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Detection and Characterization of Intrusions to
Network Parameter Data in Electric Power Systems
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Abstract—Combating cyberattacks is an emerging challenge
in maintaining the reliable and economic operation of electric
power systems. Possible cyberattacks include intrusions to the
parameter data at a control center. In this class of attacks,
algorithms at the control center are correctly executed, but the
attacker’s modification of the associated parameter data yields
improper results. This paper proposes an algorithm for detecting
and characterizing cyberattacks to network parameter data,
with specific application to optimal power flow problems. The
proposed algorithm evaluates whether historical operating point
data are consistent with the network parameters. Inconsistencies
indicating potential cyberattacks are characterized using histori-
cal operational data (power injections and voltage phasors) along
with network parameter data. Simulated test cases illustrate the
proposed algorithm’s detection and characterization capabilities.

Index Terms—Cybersecurity, Optimal power flow

I. INTRODUCTION

CYBERSECURITY is a major concern in the operation of
electric power systems. The substantial public interest in

power system cybersecurity is demonstrated by publications
in the popular press (e.g., a recent Associated Press investi-
gation [1] and a bestselling book [2]) as well as industry and
government reports (e.g., [3]–[5]). The research community
has made significant efforts to detect and respond to cyberat-
tacks on power systems. These efforts relate to securing the
information technology infrastructure (e.g., improving authen-
tication and encryption) as well as work in power systems
engineering to identify and mitigate cyberattacks.

Much cybersecurity-related work has focused on sensor
and control networks. The power systems literature includes
a plethora of studies regarding false data injection attacks
on state estimation [6]–[17]. Other related publications in-
clude [18] and [19], which focus on the impact of false
data injection attacks on real-time markets, [20] and [21],
which focus on attacks to phasor measurement unit (PMU)
networks, and [22], which analyzes likely attacker strategies
for false data injection attacks. Other literature considers
cyberattacks on demand response programs [23], smart meters
with load disconnection capabilities [24], automatic generation
control [25], and modal estimation algorithms [26].

Another class of attacks modifies the data corresponding
to power system parameters stored at a control center (e.g.,
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transmission line impedances, generator limits, shunt admit-
tances, etc.). In this class of attack, power system algorithms
are executed correctly but with inaccurate parameter values.
Changing the parameter values may alter market outcomes,
leading to potentially significant economic impacts, or to
outages and physical damage resulting from specification of
an unsafe operating point.

There is limited research related to this class of cyberattacks.
Among the existing work, [27] proposes an algorithm that
detects attacks on the parameter data associated with optimal
power flow (OPF) problems. An OPF problem determines a
minimum cost operating point for an electric power system
subject to both network constraints and engineering limits. The
algorithm in [27] applies Principle Component Analysis (PCA)
to historical data in order to detect an anomalous operating
point. Using PCA, [27] constructs “regular” and “irregular”
subspaces from the historical data. An operating point that
has a large projection onto the “irregular” subspace is flagged
as suspicious, suggesting the potential for the operating point
to have resulted from a cyberattack on the parameter values.
Extension of this work in [28] uses a neural network approach
to determine an appropriate threshold for flagging an operat-
ing point as anomalous, and related work in [29] applies a
vector autoregressive model to detect network anomalies in
distribution systems. Similar approaches use statistical analy-
ses [30], [31] and graphical model based techniques [32] to
detect changes to the network topology based on measurement
data. Additional related work includes [33], which solves a
graph matching problem to compare the characteristics of a
historical, presumed-accurate reference network to the network
data used in real-time operations.

Historical operational data, as used in [27]–[29], is less
likely to be vulnerable to an attack since it is not needed for
operational purposes. While network parameter data must be
modified in near-real-time to account for changing conditions
(e.g., line outages and changes to facility parameters due to
weather conditions), there is little reason to modify historical
data. Thus, access to historical data can be better restricted
and secured without a significant trade-off in user convenience.
For instance, historical data can be stored in an environment
with “read only” access in real-time and restricted to a smaller
subset of users.

One downside of using statistical approaches such as [27]
is the potential for false positives due to a large change in
operating point, which may result from, e.g., contingencies.
For instance, a line failure may result in a new operating point
that is significantly different than historic operation. If the
new, post-contingency operating point has a large projection on
the “irregular” subspace, a false-positive cyberattack warning
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could be triggered.
This paper proposes a complementary approach for identify-

ing cyberattacks on network parameter data. Again, historical
data are used for validation. However, rather than comparing
the current operating point to historical operating point data
as in [27]–[29], we propose to compare the specified param-
eter data to historical operating point data. Specifically, the
proposed approach evaluates the feasibility of historical data
(modified to consider specific operational conditions at the
time, such as line outages) with the specified parameter values.
With access to both the power injections and the voltages
associated with historical operating points, the proposed ap-
proach calculates the residual of the current injection equations
constructed using the specified parameter data. A large residual
identifies a potential cyberattack and characterizes which pa-
rameter values are most likely to have been modified. Note that
this approach is conceptually similar to many fault detection
methods in that redundant measurements are used to identify
parameter inconsistencies; see, e.g., [34]–[36].

This paper is organized as follows. Section II overviews
the physics and associated parameter data of power system
networks. Section III discusses the threat model considered
in this paper. Section IV presents the proposed cyberattack
detection and characterization algorithm. Section V applies
the proposed algorithm to three test cases. The first test case
illustrates the potential for a combined cyber and physical
attack to affect power system reliability. The second test case
demonstrates the potential impact to the market dispatch from
an attack on the network parameters of an OPF problem. The
third test case is a random attack on the parameters associated
with a variety of lines. The proposed algorithm detects and
characterizes all three attacks. Section VI concludes the paper.

II. OVERVIEW OF THE POWER SYSTEM NETWORK
EQUATIONS

The cyberattack detection and characterization algorithm
proposed in this paper relies on the relationship between the
voltage phasors and current injections in an electric power
system. This section overviews this relationship in terms of
complex voltage and current phasors and then discusses the
equations for the active and reactive power injections.

Consider a balanced, single-phase equivalent model of an
n-bus system where N = {1, . . . , n} denotes the set of buses,
L denotes the set of lines, and (l,m) ∈ L denotes the line
from bus l to bus m.1 Let N (i) denote the set of buses
that are neighbors to bus i. The admittance matrix containing
the network topology and electrical parameters is denoted
Y = G + jB, where j is the imaginary unit. Let Pk + jQk
represent the active and reactive power injections, Vk the
voltage phasor, and Ik the current injection phasor at each
bus k ∈ N . The network physics imposes a linear relationship
between the voltage phasors and current phasors:

I = YV. (1)

1Extension of the proposed algorithm to unbalanced network models is
possible but not explicitly considered in this paper.

The relationship between the voltage phasors, current phasors,
and power injections is

Pk + jQk = Vk · Ik ∀k ∈ N (2)

where ( · ) denotes the complex conjugate.
Given the importance of (1) and (2) to a wide variety of op-

erational tasks (e.g., optimal power flow, state estimation, unit
commitment, etc. [37]), accuracy of the parameters contained
in the admittance matrix Y is key to reliable and economic
operation of electric power systems.

III. OVERVIEW OF THE CYBERATTACK THREAT MODEL
AND DEFENSE STRATEGY MOTIVATION

Much of the cybersecurity literature, e.g., [6]–[25], focuses
on threats to data and control signals that are accessible to
attackers in remote locations (generators, sensors at substations
such as Phasor Measurement Units, etc.). These threats include
false data injection attacks to the sensor measurements used
for state estimation as well as malicious modifications to the
control signals used for demand response programs, automatic
generation control, etc. The challenges inherent to securing
many remote locations suggests that an attacker may be able
to more easily compromise these data and control signals. Pre-
vious literature has hence primarily focused on these threats.

In contrast to the remote locations studied in much of the
previous literature, this paper considers attacks that are aimed
at the control centers themselves. Power system control centers
consolidate the measurement data from remote locations, run
algorithms to compute the system state and appropriate control
actions, and transmit control signals back to the remote
locations. Control centers typically have significant security
against cyberattacks, thus making them more challenging
targets for attackers. However, their great importance in
maintaining system reliability and economic efficiency makes
cyberattacks to control centers particularly rewarding from an
attacker’s perspective. Highly motivated and resourced attack-
ers may be able to penetrate even well-secured facilities such
as power system control centers. As one relevant example, the
Stuxnet worm infected thousands of industrial control systems,
including a uranium enrichment facility [38].

To reduce the risk of cyberattacks on critical facilities
such as power system control centers, the US Department of
Homeland Security’s National Cybersecurity and Communi-
cations Integration Center recommends a “defense-in-depth”
strategy that provides multiple layers of security [39]. By
augmenting security practices focused on information tech-
nology components, such as strong password requirements,
firewalls, access controls, user training, etc., a defense-in-depth
strategy for power system control centers can be strengthened
via cyberattack identification and characterization approaches
that exploit the physical aspects of the power system. One
relevant approach is to ensure that various data are consistent
with the physical laws of the power system. Indeed, related
approaches are used extensively in the aforementioned power
system cybersecurity literature relevant to remote data and
control signals.

The class of cyberattacks considered in this paper consists
of malicious modifications to the admittance matrix Y. Specif-
ically, an attacker is assumed to have obtained access to the
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control center’s database containing the network parameter
data and is therefore able to modify the line impedance and
shunt admittance parameters that determine the admittance
matrix. Algorithms run at the control center use the admittance
matrix parameters in a wide variety of algorithms, including
state estimation, optimal power flow, unit commitment, etc.
Even in the absence of attacks to the algorithms that man-
age system operations, an attack to the network parameters
could result in economically inefficient operation or harm
system reliability. For instance, a cyberattack on the network
parameters may result in an optimal power flow algorithm
computing an insecure operating point. Operating the system
at this insecure point may either directly cause a failure or
could be combined with physical attacks to cause a blackout.
Moreover, an attack to network parameter data could lead to
inaccurate state estimator computations that may be used to
disguise other physical and cyber attacks. As discussed in
the introduction, see [27]–[29], [33] for prior power systems
research that recognizes the potential relevance of cyberattacks
to the network parameter data.

While identifying potential strategies available to an attacker
is not the focus of this paper, an attacker considered in
this threat model could attempt to choose malicious network
parameters that result in overloading of several key lines
identified via a cascading failure analysis [40]. Failures of
these key lines would cause a widescale blackout. Determining
such malicious parameters could be achieved by solving a bi-
level optimization problem. The upper-level problem chooses
malicious network parameters that maximize the difference
between the actual flows and the flows modeled by the attacked
parameters. For a certain choice of attacked network param-
eters, these flows are determined by a lower-level problem
that represents the OPF computed by the system operator.
Formalizing and solving this bi-level optimization problem to
determine an attacker’s optimal strategy is a topic for future
work. An attacker could also conceivably combine network
parameter attacks and false data injection attacks. Such a
combination could obfuscate an attacker’s actions and possibly
worsen the impact of an attack. Detailed investigation of the
potential vulnerability to combinations of attacks on network
parameter data and false data injection attacks is another topic
for future work.

While the threat model in this paper considers an attacker
that is capable of altering the database containing the network
parameters, the attacker is assumed to be unable to modify the
database of historical operational data. In particular, we make
the following assumption:

Assumption 1 (Security of Historical Data). For various
time points indexed by t = 1, . . . , T , there exist historical
operating point data consisting of power flow solutions (i.e.,
voltage phasors V (t) and active and reactive power injections
P (t)+jQ (t) at each bus in the system) and the corresponding
network topology (i.e., a list of line outages at each time
period t). These data are assumed to be accurate.

Operational data are available in near-real-time from the
output of the state estimator, and system operators gener-
ally archive operational data in order to perform post-event
analyses. The proposed algorithm specifically uses the power

injections and voltage phasors returned by the state estimator
which are consistent with one another rather than the noisy
measurement data that are inputs to the state estimator.

In contrast to network parameter data which must be
changed in near real-time to account for, e.g., maintenance
activities, line failures, construction of new transmission fa-
cilities, etc., modifications to historical operational data are
much less prevalent. Thus, a large number of users may
need to frequently modify system parameters relative to the
number of users who need to edit historical operational
data. Permissions for editing historical operational data can
therefore be more restrictive in order to improve security
without overly burdening users. Moreover, with no need for
near real-time editing, historical data can be stored in a
separate location that is more secure than the that used for the
network parameter data. For instance, the historical data can be
stored with “read-only” permissions for real-time access. The
ability to separately store and enforce more restrictive access
permissions for historical data makes the accuracy of historical
data a reasonable expectation. Note that similar assumptions
regarding the security of historical operational data are made
in [27]–[29].

However, even if Assumption 1 is violated by a sophis-
ticated attacker who compromises the databases of both the
network parameters and the historical operational data, al-
gorithms that aim to identify and characterize cyberattacks
are still justified by a defense-in-depth strategy. Algorithms
such as the one proposed in this paper provide an additional
layer of protection in that an attacker must modify both the
network parameter data and the historical operational data in
a carefully selected manner that maintains mutual consistency
between these data in order to avoid detection. Thus, the
additional layer of security provided by algorithms such as
the one proposed in this paper increases the complexity faced
by an attacker, hence increasing the difficulty of successfully
carrying out an undetected attack.

Moreover, algorithms such as the one proposed in this paper
also increase the attacker’s likelihood of triggering additional
intrusion detection technologies. In particular, ensuring that
an attack to the network parameter data is undetected by the
algorithm proposed in this paper would require modifications
to many rows of historical data. An attackers substantial
change to the historical data is likely to leave a significantly
different signature in the database logs than the behavior of
typical non-malicious users. This raises the likelihood of the
attacker being detected by other intrusion detection systems
which monitor for such anomalous behavior, thus showing
the benefit of the proposed algorithm as part of a defense-
in-depth strategy. In other words, when implemented as part
of a defense-in-depth strategy, the presence of algorithms such
as the one proposed in this paper can deter and identify even
the actions of sophisticated attackers.

IV. AN ALGORITHM FOR DETECTING ATTACKS TO
NETWORK PARAMETERS

In order to provide a layer of protection against the cy-
berattack threat model described in the previous section, this
section proposes an algorithm for detecting and characterizing
attacks to the network parameter data.
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Fig. 2. Illustrative example of adjusting historical operational data to account
for out-of-service lines. Lines (k,m) ∈ L−(t) and (l, k) ∈ L−(t) are out-
of-service at time t. The solid arrows represent the currents associated with
the in-service lines. The dashed arrows represent the currents which would
have been induced by the historical voltage phasors if the out-of-service lines
had been in-service at time t. (See equations (3) and (4).)

A. Mathematical Description

The proposed approach for cyberattack detection and char-
acterization is summarized in Algorithm 1. The algorithm first
solves (2) using the power injections P (t)+jQ (t) at each time
period t = 1, . . . , T to obtain the vector of current injection
phasors I (t).

The vector of current injections I (t) is modified to account
for the line outages specified in the historical data at each time
period t. Using a Π-circuit model shown in Fig. 1 for the line
(l,m) with admittance glm + jblm = 1/ (Rlm + jXlm) and
total shunt susceptance bsh,lm,2 the current flow into terminal
bus l is

Ilm (t) = (glm + jblm) (Vl (t)− Vm (t)) +
bsh,lm

2
|Vl (t)|2 .

(3)
The current flow into terminal m of line (l,m) is given by (3)
with the l and m indices switched. The relationship between
the current flow and terminal voltage phasors given in (3) is
next used to compute the current injections that would have
been induced by the terminal voltage phasors in the historical
data if the out-of-service lines had been in service. Specifically,
the current injection vector I (t) is modified to Ĩ (t) as follows:

Ĩk (t) = Ik (t) +
∑

(k,m)∈L−(t)

Ikm (t) +
∑

(l,k)∈L−(t)

Ikl (t) ,

∀k ∈ N , t = 1, . . . , T (4)

where L− (t) is the set of lines that are out of service at
time t and subscripts indicate the entries of the corresponding
vectors. (See Fig. 2 for an illustrative example.) By adding the
current outflows that would have existed if the out-of-service

2More detailed line models which include non-zero phase shifts and off-
nominal voltage ratios can also be considered. The numerical results in
Section V use the line model in MATPOWER [41].

Algorithm 1 Cyberattack Detection and Characterization
1: Input: Historical operational data (for times t = 1, . . . , T ,

the power injections P (t) + jQ(t), the voltage phasors
V (t), and a list of line outages), network parameter data
in the admittance matrix Y, the inconsistency threshold ε,
and the singular value threshold εσ .

OFF-LINE COMPUTATIONS:
2: Compute current injections I(t) using (2).
3: Compute modified current injections Ĩ(t) to account for

historical line outages using (4).
4: Optional: Compute the singular value decomposition of

the matrix V and form V̂ (t) and Î(t) according to (8)
with εσ in order to ensure detectability of any attack.

ON-LINE COMPUTATIONS:
5: Compute r(t) using (5) (with V̂ (t) and Î(t) for V (t) and
Ĩ(t) if using optional step 4).

6: if ||r(t)||∞ ≥ ε for some t ∈ {1, . . . , T} then
7: Indicate the possibility of a cyberattack.

8:

Characterize the possible attack by identifying lines
(l,m) ∈ L where both |rl(t)| ≥ ε and |rm(t)| ≥
ε for some t ∈ {1, . . . , T} or shunt elements where
|ri(t)| ≥ ε and |rk(t)| < ε, ∀k ∈ N (i).

lines in L−(t) had been in-service, the modification (4) deter-
mines the current injections Ĩ (t) that would have occurred if
the historical network topology matched the network topology
specified in the network parameter data, thus enabling a
consistent comparison to the historical data. For simplicity,
this modification considers network parameter data with all
lines in service. Further analogous modifications to the current
injection vector Ĩ (t) are needed to remove the effect of any
lines that are out-of-service in the network parameter data but
were in-service in the historical data. Moreover, certain time-
varying impacts on network parameters from, e.g., component
aging, transformer tap statuses, etc. can be accounted for
in a similar manner. Near-real-time updates to the network
parameters from weather and temperature changes may be
more difficult to distinguish from a cyberattack. While not
currently widespread in practice, there are research efforts re-
garding near-real-time updates to network parameters based on
weather conditions [42]–[44]. If such near-real-time updates
become commonplace in practice, future work will be needed
to study and adapt the proposed cyberattack detection and
characterization algorithm. One possible approach for devices
whose parameters have significant, near-real-time updates is
to enforce a higher threshold value for identifying a possible
cyberattack during periods where authorized changes to the
associated parameters are expected, leaving a more stringent
threshold for other time periods and the other devices’ param-
eters.

After computing the current injections Ĩ (t), the proposed
algorithm computes the residual r (t) ∈ Cn of the network
equation (1) at each time period, i.e.,

r (t) = Ĩ (t)−YV (t) t = 1, . . . , T (5)

The admittance matrix Y in (5) is constructed using the
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network parameters currently specified in the database. Com-
putation of (5) can be formulated by collecting the voltage
and current phasors at each time period in the columns of
corresponding matrices:

R = Ĩ−YV (6)

where R,V, Ĩ ∈ Cn×T are R =
[
r (1) · · · r (T )

]
, V =[

V (1) · · · V (T )
]
, and Ĩ =

[
Ĩ (1) · · · Ĩ (T )

]
.

A non-zero residual r (t) at any time period t indicates an
inconsistency between the historical operational data and the
network parameters, which may be the result of a cyberattack.
A cyberattack is detected using the infinity norm || · ||∞
(i.e., the maximum absolute value) of the residual:

||r (t)||∞ ≥ ε for any t ∈ {1, . . . , T} (7)

where ε is a specified tolerance parameter. The parameter
ε is chosen by operator experience in combination with an
off-line study. Specifically, ε is determined by examining the
consistency of historical operational data with known-accurate
network parameter data; i.e., the historical level of consistency
between the power injections and the voltage phasors resulting
from the state estimator’s solution.

Satisfaction of (7) indicates an inconsistency between the
network parameter data and the historical operating point data
that is suggestive of a cyberattack. Furthermore, the residual
r (t) also aids in characterizing the specific parameters that
are attacked. Entries of the residual vector which satisfy
|ri (t)| ≥ ε for some t ∈ {1, . . . , T} correspond to buses
where the operational data and the network parameter data are
inconsistent. The parameters for any line where both terminal
buses have inconsistencies have potentially been subject to
a cyberattack. A large residual at a bus (particularly if no
neighboring buses have inconsistencies) suggests a potential
cyberattack to the admittance parameter of a shunt element
at that bus. See Algorithm 1 for a mathematical description
of these conditions. Note that spurious characterizations may
occur for unattacked lines whose terminal buses are both
shared with other attacked lines (for instance, an unattacked
line in parallel with an attacked line).

The percentage change in the network parameters that can
be detected by the proposed algorithm depends on a variety
of factors, including the threshold ε and the characteristics of
the historical operational data. The user has direct control over
the threshold ε, with smaller values resulting in more sensitive
detection capabilities. While it is difficult to analytically
determine the minimum percentage modifications that can be
detected by Algorithm 1, the empirical results in Section V
suggest that parameter modifications on the order of 2% are
detectable for reasonable test cases.

With a focus on the detection and characterization of
cyberattacks to the network parameter data, the question
of mitigation and response is largely beyond the scope of
this paper. However, we next briefly summarize suggestions
regarding these issues. In the immediate aftermath of detecting
and characterizing an attack, a reasonable initial response for
the system operator is to verify the boundary results of state
estimator and optimal power flow algorithms with neighboring
operators who may have not been attacked. In combination
with their knowledge of typical system operation, information

from the neighboring operators could help engineers determine
the actual state of the system and identify proper corrective
actions as needed. The system operators could also coordinate
with one another and with member utilities to develop a plan
for recovering from a system parameter cyberattack suffered
by any individual control center through redundancy at other
control centers.

B. Augmenting the Historical Operating Point Data to Im-
prove Detectability

An attack would remain undetected by the algorithm if the
perturbation to the network parameter data, denoted ∆Y, was
in the left nullspace of the voltage phasor matrix V in (6), i.e.,
∆YV = 0 such that R = Ĩ − (Y + ∆Y) V = 0. In other
words, the left nullspace of the voltage phasor data matrix
dictates the range of undetectable attacks. Use of historical
data with little variation, and thus a large left nullspace, would
leave an attacker with more freedom to modify parameters,
while historical data that contains a wide range of operating
points would highly constrain or eliminate an attacker’s ability
to remain undetected. The numerical simulations in Section V
suggest that one year of hourly data is likely to be sufficient
for highly restraining an attacker’s capabilities in practice.

In order to further reduce or eliminate an attacker’s flexibil-
ity to remain undetected, an off-line analysis can optionally be
used to augment the historical data with “fictitious” loading
scenarios that are consistent with known-accurate network
parameter data and eliminate the left nullspace. The approach
used in the optional step 4 of Algorithm 1 adds a set of
basis vectors for the left nullspace of the matrix V to the
historical voltage data. Specifically, consider a singular value
decomposition V = MΣN where M ∈ Cn×n contains
the left singular vectors, Σ ∈ Cn×T is a diagonal matrix
containing the singular values, and N ∈ CT×T contains the
right singular vectors [45]. Let σ = {σ1, . . . , σρ} denote the
set of singular values (with corresponding left singular vectors
µi ∈ Cn, i = 1, . . . , ρ) less than a specified threshold εσ ,
where ρ denotes the number of these singular values. (The
numerical results in Section V use εσ = 1×10−4.) Define the
set of vectors V̂ (t) and Î(t) as

V̂ (t) =

{
V (t), t = 1, . . . , T,

µt−T , t = T + 1, . . . , T + ρ,
(8a)

Î(t) =

{
Ĩ(t), t = 1, . . . , T,

Yµt−T , t = T + 1, . . . , T + ρ.
(8b)

By construction, the matrix V̂ =
[
V̂1 · · · V̂T+ρ

]
has an

empty left nullspace. Thus, using V̂ (t) and Î(t) in (5) ensures
that Algorithm 1 will detect any attack. While the numerical
results in Section V use this approach, we emphasize that
the proposed algorithm is capable of significantly restricting
an attackers flexibility in remaining undetected even without
augmenting V (t) and I(t) with the singular vectors, thus
relying solely on historical operational data.

Note that the matrix Y in (8b) is constructed off-line from
known-correct network parameters. An infrequently occurring
(e.g., seasonal) off-line setting provides more opportunities for
verification of the network parameter data by, for instance,
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comparing power flow results with typical engineering intu-
ition and system knowledge. For the purposes of the optional
Step 4, we therefore assume the ability to access network
parameter data that have not been attacked during the off-
line stage in order to improve the algorithm’s ability to detect
attacks in the on-line stage (Steps 5–8).

We also emphasize that the step of computing fictitious
operating points to ensure detection of all attacks is optional.
As demonstrated in the following section, numerical exper-
iments suggest that typical power system variability yields
operating points that span a relatively wide range of the voltage
subspace. Therefore, even with a non-empty left nullspace,
the proposed algorithm still significantly restricts the modi-
fications an attacker can make while remaining undetected.
Thus, the optional Step 4 can be bypassed in case of any
doubts regarding the validity of the network parameter data
used in (8b).

C. Computational Effort

The computational effort required to execute Algorithm 1 is
modest. Steps 2 through 4 in Algorithm 1 are computed off-
line, negating the need for fast computational performance.
Nevertheless, these steps can be computed quickly. The cal-
culation of the current injections from the power injections
and voltages in Step 2 is a computationally simple task that
only requires one division operation per bus for each time
period (i.e., n× T division operations). The modifications to
the current injections in Step 3 are only conducted for the small
number of lines that are out-of-service in each period (i.e.,∑T
t=1 |L− (t)|, where | L− (t) | indicates the number of out-

of-service lines at time t), and the requisite computations are
again simple algebraic operations. The most computationally
burdensome operation is the singular value decomposition of
the n × T matrix V in the optional Step 4, but the fact
that this computation is done off-line means that this step is
tractable for even large systems with many measurements. For
instance, the singular value decomposition for the test cases
in Section V with several thousand buses and a year of hourly
data is computed in approximately one minute on a typical
laptop computer.

The on-line computations in Algorithm 1 are also tractable.
Computation of (5) in Step 5 requires only a single sparse
n× n matrix–vector multiplication and vector subtraction per
time period. Equivalently, the voltage and current phasors
at each time period can be collected as the columns of
corresponding matrices to formulate the computation of (5)
as a single matrix-matrix multiplication and subtraction (i.e.,
multiplication of the sparse n × n admittance matrix by
the n × T matrix V). Checking the residual in Step 6 and
characterizing a possible cyberattack in Steps 7 and 8 are the
result of maximization operation along the rows of an n× T
matrix and a comparison operation over the resulting n values.

The modesty of the computational requirements is demon-
strated empirically by the numerical results in the following
section. In particular, computing the residual using a year
of hourly data is accomplished for systems with thousands
of buses in less than one second. Since many operationally
relevant algorithms (e.g., state estimation, optimal power flow,

etc.) are computed on timescales of seconds to minutes, Al-
gorithm 1 is suitable for on-line applications. If the computa-
tional burden were problematic (perhaps for systems with tens
of thousands of buses or with a larger quantity of historical
data), the speed of the proposed algorithm could be improved
by selecting a subset of historical data that captures most of
the relevant variation. This can be accomplished off-line by
evaluating the singular value decomposition of the matrix V
in (6), as in the optional Step 4 of the algorithm.

V. APPLICATION TO TEST CASES

This section demonstrates the capabilities of Algorithm 1
to quickly detect and characterize attacks. After describing
the test systems, three scenarios are used to illustrate possible
cyberattacks and the performance of the proposed algorithm.

A. Descriptions of Test Cases and Computational Setup

This section uses simulated operational data for three test
cases: the RTS-96 system [46], [47], the 2869-bus PEGASE
system [48], and the 1354-bus PEGASE system [48]. The
latter two test cases represent different portions of the Eu-
ropean electric grid. For all three test cases, one year of
hourly load data is constructed using the seasonal, hourly, and
weekly load variation prescribed for the RTS-96 system [46],
[47], multiplied at each bus by a normal random variable
with mean 1 and standard deviation of 5%. Over the year
of data, the total load demand ranges from 100% to 34% of
the summer peak loading, which is comparable to the load
demand variations for typical power systems. The test cases
also consider generator and line outages, with each line and
generator having a failure probability of 0.05% per hour. For
simplicity, only line failures that did not result in islanding
of the network were considered. The recovery times for the
failure of lines and generators were specified to be eight hours
and four hours, respectively. The historical operational data is
generated by applying MATPOWER’s AC OPF algorithm [41]
to each hour of data.

Note that practical OPF implementations often rely on the
DC power flow approximation rather than the AC power
flow model. This necessitates a postprocessing step with the
possibility of various solution adjustments in order to ensure
AC feasibility. Since these adjustments are difficult to model,
the test cases used in this paper directly solve AC OPF
problems. Depending solely on historical operational data from
state estimator solutions, the proposed algorithm is not reliant
on the specific power flow model.

These choices for the simulations determine the range of
operational data that is generated. As discussed in Section IV,
the variation in the operational data input to the proposed
algorithm determines an attacker’s freedom to perform an
undetected attack (in the absence of the optional step 4 of
Algorithm 1).

Using only historical operational data (i.e., without step 4),
Algorithm 1 is successful in detecting and characterizing
many attacks using a year of simulated data created with the
aforementioned simulation specifications. To exemplify this,
Figs. 3a, 3b, and 3c show the the singular values of the
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matrix V defined in (6) for the RTS-96 system, the 2869-
bus PEGASE system, and the 1354-bus PEGASE system,
respectively. With all non-zero singular values, V for the RTS-
96 system has full row rank, and hence all attacks will be
detected by Algorithm 1 without need for augmenting the
historical data using (8). In contrast, the left nullspaces for the
2869-bus and 1354-bus PEGASE systems are not empty, with
8.4% and 2.2%, respectively, of the singular values being less
than 1×10−6. Ensuring the detectability of all attacks for these
systems can be achieved by augmenting the historical data
with sets of basis vectors for the left nullspaces as discussed
in Section IV-B. Note that the small dimensions of the left
nullspaces significantly restricts an attacker’s ability to remain
undetected for these test cases even without this augmentation.

The computational experiments were conducted with
MATLAB version 2016a using a laptop computer with a quad-
core 2.70 GHz Intel i7 processor and 16 GB of RAM running
Windows 7.

B. RTS-96 System: Combined Cyber/Physical Attack

The first scenario is a combined cyber and physical attack
on the RTS-96 system operating at peak loading. The attacker
modifies the shunt susceptances associated with three lines in
the RTS-96 system. (See Table I for the attack details.) The
system operator solves an AC OPF using the attacked line
parameter values. The OPF solution is feasible (all lines within
their normal flow limits) in the problem using the attacked
system parameters. However, as determined by a power flow
solution using the unattacked network parameters with power
injections dictated by the OPF solution, the actual flows on
the three attacked lines are approximately 30% greater than
their emergency ratings. This would result in failure of these
lines, which places the system in an insecure operating state.
If the attacker followed the cyberattack with a physical attack
that tripped one additional line (see Table I), the OPF problem
becomes infeasible even considering the emergency line flow
limits and allowing for redispatch of all generators over their
entire operating ranges. (The infeasibility of the OPF problem
is verified using a semidefinite programming relaxation [49],
[50].) The system operator would be required to resort to
unplanned load shedding or a blackout would ensue. This
scenario thus illustrates the potential damage that may be
inflicted by malicious modifications to the network parameter
values, even for relatively robust systems such as the RTS-96
system. This scenario also demonstrates how a cyberattack
can place the system in a vulnerable state. An attacker who
has limited ability to destroy physical infrastructure can thus
leverage the cyberattack to cause a more significant blackout
than may be possible with either a cyberattack or a physical
attack separately.

The proposed algorithm quickly identifies and characterizes
this cyberattack (100% detection rate and no false positives) in
order to avoid the insecure dispatch resulting from the attacked
parameter values. Applying Algorithm 1 using one year of
historical operational data with ε = 0.05 per unit detects the
attack (||r(t)||∞ = 0.68 per unit) and correctly characterizes
the three attacked lines: the terminal buses of the three attacked
lines had maximum residual values |r(t)|, t = 1, . . . , t, greater
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(b) 2869-Bus PEGASE System
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(c) 1354-Bus PEGASE System

Fig. 3. Singular values from the matrix of voltage phasors, V, for one year
of hourly data. For the RTS-96 system, the fact that all singular values are
non-zero (i.e., the left nullspace is empty) indicates that a cyberattack to
the network parameter data would be detected by the proposed algorithm
without the need to augment the historical operational data. For the 2869-bus
and 1354-bus PEGASE systems, the left nullspaces are non-empty but low-
dimensional (8.4% and 2.2%, respectively, of the singular values are smaller
than 1× 10−6). Thus, the historical data alone highly restricts the ability of
an attacker to remain undetected, and only a small number of singular vectors
need be added to the historical data as discussed in Section IV-B in order to
guarantee the ability to detect all attacks.

than 0.64 per unit, while all other buses had maximum residual
values less than 2 × 10−5 per unit. The computation time
was less than 0.05 seconds. Fig. 4 shows how Algorithm 1
characterizes the attack.

C. PEGASE 2869-Bus System: Targeted Cyberattack

The second scenario considers a targeted attack to cause
economic losses that primarily affect a specific generator in the
2869-bus PEGASE system. This attack increases the resistance
of a single line (see Table II), which results in the generator at
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TABLE I
RTS-96 ATTACK DETAILS

Line From To Parameter Actual Attacked
Index Bus Bus Value Value

10 106 110 Shunt Susceptance 2.4590 1.2295
51 206 210 Shunt Susceptance 2.4590 1.2295
89 306 310 Shunt Susceptance 2.4590 1.2295
42 201 202 Physical attack Line trip

Fig. 4. One-line diagram for the RTS-96 system. Algorithm 1 correctly
characterizes the cyberattack as occurring at the red lines via the large
residuals |r(t)| at the red terminal buses.

the bus numbered 6329 being less economically competitive.
While the overall system costs only undergo a negligible
change (less than 0.001%), this specific generator is dispatched
significantly less frequently (35% lower total output when
aggregated over a year).

Algorithm 1 successfully detects this cyberattack (100%
detection rate and no false positives). Using one year of
historical data and choosing ε = 0.05 per unit, the algo-
rithm detects the cyberattack via a maximum residual of
||r(t)||∞ = 1.89 per unit. No buses had residuals larger than
0.0002 per unit except for buses 8789 and 6329, which both
had residuals of 1.89 per unit. The line connecting these buses
(line index 3800) had its resistance modified in the cyberattack.
Thus, Algorithm 1 correctly characterizes this attack. The total
computation time for Algorithm 1 to detect and characterize
the attack is less than one second.

D. PEGASE 1354-Bus System: Random Cyberattack

The third scenario considers an attack on the 1354-bus
PEGASE system that modifies the series reactances of thirty
randomly chosen lines. The reactances are modified relative
to their actual values by multiplicative factors that are uni-

TABLE II
PEGASE 2869-BUS TARGETED ATTACK DETAILS

Line From To Parameter Actual Attacked
Index Bus Bus Value Value
3800 8789 6329 Series Resistance 0.0016 0.0161

TABLE III
PEGASE 2869-BUS RANDOM ATTACK DETAILS

Line From To Parameter Actual Attacked
Index Bus Bus Value Value

33 1264 591 Series Reactance 0.00074 0.00067
88 1060 834 Series Reactance 0.01509 0.01402
169 718 663 Series Reactance 0.00047 0.00053
247 194 1063 Series Reactance 0.02924 0.02652
258 861 493 Series Reactance 0.04190 0.05032
352 70 1152 Series Reactance 0.04708 0.04846
378 145 524 Series Reactance 0.00020 0.00018
661 102 458 Series Reactance 0.03096 0.02654
741 704 1190 Series Reactance 0.00354 0.00364
757 740 1177 Series Reactance 0.01552 0.01526
763 341 1048 Series Reactance 0.00500 0.00383
795 567 328 Series Reactance 0.03401 0.03284
871 218 390 Series Reactance 0.06672 0.08104
877 1246 957 Series Reactance 0.00783 0.00862

1027 1085 822 Series Reactance 0.00064 0.00071
1085 371 524 Series Reactance 0.02677 0.02200
1208 303 873 Series Reactance 0.02591 0.03072
1271 983 1110 Series Reactance 0.00058 0.00051
1368 61 538 Series Reactance 0.00285 0.00283
1461 182 68 Series Reactance 0.01117 0.00981
1462 182 448 Series Reactance 0.00777 0.00855
1515 882 23 Series Reactance 0.01663 0.01316
1627 515 321 Series Reactance 0.00285 0.00236
1635 731 448 Series Reactance 0.00285 0.00341
1649 283 1215 Series Reactance 0.00269 0.00316
1672 387 312 Series Reactance 0.00080 0.00087
1703 15 35 Series Reactance 0.00387 0.00380
1752 1349 356 Series Reactance 0.04910 0.04712
1784 428 944 Series Reactance 0.02437 0.02326
1951 54 351 Series Reactance 0.01247 0.01094

formly distributed over the range [75%, 125%]. The specific
modifications are given in Table III.

The attacked system has a negligible change in the total
operating cost. However, aggregating the magnitudes of the
hourly differences between the active power generation result-
ing from the attacked parameters and the actual parameters
yields an average deviation per generator of 6.4%, and one
generator had a yearly aggregate deviation of 72.6%. This
shows that even an unsophisticated attack can have a non-
negligible impact on the dispatch.

Using a year of historical data and selecting ε =
0.05 per unit, Algorithm 1 detects the attack via a maximum
residual of ||r (t)||∞ = 86.6 per unit. Fig. 5 illustrates how
Algorithm 1 characterizes the attack. In particular, with a
single exception, all lines shown in Table III are identified
as possible targets of the cyberattack (96.7% detection rate).
The exception is line index 1368, which is not detected due
to a very small modification in the associated line reac-
tance (a 0.70% reduction) leading to a maximum residual of
0.0032 per unit at the line’s terminal buses. This residual is
less than the threshold of 0.05 per unit, so this attack is too
small to be detected.

Further, in contrast to the other test cases, Algorithm 1
spuriously characterizes other lines as possible targets of the
cyberattack. In particular, Algorithm 1 also identifies twenty
other lines (line indices 89, 742, 756, 876, 1514, 1753, 1785,
431, 432, 754, 1458, 1459, 1632, 1633, 1634, 1770, 1771,
1772, 1924, and 1925). These false positive characterizations
are explained by the fact that these lines share terminal buses
with other lines which are attacked. (Note that the first seven
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False positives

Detected
attacks

Undetected
small modification

Fig. 5. One-line diagram for the 1354-bus PEGASE system. Algorithm 1
correctly characterizes the cyberattack as occurring at the red lines via the
large residuals |r(t)| at the red terminal buses. The lines shown in blue denote
“false positive” characterizations of possible attacked lines. Both terminal
buses for these “false positive” lines are shared with attacked lines. The line
in green is attacked with a small modification (0.70% reduction) to the line
reactance. The attack to this line is not detected by Algorithm 1 because the
small modification results in residuals at the terminal buses that are below the
specified threshold.

of these lines are in parallel with an attacked line.) Regardless
of these spurious characterizations, Algorithm 1 identifies a
superset of the attacked lines with a limited number of false
positives (20 false positives versus 30 attacked lines). The total
computation time for Algorithm 1 to detect and characterize
the attack is less than 0.5 seconds.

VI. CONCLUSIONS AND FUTURE WORK

This paper has proposed an algorithm for detecting and
characterizing cyberattacks to network parameter data. In this
class of cyberattacks, the optimization and control algorithms
at a control center are applied to maliciously modified network
data, potentially harming power system reliability and eco-
nomic efficiency. The proposed algorithm uses inconsistencies
between historical operational data and the specified network
parameters to detect and characterize the cyberattack. These
inconsistencies are measured via the residual of the relation-
ship between the voltage and current phasors implied by the
network parameters.

This paper demonstrates the capabilities of the proposed
algorithm using attack scenarios that were developed via
ad hoc methods. As discussed in Section III, a direction for
future work is the study of more systematic approaches for
constructing potential attacks. Another direction for future

work is further analysis of the variation inherent to the histor-
ical voltage phasors. As discussed in Section IV, the detection
and characterization capabilities of Algorithm 1 are improved
via access to a richer range of variation in the historical
operational data. More accurately simulating typical opera-
tional practices (e.g., considering unit commitment problems,
including security constraints, etc.) would better demonstrate
the capabilities of the proposed approach. Evaluation using
actual operational data for a real system would be even more
valuable.
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