
decreasing from left to right. The shaded blue areas
represent the ranges of voltage magnitudes as the load
variability increases from 0% to 50%, where each black
line indicates an increase of 10%. We consider voltage
magnitudes below 0.90 p.u. to be unacceptable (i.e.,
V min = 0.90 p.u.), which corresponds to the red
region. Figure 3(b) shows the system’s one-line diagram
with colors indicating our obtained lower bound on the
achievable voltage magnitudes, V i, considering 50%
load variability.

The bounds on the extreme achievable voltages
increase with greater load variability. For load
variability that exceeds approximately 10%, we cannot
certify secure operation since the minimum voltage
magnitudes at several of the buses do not satisfy (4).

Remark: Conservativeness of the Convex Relaxation
In Figure 3(a), the darkest blue region corresponds to
the difference between the maximum and minimum
achievable voltage magnitudes with 0% load variability,
as bounded by the convex relaxation. While the
maximum achievable voltage magnitudes are essentially
the same as the baseline voltages obtained by solving the
AC power flow equations, the bounds on the minimum
achievable voltages from the convex relaxation are
significantly lower than the baseline voltages. This
can be attributed to the fact that the convex relaxation
exploits inaccuracies in the outer approximation of
the AC power flow constraints (3e), (3f) to artificially
achieve lower voltage magnitudes. Tightening the
relaxation via improvements such as those in [22, 29–
31, 35] may lead to less conservative results. We leave
implementations of such improvements to future work.

3.2. Impacts of Additional Grid Awareness
and Control

Since we are not able to certify secure operations
for cases where the load variability exceeds 10%, we
introduce additional buses with voltage measurements



(a) Lower bounds on the achievable voltages, V i, for different
amounts of load variability.
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Figure 3. Voltage control only at the substation.

and control as described in Section 2.3.4. We choose to
investigate the case with 50% load variability.

To find potential candidates for additional control,
we study the voltage profile in the considered
distribution grid. Figure 3(b) shows the minimum
achievable voltage magnitudes without any control
except at the substation. Unsurprisingly, the voltage
magnitudes in the most remote parts of grid (i.e., the
lower left part) have the lowest achievable voltages.

We first investigate the effect of monitoring and
controlling the voltage at one of the leaf buses, bus 32,
where the voltage magnitude is lowest. Formally, we
augment V with bus 32 and impose

˜
V32 ≤ V32 ≤ Ṽ32.

Figure 4(a) shows the results of enforcing different
values for

˜
V32 and Ṽ32. Choosing

˜
V32 = 0.90 p.u.

(denoted by the red triangle) and Ṽ32 = 1.10 p.u.
significantly reduces the potential size of voltage
violations not only at bus 32, but also throughout
the system. By enforcing slightly tighter limits of

˜
V32 = 0.905 p.u. and Ṽ32 = 1.095 p.u., we
can guarantee secure operations for the entire system.
The corresponding lower bounds on the voltages are
illustrated in Figure 4(b).

(a) Impacts of varying the voltage controllability at bus 32 with respect
to the lower bounds on the achievable voltages, V i, for 50% load
variability.
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Figure 4. Voltage control at both the substation and

bus 32, considering 50% load variability.

Controlling the voltage magnitude at a leaf bus such
as bus 32 might be inconvenient for a number of reasons.
For example, the bus might be at the far end of a long
feeder, making installation of communications difficult,
or there might be limited controllability available at this
bus. Therefore, we instead consider a different bus,
bus 11, as an alternative. The effect of controlling
the voltage magnitude and enforcing different lower
voltage limits at bus 11 is shown in Figure 5(a). As
for bus 32, we start by enforcing

˜
V11 = 0.90 p.u. and

Ṽ11 = 1.10 and then successively tighten the lower limit
until we are able to certify secure operations. Enforcing

˜
V11 = 0.92 p.u. and Ṽ11 = 1.08 p.u. enables
certification of secure operation for the entire system.
The corresponding lower bounds on the voltages are
illustrated in Figure 5(b).

These results show that it is possible to guarantee
secure operations for the overall distribution grid by
monitoring and controlling the voltage magnitudes at a
subset of the buses. They also demonstrate that there
are several options for guaranteeing secure operations.



(a) Impacts of varying the voltage controllability at bus 11 with respect
to the lower bounds on the achievable voltages, V i, for 50% load
variability.
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(b) One-line diagram for 56-bus system with 0.92 ≤ V11 ≤ 1.08.
The colors denote the lower bounds on the achievable voltages, V i,
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Figure 5. Voltage control at both the substation
and bus 11, considering 50% load variability

This raises the question of how to choose the best
combination of controllable buses V and allowable
voltage ranges

˜
Vj and Ṽj . Developing methods to

identify an optimal combination of measurements and
control is an interesting aspect of future work.

Note that the operator does not necessarily have
to continuously control the voltage magnitudes at the
designated buses, but can instead use the measurements
as an alert. In other words, the operator may wait until
the measured voltage Vj for some bus j ∈ V moves out
of the range [

˜
Vj , Ṽj ] within which secure operation is

guaranteed and then take some corrective action.

4. Conclusions and Future Work
Grid-agnostic DER controllers have advantages

in terms of limited requirements on system model
accuracy, information sharing, and real-time
communication and sensing. However, the use of
grid-agnostic controllers without careful consideration
and analysis may aggravate violations of constraints
such as limits on voltage magnitudes, particularly in

systems that are already impacted by load fluctuations
and variability from renewable generation. With the
goal of facilitating the use of grid-agnostic DER control,
this paper has proposed a method for certifying secure
operations. Given specified ranges of load variability
and a limited set of buses where voltages are measured
and controlled, our security certificate guarantees that
the voltage magnitudes at all buses will remain within
an acceptable range. Using convex relaxations and
a bound tightening algorithm, the proposed method
computes bounds on the extreme voltage magnitudes
achievable for any choice of power injections within
specified ranges. If these extreme values are within the
engineering limits on the voltage magnitudes, then no
voltage magnitude constraint violations can occur.

For cases where we cannot certify engineering
constraint feasibility for all considered power injections,
we propose to augment the set of controllable buses
or reduce the admissible voltage range at the already
controllable buses. Executing our method with these
limits can enable certification that grid-agnostic DER
control is appropriate, provided that the distribution
system operator is able to apply grid-aware control to
enforce these limits.

Our ongoing work includes a variety of extensions to
the current method. First, since unbalanced three-phase
network models are more realistic representations of
typical distribution systems, we are extending our
method to consider the unbalanced three-phase AC
power flow equations. We are also looking at including
more granular models of the net load variability in our
model (such as power factor constraints on controllable
loads and DER capability curves). Further, we are
applying recent improvements to tighten the convex
relaxation in order to reduce the conservativeness of
our results [22, 29–31, 35]. Finally, we are developing
more systematic methods for locating where to impose
appropriately restrictive voltage constraints (i.e., the
choice of buses in V and limits

˜
Vi, Ṽi in (3d)) in order to

securely apply grid-agnostic controllers without overly
limiting DER capabilities.
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