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Abstract—Rapidly growing deployments of distributed energy
resources like rooftop solar and electric vehicles have disrupted
the status quo of distribution network operations. Power ex-
port/import limits that change as network conditions change,
also known as operating envelopes, have been proposed as
a means of safely operating distribution networks containing
distributed energy resources. This paper analyzes the impacts
of using convex relaxations, specifically the second-order cone
relaxation, for determining the limits required for safe operation.
Building on prior work, we illustrate the inadequacy of operating
envelopes calculated using a second-order cone formulation for
ensuring network safety. Then we discuss the complexity in the
relationship between the relaxation, the nonlinear formulation,
and the network parameters. For the case of purely resistive,
radial networks and the case of purely reactive, radial networks,
we prove that the second-order cone relaxation is inexact and
exact, respectively, for the operating envelope problem. This
work illustrates that while using a second-order cone relaxation
to determine operating envelopes will not always result in
overly large bounds, it often will and with potentially damaging
consequences.

Index Terms—Distributed Energy Resources, Operating En-
velopes, Second-order Cone Power Flow Relaxation.

I. INTRODUCTION

Proliferation of small-scale distributed energy resources
(DERs), such as roof-top solar photovoltaics (PV), batteries,
and controllable loads, within distribution networks has be-
come a key focus of power systems research [1]-[3]. Power
injections or large load changes caused by DERs can lead to
operational violations like over- and under-voltages, harmon-
ics, frequency distortions, faults, and protection problems [4]-
[6]. A wide variety of solutions have been proposed to main-
tain safe operations in distribution networks containing active
DERs and DER aggregations, including coordination strategies
between aggregators and distribution network operators [7],
constructing a constraint set on aggregator controls [8], and
constructing a set of nodal power injection limits, also known
as operating envelopes or dynamic hosting capacity [9]-[13].

Dynamic operating envelopes, or simply operating en-
velopes, represent time-varying limits on power imports and/or
exports at each active bus in the distribution network [13]. An
active bus is defined as any bus with a connected DER capable
of generating or consuming power. To calculate operating
envelopes, it is common to solve a modified version of the
optimal power flow (OPF) problem. Originally formulated to
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find the lowest-cost generator dispatch which satisfies network
constraints [14], [15], the OPF problem can refer to any
optimization problem subject to the power flow equations and
other operational constraints [16]. The nonlinear AC power
flow equations make the OPF problem non-convex, i.e., a
solution is not guaranteed to be globally optimal and can
be computationally challenging for large networks. The use
of convex relaxations or approximations of the power flow
equations can help alleviate these issues. However, relaxations
do not always give exact or feasible solutions [17].

There is extensive literature on relaxations, including
second-order cone (SOC) relaxations, for the OPF prob-
lem [18]-[24]. Existing work focuses on OPF problems with
objectives such as minimizing generation costs or minimizing
losses. In contrast, the operating envelope OPF problem aims
to maximize the region of feasible power injections. To the
best of our knowledge, there has been no prior work exploring
the exactness of a SOC relaxation for a problem of this type,
aside from our prior conference paper [25], which this paper
significantly extends, and the illustrations of SOC solutions
that cannot be physically realized in [9], [26]. More discussion
of existing literature on SOC relaxations and its relevance for
the operating envelope problem is provided in Section III.

The contribution of this paper is an exploration of conditions
for which the SOC relaxation is and is not exact for the oper-
ating envelope problem. As described above, existing studies
have already shown, empirically, that the SOC relaxation is
(usually) not exact for the operating envelope problem. In our
prior work [25], we posited that the flexibility introduced by
the SOC relaxation allows for artificial increases in the squared
current. Larger squared current values create larger power
losses which in turn permit artificially large operating envelope
upper limits. Based on this idea, we proposed a modification to
the objective function of the SOC formulation (specifically, we
penalize power losses) to achieve exactness [25]. Here, we use
a case study to illustrate that while this modification may lead
to an exact SOC relaxation (for the penalized problem) or at
least an AC power flow-feasible solution, it is not guaranteed
to return the optimal solution to the original problem. Then, we
analyze the unmodified SOC formulation and we show that,
surprisingly, there exist parameter values for which the SOC
relaxation is exact for the operating envelope problem. We
illustrate analytically that identifying conditions under which
the relaxation is guaranteed to be exact or guaranteed to be
inexact is not simple. Finally, we prove that the SOC relaxation
of the operating envelope problem will not be exact for purely
resistive, radial networks if at least one bus in the network is



below its upper voltage limit at optimality of the nonlinear
formulation. We also prove that the SOC relaxation is exact
for the operating envelope problem for purely reactive, radial
networks. For realistic systems, with both positive resistance
and positive reactance, we are unable to establish simple
conditions on SOC relaxation exactness. For this reason, we
recommend not using the SOC relaxation when computing
operating envelopes.

Section II presents the paper’s notation and OPF for-
mulations for calculating operating envelopes. The modified
objective function and a case study illustrating the impacts of
the SOC relaxation are discussed in Section III. Section IV
investigates conditions for which the SOC relaxation is and is
not exact for the operating envelope problem. Conclusions are
given in Section V.

II. PROBLEM FORMULATIONS

Many different approaches and optimization formulations
have been used to compute operating envelopes. One option
for including the power flow equations is to use the nonlinear
AC power flow; however, this requires the assumption that
any power injection between the operating envelope lower
(import) and upper (export) limit will not lead to operational
constraint violations. Another interpretation of this assumption
is that the relationship between voltage and power injections
is monotonic. The authors of [27] show that this assumption
does not always hold, particularly in unbalanced networks. A
second option is to use a power flow linearization to improve
computation time and avoid convergence issues [27], e.g.,
as in [10], [11], [28], [29]. However, linearizations come
with a loss of model accuracy and (most) come with no
guarantees on performance/accuracy or solution feasibility. A
third option is to use a convex relaxation, such as an SOC [12]
or quadratically constrained [30] formulation, which can also
improve computation time and convergence versus solving a
nonlinear AC power flow problem. Convex relaxations have
advantages over linearizations in that relaxation solutions that
are feasible for the AC power flow constraints are necessarily
optimal in the AC power flow problem. However, since the
feasible region may extend beyond the AC power flow feasible
region, relaxations may admit solutions that violate network
constraints. Therefore, the remainder of this paper will argue
why relaxations should nor be used to compute operating
envelopes. A fourth option is to use a convex restriction
or inner approximation of the feasible region [9], [27]. In
contrast to convex relaxations, the feasible region is contained
within the AC power flow feasible region. However, operating
envelopes are usually calculated by solving two problems, one
for the lower limit and one for the upper limit. While the
feasible region of each problem is convex, the union of the two
feasible regions is not necessarily convex. One could either
make a monotonicity assumption or find a convex restriction
of the union of the feasible regions.

In addition to the choice of power flow formulation, one also
needs to choose an appropriate objection function. One choice
of objective function is to maximize aggregate flexibility,
e.g., the sum of the operating envelopes across the network.

In addition to maximizing flexibility, it is also important to
consider fairness when computing operating envelopes [11]-
[13], [31]. When the objective is to maximize the sum of
operating envelopes across the feeder, buses further down the
feeder tend to receive significantly tighter limits [13]. This
means that a customer with a DER who is far from the
substation will have less ability to inject power and/or modify
load than a customer who is close to the substation. Therefore,
this paper utilizes the objective function proposed in [12],
which maximizes the smallest operating envelope. A version
of the formulation presented in this paper with the objective
of maximizing the sum of the operating envelopes across the
feeder was also analyzed and produced similar findings. Those
results are omitted for brevity.

A. Operating Envelope AC-OPF Branch Flow Formulation

We first define the full nonlinear operating envelope prob-
lem, which incorporates the AC power flow equations. This
formulation is based on [12] and used in [25]. Different from
our formulation in [25], we consider a more flexible case for
reactive power injections in this work, as detailed below.

Consider a radial distribution network with a set of buses
N and a set of lines £. Let bus 0 denote the substation. In
a radial network, each bus ¢ has exactly one parent bus, i.e.,
the bus immediately upstream, which we denote as i/, and
a set of buses immediately downstream, which we denote as
C’. For simplicity, we assume the network is balanced and
can be represented by its single-phase equivalent circuit. We
use the branch flow model for representing power flow [18],
where the voltage and current angles can be omitted by writing
the power flow and voltage difference equations in terms of
squared voltage magnitudes and squared current magnitudes.
Let z;; = 7y + jxy; represent the impedance of the line
connecting buses ' and . The apparent power flow limit on
the line connecting buses i’ and 7 is 5;,;. The per unit (p.u.)
squared voltage limits at each bus are v and .

We describe in detail the problem to compute export limits;
import limits are computed similarly. The decision variables
are p; ", Vi € N, the net active power export limits (i.e., the
upper limit of the operating envelope) at all buses i € N;
p®P, the smallest export limit in the network; p;/; Vi'i € L,
the active power flowing from bus i’ to bus i on all branches
i'i € L; q;r; Vi'i € L, the reactive power flowing from bus i’ to
bus ¢ on all branches i € £; v; Vi € N, the squared voltage
magnitude at all buses ¢ € A and l;/; Vi'i € L, the squared
current magnitude on all lines i's € £. We assume that the
reactive power injections at each node, qup, are controllable
such that the power factor at each bus is at least 0.95. Let
x be a vector of stacked decision variables. We compute the
operating envelopes by solving:

max = (1a)
st poP < pP. Vie N (1b)
Z pij = Piri — Tirilini +p7 T, Vi€ N (1c)

jeci
Z Gij = Qiri — Tirilii + ¢ ", Vi €N (1d)

ject



_p;eXPapf < q;xp < p?xpapf, VieN (le)
v = vy — 2(ripii + Tiiqii) + (15 + 2%, ab
VieN
Pii+ @i = livy, ViieL (12)
pr i <55, Viliel (1h)
v<v; <v, VieN (1i)
vo=1, (1j)
Ly >0, Viliecl (11

where aPf = tan(cos™1(0.95)).

Constraint (1b) converts a max min objective into a linear
one by defining the smallest export limit to be maximized.
Constraints (1c) and (1d) enforce active and reactive power
balance at each bus. Constraint (le) ensures that the power
factor at each bus is at least 0.95. Constraint (1f) defines
the squared voltage at each bus. Constraint (1g) defines the
squared apparent power flowing from bus i’ to 7 and (1h)
limits it. Constraint (1i) enforces the voltage limits at each
bus and (1j) fixes the substation voltage to 1 p.u. Lastly, (1k)
requires the squared current to be nonnegative. This formu-
lation assumes monotonicity, i.e., if p™*P defines the upper
bound of a valid operating envelope, then any injection less
than p**P, down to a similarly defined lower bound (import
limit), is feasible. We note that this may not always be true in
practice since (1g) is non-convex.

B. Second-Order Cone Relaxation

The SOC relaxation was first proposed for the branch flow
model in [18] and proven in [32] to be equivalent to the
SOC relaxation of the bus injection model (first proposed
in [33]). The SOC formulation is obtained from the full
nonlinear formulation (1) by relaxing the equality in (1g) to
pl%i + qf,i < lyyvy. This can be equivalently written in a
standard SOC form as

2piri

2qir;
lirg — vy

< lyrj + v, Vi'i € L. 2)

2
The SOC formulation of the operating envelope problem is

s.t. (Ib) — (1f), (1h) — (Ik), (2). 3)

The solution given by this formulation is exact, i.e., it is
the solution to the nonlinear problem, if it is feasible in the
nonlinear problem, i.e., if p?, + ¢%; = l;;u; holds for every
i'i € L. In the remainder of this work we use the difference
between the left and right sides of this equation to quantify
the solution’s inexactness.

While successfully used for a variety of OPF problems,
the SOC relaxation is problematic when used in operating
envelope problems, as we will show next, and as has been
shown previously in [25], [26].

max p~P

III. SOC INEXACTNESS

In this section, we demonstrate the issues associated with
using a SOC relaxation to construct operating envelopes. First,
we describe an objective function modification proposed in

our prior work [25]. Then, we present a case study that
demonstrates SOC inexactness within the operating envelope
problem, reinforcing previous observations. The case study
also reveals an issue with the objective function modification.

A. Objective Function Modification

In previous work [25], we presented a modification of the
objective function for improving the efficacy of operating
envelopes calculated using SOC relaxations of the power
flow equations. In [25], case studies illustrated how the SOC
formulation can permit larger operating envelopes, which
fail to ensure acceptable voltages under the true (nonlinear)
physics. In an attempt to alleviate issues believed to be caused
by fictitious flexibility in current values introduced by the
relaxation, we penalized power losses in the objective [25].
Specifically, the modified objective that we presented was

Hl;LX BCXP - A Z li’iri/u (4)
irieL
where A\ is a weighting parameter found heuristically to
account for differences in magnitude between the two terms.
A discussion regarding the tuning of A is presented in [25].
In [25], we presented two case studies for which this
objective function modification led to solutions that 1) closely
matched the solution found using the nonlinear formulation,
and 2) had negligible values for inexactness. The networks
used in those two case studies were relatively small, containing
only 4 and 56 buses, respectively.

B. Case Study Setup

In this section, we use a larger and more realistic network
than those considered in [25] to highlight the implications of
using the SOC relaxation in the operating envelope problem
and also the implications of using the modified objective func-
tion. Specifically, we use the 141-bus network MATPOWER test
case [34]. Note that the substation is considered to be bus 0 and
bus 1 is the bus connected to the substation. For simplicity, we
assume that every bus needs an operating envelope. Voltages
between 0.95 and 1.05 p.u. are considered acceptable. Any
operation that leads to values below or above these limits will
be considered unacceptable.

To show how the SOC relaxation of the power flow
equations and the objective function modification impact the
calculation of operating envelopes, we compare the results
from both formulations to the full nonlinear operating envelope
formulation. The solutions are compared in terms of the
size of the obtained operating envelopes and the efficacy
of those operating envelopes, i.e., how well they maintain
acceptable voltages. To analyze the efficacy of the resulting
operating envelopes, the nonlinear power flow equations are
solved for each formulation assuming net power injections at
each bus are equal to the upper limit set by the operating
envelopes. Note that because the relationship between voltage
and power injections is not monotonic, or even convex, this
is not guaranteed to result in the worst case voltages for
any injections within the operating envelopes. However, as
described in Section II, it is commonly assumed that any



injections within the operating envelope are permissible and
will lead to acceptable voltages.

Both the nonlinear and SOC problems were solved in Julia
using the JuMP package [35]. The solvers used were IPOPT
3.14.4 [36] and CPLEX 20.1.0 for the nonlinear and SOC
problems, respectively.

C. Case Study Results

We find that, using the full nonlinear operating envelope
formulation, the operating envelope upper limits varied be-
tween 6.76 and 6.79 kW, shown as dark blue circles in Fig. 1a.
When every bus is injecting real power equal to these limits,
the voltages at each bus correspond to the values shown in
dark blue in Fig. 1b. As can be seen in the figure, the voltage
at every bus is within the voltage limits. A few of the buses
far away from the substation are at the upper voltage limit,
but this is to be expected at the edge of safe operation.

When the SOC relaxation is used with the same objective
function, the solution found gives operating envelope upper
limits that vary between 42.05 and 238.74 MW, shown as
green stars in Fig. 1a. This range contains values 4 or 5 orders
of magnitude larger than the range given by the nonlinear
formulation. These power injection limits are so large, the
AC power flow solver failed to converge when bus injections
were set equal to them. The limits calculated from the SOC
relaxation are so comparatively high that they are essentially
equivalent to implementing no injection limits, and would
likely lead to severe over-voltages, damaged equipment, and
possible system instability if implemented.

When the SOC relaxation is used with the modified ob-
jective function (with A = 0.04, where this choice will be
explained below), the resulting operating envelopes have upper
limits between 6.71 and 7.03 kW. While these limits are
significantly closer to the limits given by the nonlinear formu-
lation than those given by the unmodified SOC formulation,
they are far from a perfect match. However, Fig. 1b shows
that the bus voltages resulting from solving AC power flow
when net power injections are equal to the operating envelopes
generated via the modified SOC formulation are similar to the
voltages given by the nonlinear case, and more importantly, the
voltages are all safe. This means that the SOC formulation with
the objective function modification can lead to safe operating
envelopes. However, in more complex networks, the solution
obtained will likely be different from the nonlinear solution.

Table I provides a numerical comparison between the
solutions from the nonlinear formulation, the SOC formu-
lation, and the SOC formulation using the modified ob-
jective function with A = 0.04 (Mod SOC). Values p**P
represent the smallest operating envelope upper limit in the
network for each case. Max Bus Inexactness values represent
maXi;cr |p§,i + ql%i — ;0| and the Total Inexactness values
represent Y. » [p%; +q; — lirivi|. The results highlight the
improvements that the objective function modification have
on the inexactness of the SOC formulation. However, pairing
these results with the results in Fig. 1b tells us that even if
a SOC solution does not satisfy (1g), i.e., the SOC is not
exact, it can still result in safe voltages. This suggests that the
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(a) The operating envelopes found using the nonlinear, SOC, and modified
SOC formulations with A = 0.04.
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(b) The voltage at each bus resulting from solving AC power flow with power
exports at each bus set equal to the operating envelope limits calculated using
the nonlinear and modified SOC formulations with A = 0.04. Note that
voltages for the SOC formulation are not shown because the AC power flow
solver failed to converge.

Fig. 1. Results for the 141-bus network using nonlinear, SOC, and modified
SOC formulations.

TABLE I
MEASURES OF INEXACTNESS

Nonlinear SOC Mod SOC
PP (kW) 6.76 42052 6.71
Max Bus Inexactness (MVA?) - 44032 33.83
Total Inexactness (MVA?) - 152667 33.95

SOC relaxation with modified objective function could be used
to determine operating envelopes; however, the corresponding
voltage, current, and power solution values are unreliable and
likely not physically realizable.

A fundamental challenge to using the objection function
modification is how to select A\, as we discussed in [25].
Figures 2 and 3 illustrate that selecting the “best” A may not
be easy, even with knowledge of the solution to the nonlinear
formulation. Without the nonlinear solution, the measure of
inexactness could be used to select \. However, unlike in the
small network cases in [25] where the sum of inexactness
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Fig. 2. The impact of A. Like in Fig. 1b, we plot the voltage at each bus
in the 141-bus network resulting from solving AC power flow with power
exports at each bus equal to the operating envelope limits calculated using
the nonlinear and modified SOC formulations, but for three choices of .
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Fig. 3. The sum of the inexactness, i.e., lv — (p? + ¢2), at every bus, and
the smallest resulting operating envelope as A is increased.

converged to zero as the operating envelope size approached
the nonlinear solution, here the sum of inexactness remains
significant even when the smallest operating envelope becomes
smaller than the smallest operating envelope given by the
nonlinear solution. In Figs. la and 1b and Table I, we used
A = 0.04 despite the relatively high inexactness shown in
Fig. 3 because it led to the largest operating envelopes that
maintained safe voltage levels. In practice, one could select
an appropriate A by checking the voltage levels given by AC
power flow with power exports at each bus set equal to the
operating envelope limits.

IV. CONDITIONS FOR INEXACTNESS

We have shown that the solutions to operating envelope
problems using SOC relaxations are not always effective at
maintaining acceptable voltages. Prior literature on the topic of
SOC relaxations for the operating envelope problem suggests
that the relaxation will never be exact [9], [25], [26]. If this
can be proved mathematically, it would justify the argument
that SOC relaxations should never be used for the operating
envelope problem, or similar problems. Alternatively, if con-
ditions can be found under which the relaxation is exact, then
use of the SOC relaxation may be justified for those cases.

There has been significant work in the area of SOC relax-
ations for distribution networks, including work on distribution

networks containing DERs. It is proven in [18], [37] that a
SOC relaxation is exact when minimizing an objective func-
tion that is strictly increasing in line losses if over-satisfaction
of load is allowed. In [38], it is shown that a SOC relaxation
is exact for an OPF problem in a radial distribution network if
there are no upper bounds on voltage, voltage magnitudes are
roughly 1 p.u., = is bounded, and net loads are below 1 p.u.
This is shown under the condition that the objective function is
strictly increasing with respect to the active power injections at
the substation. In [39], it is shown that for a radial network, the
SOC relaxation is exact for an objective function minimizing
an increasing convex function over the power injection region.
It is shown in [22] that the SOC relaxation of an OPF problem
minimizing a convex objective function will be exact if no
upper voltage limits are binding at optimality.

None of the above proofs apply to the operating envelope
problem because, as the authors of [40] note, the sets of
sufficient conditions for an exact SOC relaxation always
include “a requirement on the objective to be a minimization of
a function increasing with the branch flow apparent powers.”
Furthermore, [40] explains how these types of objective func-
tions are at odds with what is expected of an active distribution
system and provides a case study illustrating that including
DER-centric objectives in the objective function can lead to
an inexact SOC relaxation. They then present a cutting-plane
algorithm to tighten the relaxation by iteratively decreasing
losses. This approach has since been applied to the hosting
capacity problem [41].

In this section, we show that there actually are cases for
which the SOC relaxation is exact for the operating envelope
problem. We then use numerical analysis to determine the
conditions under which the SOC relaxation is or is not exact.
Finally, we prove mathematically that for radial networks the
SOC relaxation is not exact for the operating envelope problem
given a purely resistive network, and it is exact given a purely
reactive network.

A. Conditions for an exact relaxation

In this subsection, we numerically analyze conditions that
lead to an exact or inexact SOC relaxation of the operating
envelope problem. Specifically, we explore the impacts of
line parameters r and = on the optimal solution of both the
nonlinear and SOC formulations. We do this by rewriting the
SOC formulation in terms of the optimal solution of the non-
linear formulation and defining new variables that represent
the deviations from the nonlinear variables at optimality. We
then define a feasibility problem, which if feasible indicates
that the SOC relaxation is not exact. We solve this feasibility
problem and the rewritten SOC formulation for different » and
x values and analyze the results.

For simplicity, we consider the operating envelope problem
that does not consider fairness, i.e., the nonlinear form is

max Z p; P st (le) — (1k), (5)
* ieN
and the SOC form is

max Zp?‘p s.t. (1c) — (1f), (1h) — (1k), (2). (6)
iEN



Let x* = (p®P*, q**P*, p*, q*,1*, v*) be the optimal solution
to (5). Consider a candidate solution for (6) of the form x =
x*+4§ where J represents any deviation away from the optimal
solution x* of (5). The SOC formulation can be rewritten as

max Z gpexp (Ta)
ieN

s.t. Z O0p; = Oy — Tirib; + 60P Vi € N (7b)
ject

>0 =0k —auidly + STV EN (1)
ject

ex ,eX f ex ,€X
- (pi P+ 6zp p)ap <g; P+ 6;1 P (7d)

< aP(piP 4 0POP), Vie N
87 = 83 — 2(rinibp,; + xinidpy;) + (ri + xh) 8,
Vie N
(7e)
2pj; + 205
2q5; + 203,
Ui + 0y — v = 0

<y + Ohy + 40,

i'll2
Vi'i € L (7f)
(Dhs + 00, + (s +03,)° <52, VW€l (T
v<vf 406 <v, VieN (7h)
0 =4g (71)
I, +0,>0, ViieLl (7j)
where 60 = p*P — pPP* 68 = p; — pl,, etc.
If the SOC relaxation is exact, then the problem
p,exp
max Z 0; (8a)
ieEN
s.t. (7b) — (7)),
> PP >0 (8b)

1€N\O

should not have a solution. In (8b), ¢ > 0 represents a
small positive value such that the constraint actually enforces
Zie/\/’\o 6?(13 > 0.

Since our formulation considers the net power injections
and does not include explicit demand parameters, the only
parameters in the formulation are r, x, and the power factor
considered in (7d). This motivated the idea that the conditions
for which (3) is exact could be conditions on r and x. To
investigate this, we solved (8) over a range of r and x values
for a simple 2-bus example, the 56-bus example from [25],
and the 141-bus example from Section III-B. For the 56- and
141-bus networks, we assume all lines in the network have the
same 7 and x values. The ranges of tested r and x values are
selected to span values with similar magnitude to the r and =
values given in the original network models.

Figure 4 illustrates the feasibility of (8) for these networks
over a range of r and z values. To avoid misinterpreting
numerical error, we consider (8) infeasible and the SOC relax-
ation to be exact if it does not lead to at least a 0.1% improve-
ment in the objective function, i.c., € = 0.001 (3 ;o 25 "").
The black regions in Fig. 4 correspond to values of r and x
for which (8) is infeasible and therefore the SOC relaxation

is exact. The yellow regions correspond to values of r and x
for which (8) is feasible and the SOC relaxation is not exact.
The white areas in Fig. 4c represent values of r and z for
which (1) was (at least locally) infeasible.

The regions in the figure suggest that whether or not the
SOC relaxation is exact is dependent on r and x. However,
the exact relationship is unclear. Note that there is a region
of r and = values for which the SOC relaxation is exact for
the operating envelope problem. This is counter to previous
examples where the relaxation has always been reported to
be inexact [9], [25], [26]. It is also counter to the initial
intuition that because operating envelopes can increase as
losses increase (assuming r > 0), the flexibility in current
values enabled by the SOC relaxation would always lead to
an inexact relaxation. Figure 4 does show that when r = 0, i.e.,
there are no active power losses, the relaxation is exact for each
of the three tested networks. In contrast, when the network is
purely resistive, i.e., x = 0 and r > 0, the relaxation is never
exact. We present a mathematical proof of both of these cases
in the subsequent subsections.

Figures 5a-5f show values of &5, 80y, 051, 67, 07°P, and
6P, i.e., the change in variable values from the optimal
solution to the nonlinear formulation and the optimal solution
to the SOC formulation for the 2-bus network. All six plots
show three regions: i) the white region where (8) is infeasible,
i) the “dome-shaped” region near the bottom left corner, and
iii) the region below the diagonal in the lower right corner.
Except in Fig. 5d, the dome region and the lower diagonal
region have distinct patterns with respect to r and x. This
suggests that the flexibility introduced by the relaxation, which
allows the SOC formulation to attain higher operating enve-
lope values, changes not only in magnitude but also in which
variables are manipulated to create this flexibility as r and x
change. The squared line current value, shown in Fig. Sc, has
the most significant change between the nonlinear and SOC
solutions, suggesting it plays a significant role in the difference
in objective values. The existence of these two distinct regions
and the variations within them for the simple 2-bus network
suggest that there may be multiple sets of conditions under
which the SOC relaxation of the operating envelope problem is
not exact, and identifying precise conditions is likely difficult.

To gain insight into which constraint(s) sometimes prevent
the SOC relaxation from obtaining a higher objective value
than the nonlinear formulation (i.e., from being inexact), we
introduce slack variables in the right side of the equality
constraints of (8), i.e., (7b), (7c), and (7e). The problem
with slack variables can then be solved over the r and x
values for which (8) was infeasible and the relaxation was
exact. If non-zero slack appears in only one equation or in
multiple equations in such a way that it can be attributed
to a single variable, and thus that variable’s bounds, then
identifying sufficient conditions for an exact relaxation may
be straightforward.

The values of the slack variables associated with (7b)
and (7e) for the 2-bus network are shown in Fig. 6. There
are three distinct regions within the colored portion of the
plots. The regions can be described as follows: 1) positive
slack in the voltage drop equation and zero slack in all other
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equality constraints, 2) negative slack in the active power
balance equation and zero slack in the voltage drop equation,
and 3) negative slack in the voltage drop equation and zero
slack in all other equality constraints. Similar to the argument
used above, the presence of these three distinct regions for this
simple 2-bus network suggests that there are multiple sets of
conditions that could lead to an exact SOC relaxation.

In summary, for distribution networks that contain lines with
both positive resistance and positive reactance, we have shown
that there are scenarios under which the SOC relaxation is
exact and also scenarios under which the SOC relaxation is
not exact for the operating envelope problem. Our numerical
analysis, as well as our multiple failed attempts at mathemat-
ical exactness and inexactness proofs (omitted for brevity),
suggests that there may not be a concise set of conditions
for which the relaxation is or is not exact. Given this lack
of clear and provable conditions for an exact relaxation and
the undesirable consequences of an inexact relaxation in the
context of the operating envelope problem, as illustrated in
Section III-C and in prior work [9], [25], [26], it is ill-advised
to use a SOC relaxation to calculate operating envelopes.

B. Purely Resistive Networks

Results in the previous section for the general case were
complicated. However, the results did suggest that it might
be possible to derive conditions for purely resistive or purely
reactive networks. Therefore, we now consider the case of
purely resistive networks, i.e., Vi'i € L, r;; > 0 and z;,; = 0.
Again, let x* = (p®™P* q*P* p*, q*,1*,v*) be the optimal
solution to (5). Consider a particular bus ¢ # 0 and assume
v < . Now, consider the following candidate solution x
to (6):

K2

~EX Xk £ ~eX XP* .
Bt =i e B = a0 VR e N}
'
0 = o] + ¢, o = vy, Yk e N\ {i},
~ 1) ~ ..
Liri Zlf'ri‘rT, lon = Uiy, VE'k € L\ {i'i},
Wi

ﬁk'k = p;;’kv Vk/k € ‘Ca
qu’k = q;:’kv Vklk € 'Ca
Vk e N,

~eXp __ _expx

9 =4 >
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Fig. 6. Relationship between r, x and the slack variables in (8).

where 0 < e < ¥ —v; is a small perturbation. Since € > 0 and
ry; > 0V i'i € L, this candidate solution will have a strictly
larger objective value than x*. We will now show that this
candidate solution is feasible for (6) but not feasible for (5),
i.e., the SOC relaxation is not exact. To do this, it suffices to
show that (1¢)—(1f) and (1h)-(1k) hold for x and (2) holds
with strict inequality for at least one line.
At bus 4, plugging x into (1c) gives

* * exp*
Diry = Tiri <li/i 2 > +p; E P
i jeci
3
* * cxp*
Dirg — Tiviliry — " +D; E pz]?
i’ jeci
exp* o *
pz — Ty zl i/ - E pij»
jeci

which must hold if x* is optimal for (5). For any bus
k # 4, plugging % into (1c) gives p}., — rwrliy + 05 0 =
> cck Pry» Which holds by the same argument. Thus, (1c)
holds for x.

If 2, = 0, then (1d) at any bus k given X is ¢, +q5 © =
> neck Q- Again, if x* is optimal for (5), then this proves
that (1d) holds for %.

Next, consider (le) for x at bus 1,

) IS
_ p?xp* + = apf < qexp* fxp* + apf.
T4 Titg

: € CXP* f f
Since > 0, then — (pl- + T, )aP < —p;P*aP! and

X Pk f f
P+ T/ ) aPt > pPP* Pl showing that the above holds

if (le) holds for x*. At any bus k # i, p, " = p, """ and
G P = ¢,P" so it is trivial to show that (1e) holds. Thus, (1e)
holds at all buses for x.

Next, consider (1f) for x at bus ¢,

exp*

£

* * * 2 *

vi &= vy — 2(riripy;) + T (li/i T2 ) ’
2

i
* * * 2 7%
v +e =0 —2(riyipp;) Friglh; + e,
* * * *
Uy = Uy — Q(Ti'ipi’i) + rl'll’b 7

which must hold if x* is optimal for (5). For any bus k # 1,
O = U}, Prrk = Pl and [y = 15, 50 it is trivial to show
that (1f) holds. Thus, (1f) holds at all buses for x.

For all lines k'k € L, pri, = p}sp, and Grrg = gjsp, SO it is
trivial to show that (1h) holds for x.

Next, consider voltage limits (1i) at bus 7: v < v} +¢ <.
The lower limit holds because ¢ > 0 and v < v;. Recall
that we defined ¢ < v — v}, and thus the upper limits holds
because v + ¢ < T. For any bus k # i, 0 = v} so it is
trivial to show that (1i) holds for x. Similarly, since ¢ is not
the substation bus then (1j) holds. Since € > 0, it follows that
li, + = > 0VE'E € L, if x* is optimal for (5).

Flnally, it must be shown that (2) holds with strict 1nequahty
on at least one line. Consider the line connecting buses 4’
and ¢, and for simplicity, consider (2) in its equivalent form
p2,; + q2; < lyvi. Plugging in X, we get

* * * £ «
(Pi)* + (g5,)% < (li/i + = ) (vi +¢),

%

2
£ IS
(p;k’i)Z + (q;z) < lz’zv s U i 2 + l;k’ig + TT’

% %

2

(p:’i)Q + (q;;k’i) - lz’zv < lz"LU it U i’ 2 6 + l;,k’ze + 5

1'% i’

The last line follows from the optimality of x* for (5) and the
fact that [}, > 0, v}, > 0, & > 0, and r;; > 0V i'i € L.
Thus, we have proven that x is feasible for (6), not feasible
for (5), and leads to a higher objective value. This proves that
for purely resistive, radial networks, the SOC formulation of
the operating envelope problem is not exact if at least one
non-substation bus has a voltage strictly lower than the upper
voltage limit at optimality of the nonlinear formulation.

With the exception of the 2-bus network, all of the test
cases we ran with r > 0 and z = 0 satisfied the condition that
at least one non-substation bus had a voltage strictly lower
than the upper voltage limit at optimality of the nonlinear
formulation. In the 2-bus network, the only non-substation bus
voltage was at its upper limit over the entire range of tested
r > 0 values, yet the relaxation was still always inexact.

To the best of our knowledge, this is the first proof that
identifies conditions under which a relaxation of an OPF
problem fails to be exact. Prior work in the area of OPF
relaxations attempt to prove conditions under which the re-
laxation is exact. Yet, it is also of value to know under what
conditions the relaxation will be sure to fail. The proof that the
SOC relaxation will fail to be exact in the operating envelope



problem when a network is purely resistive aligns with our
initial suspicion that the SOC relaxation is able to achieve
larger operating envelopes by nonphysically increasing losses.

C. Purely Reactive Networks

We now consider the case of purely reactive networks, i.e.,
Vi1 € L, ry; = 0 and xy; > 0. The following proof
was inspired by the proof given in [18]. For the sake of
contradiction, assume that x* = (p®P* q**P* p* q*, I*,v*)
is the optimal solution to (6) such that (2) holds with strict
inequality on a particular line connecting buses i’ and 4, i.e.,
(p5:)? + (q5;)* < I3,v}5 and (6) is not exact. Now, consider

the following candidate solution X to (6):

PP = pi P te, Pl =pr P, Vke N\ {i},
Piri = Dy — €, Pk = Dy, VE'k € L\ {i'i},

(jk/k = q};/k, VE'k S ﬁ,
U = ’UZ, Vk € N,

Lok =y, VE'k € L,
P = g7 Yk e N,

where € > 0 is a small perturbation (not necessarily the same
perturbation as in the purely resistive case). Since ¢ > 0,
% will have a strictly larger objective value than x* if it
is feasible, which would contradict the optimality of x*. To
check feasibility, it suffices to check that there exists € > 0
such that x satisfies (1¢)—(1f), (1h)—(1k), and (2). Since x* is
feasible, (1d), (1f), and (1i)—(1k) hold for x across all buses
and lines. Similarly, (1c), (1e), (2), and (1h) hold for x on all
lines k'k # 47 and at all buses k # 7. We will now show
that (1c), (le), (2), and (1h) hold for X on line ¢'7 and at
bus ¢. Specifically, for (2), we will show that improving the
objective value will ultimately shape the solution such that (2)
approaches equality.
At bus 4, plugging X into (1c) gives

P —e+ o7 we=ph 07 = bl
jeci
which must hold if x* is feasible for (6).
Next, consider (le) for x at bus 4

(P ) P < g < (P e o,

%

f

Since £ > 0, then — (p;™* +¢)aPt < —p7P*aPf and
exp*

(p;P" +¢) aPt > p"aP!, showing that the above holds
if (1e) holds for x*.
Consider (1h) on line 4’7 for x:
Pi + @i = (03 — €)* + () < 5%

Thus (1h) only holds for % on line i if (p},;)* + (¢5;)?
52 + 2ep},; — €2 holds.
For (2) on line 7’7,
0> (pyy)* + (g5:)* —
= (piri +€)* + 4y —
liritir + 2epiri + €

IN

* *
i Vs

li’i'f}i/

.2 2
=Di + Gy —

Since » = 0 and there are no active power losses, then p;/; < 0
if the sum of net export limits across the buses downstream of
bus i is positive, i.e., Y, A PP > 0, where N denotes
the set of all buses downstream of bus 4. If p;;; < 0, then
we can choose any € > 0 sufficiently small such that Ly >
E”TJ:(Z”. This proves that the candidate solution is feasible
and contradicts the optimality of x*. This also implies that
(2) will hold with equality for the true optimal solution and
that the relaxation is exact. We note that because the objective
is to maximize Y, Py ", then py; < 0 typically holds. In
each test case we ran, active power line flows were all negative
when r = 0.

The proof that the SOC relaxation will be exact in the
operating envelope problem when a network is purely reactive
also aligns with our initial intuition. Without resistance, the
SOC relaxation is unable to nonphysically increase active
power losses and therefore increase the operating envelopes.

V. CONCLUSIONS

In this paper we discussed the implications of using a SOC
relaxation for calculating operating envelopes. Specifically,
we reinforced previous concerns and observations about the
inadequacy of operating envelopes calculated using a SOC
relaxation in regards to network safety. We also assessed the
impact of using our previously proposed objective function
modification to tighten the SOC relaxation in the operating
envelope problem on a larger network. Results suggest that
the modification could be used to define operating envelopes
that enforce voltage limits using a SOC relaxation, but that
the relaxation may not be exact.

We showed that, despite our intuition to the contrary, there
are scenarios in which the SOC relaxation can be exact for the
operating envelope problem. With this insight, we attempted
to identify the underlying conditions that lead to an exact
and an inexact relaxation. For the general and realistic case
where the network contains lines with both positive resistance
and positive reactance, we were unable to provide simple
conditions under which the relaxation will be exact or inexact.
However, our numerical analysis suggests that there may
be multiple sets of conditions that lead to an exact or an
inexact relaxation. For networks with purely resistive lines, we
mathematically proved that if there exists at least one bus not at
its maximum voltage in the optimal solution of the nonlinear
formulation, then SOC relaxation will lead to a larger sum
of operating envelopes than the nonlinear formulation (i.e., it
will be inexact). For networks with purely reactive lines, we
mathematically proved that the SOC relaxation will be exact.

The key takeaway from this work is that given a lack
of straightforward conditions for an exact relaxation, it is
ill-advised to use a SOC relaxation to determine operating
envelopes. Nonlinear formulations, linearizations or inner-
approximations are more reliable options for calculating safe
operating envelopes.
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