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Abstract—The nonlinearity of the power flow equations leads
to algorithmic and theoretical challenges for a wide variety of
optimization and control problems relevant to electric power
systems. Solution algorithms for these problems often use lin-
earization techniques to obtain tractable power flow formulations.
Many existing linearizations lack specialization to a given system
and operating range of interest, leading to unnecessarily large
linearization errors. In contrast, recently proposed ‘optimal
adaptive” linearizations are 1) tailored to specific systems and
operating ranges of interest and 2) optimal in the sense that
they minimize a selected error metric relative to the nonlinear
power flow equations. Existing work proposes optimal adaptive
linearizations that minimize the worst-case linearization error.
Building on this existing work, this paper uses an uncertainty
quantifiation method called Polynomial Chaos Expansion to
minimize the expected linearization error for a given probability
distribution of the power injections. As validated using Monte
Carlo analyses, the capabilities of the expected-error-minimizing
linearizations are shown to be superior to first-order Taylor
approximations computed at a nominal operating point.

I. INTRODUCTION

The AC power flow equations model the nonlinear relation-
ship between the power injections and the voltage phasors in
an electric power system. These equations are at the heart of
power system optimization and control problems. Since the
nonlinearity of these equations results in both computational
and theoretical challenges, many power system algorithms em-
ploy linear power flow approximations, such as the DC power
flow [1] for transmission systems and the LinDistFlow [2]
for distribution systems. There exist many variants of these
linearizations as well as other approximation techniques [3].

These linearizations facilitate the use of well-developed
theory for linear optimization and linear dynamical systems
analysis, often enabling computational scalability to large-
scale systems and real-time computations. However, the use
of linearizations introduces numerical errors relative to the
nonlinear power flow equations, which may cause problems
for power system reliability (e.g. an operating point that is
predicted to be secure by a linearization may actually result
in constraint violations) and economics (e.g. security margins
used to account for linearization errors can preclude lower-
cost operation). Linearizations with smaller errors can improve
reliability and economics while maintaining tractability.

Typical linearizations are designed using assumptions ap-
plicable to general classes of systems. For instance, the DC
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power flow assumes a nearly lossless network operated with
small angle differences and near-nominal voltage magnitudes.
The linearization errors depend on the appropriateness of the
underlying assumptions, which can be difficult to quantify.
In contrast, the linearizations proposed in [4] are adaptive,
i.e., tailored to a specific system and operating range of
interest, and optimal, i.e., they minimize a certain error metric
relative to the nonlinear power flow equations. By exploiting
knowledge of specific systems and operating ranges, these
“optimal adaptive” linearizations achieve lower errors com-
pared to typical power flow linearization techniques. As a
byproduct, algorithms for computing these linearizations also
provide error bounds. Optimal adaptive linearizations can be
computed off-line based on a forecast and employed in on-line
analyses that require fast computations.

These linearizations can replace traditional techniques in or-
der to improve performance in any application that uses power
flow linearizations. Several particularly relevant power systems
applications include chance-constrained optimization [5, 6],
where linear power flow models facilitate uncertainty propaga-
tion, and model predictive control [7], where the requirement
for fast solutions of multi-period optimization problems is well
matched to the optimal adaptive linearizations’ capabilities.

The linearizations’ characteristics depend on the selected
error metric. Two possible metrics are worst-case error and
expected error. The worst-case error results in linearizations
that ignore the likelihoods of the uncertainty realizations.
However, the likelihoods can be valuable for problems con-
cerned with extreme scenarios. Conversely, an expected error
metric considers each realization’s likelihood of occurring,
which can improve the linearization’s accuracy for “typical”
operating conditions.

Building on [8], the optimal adaptive linearizations in [4]
minimize the worst-case linearization error. To compute these
linearizations, a constraint-generation algorithm alternates be-
tween 1) computing the power injections that result in the
worst-case error for a candidate linearization and 2) updat-
ing the candidate linearization in order to reduce the error
with respect to all previously calculated worst-case power
injections. The works [9, 10] study adaptive linearizations
using expected errors. Reference [9] (with extensions to three-
phase systems in [11]) minimizes the least-square linearization



error for a predefined set of evenly distributed points near a
nominal operating point. While the resulting linearization is
adaptive to the system and operating range of interest, the set
of points is not selected in any optimal manner to minimize
some objective. Using a “generalized moment” approach, [10]
also computes power flow linearizations that minimize the
expected error. Specifically, [10] minimizes the error for the
solution to a specified optimization problem (parameterized by
the uncertain power injections).

In contrast, the main contribution of this paper is an
approach for computing linearizations that minimize the ex-
pected linearization error for a given distribution of uncertain
power injections; hence considering an entire operating range,
independent of any particular application. The linearizations
are calculated using an uncertainty quantification method
called Polynomial Chaos Expansion (PCE) [12, 13]. PCE can
handle many classes of probability distributions and does not
require sampling. Prior applications of PCE to power systems
include stochastic power flow [14] and chance-constrained
optimal power flow [6, 15, 16].

The present paper is organized as follows. Section II poses
the problem formulation. Section III proposes our PCE ap-
proach for solving this formulation. Section IV numerically
demonstrates the advantages of the proposed approach. Sec-
tion V concludes the paper and discusses future work.

II. PROBLEM FORMULATION

After introducing the power flow equations, this section
presents the stochastic optimization formulation used to de-
termine the expected-error-minimizing linearizations.

A. Power Flow Overview

Consider an m-bus power system with sets of buses and
lines denoted A and L, respectively. Each line (j,k) € L is
modeled by a Il-circuit with shunt susceptance b i, mutual
conductance g,, and mutual susceptance b;z. The active and
reactive power flows on each line (j,k) € L are p;, and
;1. Each bus 4 € AV has shunt conductance and susceptance
gsh,i and bgp, ; as well as active and reactive power injections
denoted P; and Q;. The voltage phasors at bus ¢ € N in
rectangular coordinates have real part e; and imaginary part
fi- The angle reference is selected by choosing f; = 0. The
power flow equations are, for all (j,k) € £ and i € NV,

ik = gie(€5 + f7 — ejen — fifi) + bju(e; f = fien), (1)
Gk = —(bjk + be/2)(€] + [7) — bjx(esex — fifx)
+ gjr(ejfr — fiex), (1b)
Pi= > pik+ D Pritgenilel + £7), (1)
(4,k)eL (4,k)eL
s.tj=1 st k=1
Qs = Z gk + Z Qj — bsnilel + f7), (1d)
(4,k)EL (J,k)EL
s.t.j=1 st k=i
vl =€l + f7. (le)

Equations (la) and (1b) relate the voltage phasors to the
line flows. Equations (1c) and (1d) correspond to active and

reactive power balance at each bus. The squared voltage
magnitudes are modeled in (le).

To represent typical equipment behavior, we choose to
specify each bus as “PQ” (fixed active and reactive power
injections), “PV” (fixed active power injection and voltage
magnitude), or “slack” (fixed voltage magnitude and angle
reference, i.e., f; = 0). We define the sets of PQ, PV, and
slack buses as PQ, PV, and S, respectively.1

Together with the bus type specifications, the power flow
equations (1) constitute an implicit nonlinear mapping from
R?" — R?", We denote this mapping as h(P,Q, e, f) = 0.

B. Expected Error Minimization Problem Formulation

We seek a linearization that relates a single “output” quan-
tity of interest to some “input” quantities.”> The output is
typically a quantity that is constrained or optimized but not
directly controlled, such as voltage magnitudes at PQ buses,
active and reactive line flows, and current flows. Typically,
the inputs are controllable quantities or uncertain parameters.
While the approach we propose is applicable to a variety of
choices for input and output quantities, this paper focuses
on outputs consisting of active and reactive power flows on
each line, p;; and g, and inputs consisting of active and
reactive power injections at each non-slack bus, P; and @),
Vi € N\ S. This choice of inputs and outputs results in
linearizations analogous to commonly used ‘“Power Transfer
Distribution Factor” (PTDF) formulations. In fact, shrink-
ing the operating range to a single nominal point results
in our proposed linearizations being equivalent to the so-
called “AC-PTDF” that uses a first-order Taylor expansion
to minimize the linearization error at a nominal operating
point [17]. Thus, our proposed linearizations can be interpreted
as “adjustments” to an AC-PTDF matrix that account for a
range of operation around a nominal point.

Our linearizations are defined by coefficients that form an
affine relationship between the input and output quantities.
The constant term and the coefficients for active and reactive
power injections are denoted as £y, £p;, and {g;, Vi € N \S.
We tailor our linearizations to a particular system model with
a given network topology and electrical parameters as well
as a specific operating range of interest. The operating range
is modeled by random variables for the active and reactive
power injections with known probability distributions, denoted
as P;, Vi € PQ U PV, and Q;, Vi € PQ. While the
voltage magnitudes at PV and slack buses can also generally be
represented by random variables v;, Vi € PV U S, we consider
constant voltage magnitudes at these buses. Each uncertainty
realization for these quantities results in a square system of
power flow equations A(-) (i.e., equal numbers of equalities
and variables). The corresponding “high-voltage” solution to
these equations has voltage phasor components e; and f; with
associated random variables denoted as e; and f;, Vi € N.

1Our approach admits more general models of equipment behavior, such as
“Q/V droop” characteristics, where the generators’ reactive power outputs
are functions of their voltage magnitudes.

2Consequently, if we speak of linearizations (plural) we mean the set of
mappings that relates several outputs to inputs.



Let E[-] denote the expected value operator. To formalize
the optimal adaptive linearization formulation, consider a
linearization that relates the active power flow on a specific
line (j, k) € L, pjx, to the active and reactive power injections
P; and Q); at each non-slack bus i € N\ S:

E[(pjx — Bjr)?] subject to (2a)

min
t=[lo.lp 0] T
h(P,Q,e, f) =0, (2b)
Pjk = gjk(e? + f72 —ejep — i) + bj(e;f — fien), (20)

Pjr = Lo + Z (LpiPi+4g: Qu), (2d)
1eEN\S

where pj; is the random variable corresponding to the ac-
tive power flow on line (j,k) € £ and (-)" denotes the
transpose. The objective (2a) minimizes the expected squared
error between the linearization and the nonlinear power flow
equations for this line flow. Constraint (2b) denotes the power
flow equations (1) with the bus specifications for the random
variables P, Q, e, and f, as discussed above. Constraints (2¢)
and (2d) model the nonlinear active power flow equation
and its linearization, parameterized by the decision variables
¢ = [lo,lp,Lg]". The decision variables for the solution
to (2) give the optimal adaptive linearization’s coefficients. The
optimal objective value bounds the linearization’s expected
squared error. Note that linearizations for the active power
flows py,, on each line (I,m) € £ as well as variants of (2)
that consider other output quantities of interest (e.g., reactive
power flows ¢,,,; voltage magnitudes v;, Vi € PQ; etc.) are
computed in parallel.

III. SOLUTION METHODOLOGY

The linearization problem (2) has finitely many decision
variables ¢. Nevertheless, this problem is challenging since
the power flow equations in terms of random variables (2b)
are infinite-dimensional. Additionally, the calculation of the
expectation (2a) requires solving an integral. To address these
challenges, we exploit the problem’s structure, specifically the
facts that 1) the active power line flow in (2c) is explicitly
determined from the solution to the square system of power
flow equations (2b) and 2) the decision variables ¢ only appear
in (2d). Hence, problem (2) can be decomposed into two steps:

1) Feasibility problem: solve the probabilistic power flow

problem (2b), i.e., compute the distributions for e; and
f;i, Vi e N, Q;, Vi € PYUS; and P;, i € S given the
distributions for P;, Vi € PY U PQ, and Q;, Vi € PQ.

2) Unconstrained optimization problem: determine the opti-

mal linearization coefficients ¢ by substituting the result-
ing distributions for e;, f;, P;, and Q; into (2¢) and (2d)
and then minimizing (2a).
Since the probabilistic power flow problem (2b) is independent
of the objective (2a), the solution from the first step can
be repeatedly used (in parallel) to compute linearizations for
multiple quantities of interest in the second step.

Even though we can decompose the linearization prob-
lem (2), the probabilistic power flow problem (2b) remains
infinite-dimensional and is therefore challenging. Also, the

objective (2a) still requires evaluating an integral. We cope
with both challenges by means of Polynomial Chaos Expan-
sion (PCE), which is, loosely speaking, a “Fourier series for
random variables” [13]. PCE enables any random variable
of finite variance to be represented by a set of deterministic
scalars, the so-called PCE coefficients. These PCE coefficients
are to random variables what Fourier coefficients are to peri-
odic signals: if the PCE (Fourier coefficients) are known, the
entire random variable (periodic signal) may be reconstructed.
With respect to (2), PCE allows the probabilistic power flow
problem to be reformulated as a deterministic system of
equations, and the objective (2a) can be formulated entirely
in terms of the PCE coefficients. Before presenting these
reformulations, we briefly introduce PCE; see [13] for details.

A. Polynomial Chaos Expansion

Consider a (multivariate) probability density function p :
D — R. Then, there exist polynomials {;}7°, on D that are
orthogonal with respect to the probability density function p:

(Vr, 1) = /Dl/fk(T)%ﬁz(T)p(T)dT = Y10k, (3)

where ~; is positive and d; is the Kronecker-delta. The
truncated polynomial chaos expansion of a random vector
X = [X1,...,Xy] i8 then

L
N - ~ [
X =~ E l’ll/le Ty = [(d’ls"l’l)
=0

hence a weighted sum of basis polynomials. The weight Z; is
the vector of so-called PCE coefficients. The components of
the truncation error x — Zf:o Zy4y are optimal in the induced
norm | - |2 = (-,-), and decay to zero for L — oo. Moments
of the random vector x can be expressed as functions of its
PCE coefficients, for example

T
] e, @

L
EX] =&, Epx'] =Y ywdid, ®)
=0

which follows from orthogonality of the basis, see (3); no sam-
pling is required. The orthogonal basis polynomials are known
for certain families of random variables (e.g., Gaussian, Beta,
Gamma, and Uniform distributions) [13]. For other random
variables, the orthogonal bases {1/, };° can be constructed by
the Gram-Schmidt procedure or the Stieltjes procedure [18].

Two aspects of PCE are especially helpful for the lineariza-
tion problem (2): Galerkin projection for probabilistic power
flow (2b) (Section III-B) and computation of moments for the
objective (2a) (Section III-C).

B. Probabilistic Power Flow

We next show how PCE facilitates the reformulation of
probabilistic power flow (2b) as a deterministic system of
equations in terms of the PCE coefficients, similar to [14].
First, we introduce PCE for all random variables in (2b):

L L L L
h (Z 1511/1172@11@1,2511!)172&/11) =0, (6
1=0 1=0 1=0 1=0



- L - - H = - -
Pikim = D1, 1p=0 Blrtom (gjk (ej,llej,12 + fian file = €0 €ty

st j=1 st k=i

Qi,m =0 k)eL Gik,m + 2 G kyer Grjm — 211)12:0 Biilambsh,i (ez’,ll €il, + fi,llfi,lz)

211,12:0(@\116%12 + ﬁsll fl»lz)<wll'¢)lz7¢m>
aLa and Bhlzm = <wl1¢lza¢m>/<’¢'mawm>

st j=1 st k=1
211,12:0 ity Uity (1, Y1y, Ym) =
Vie N, V(,k)eL, ¥Ym=0,...

- fj.zlfk,m) + bjk <5j,llfk,zz - fj,zlék,la))
ﬁjk,m =0 1m0 Biaizm (—(b]‘k + be,jk/2) (éj,héj,zz + fj,hfm) —bjk (éj,llék,lz_fj,llfkh) + gjk (éj,llfk,lz_fj,llékh))

Pim =3 (ke Bikm + 223, kee Prjm + S0 ta—0 BritzmGsh,i (ez Wéite + fou fi, lz)

(8a)
(8b)
(8¢)
(8d)

(8e)

where I:’l Ql, €;, and fl are the [-th vectors of PCE coefficients
of the active and reactive power injections and real and
imaginary voltage phasor components, respectively, see (4).
We next apply Galerkin projection, i.e., we project every
component of (6) onto every basis function ,,:

L L L L
<h/ (Z Py, ZQﬂ/]z, Z élll)l,Zfll/Jl) alfim> =0 ()
1=0 1=0 1=0 1=0

for all m = 0,...,L.> The resulting projected power flow
equations are listed in (8). The projected bus specifications
are omitted due to space limitations; we refer to equation
(12) in [14] for their derivation. Notice that PCE-overloaded
power flow from (8) has the same mathematical structure as the
deterministic power flow; namely, it is a system of quadratic
equations in the real and imaginary voltage PCE coefficients,
weighted by the scalar [3;,;,,, that depends on the basis
functions. Values for the scalars /;,1,., are computed offline by
Gauss quadrature. Having solved the PCE-overloaded power
ﬂ~0w problem, all vectors of PCE coefficients P}, (J;, ¢;, and
fi are known for [ =0,..., L.

C. Optimal Linearization Coefficients

Turning to the objective (2a), we next show how PCE facil-
itates the derivation of a closed-form solution in terms of PCE
coefficients. We first substitute the equalities (2c) and (2d) into
the objective to obtain an unconstrained optimization problem.
We then rewrite (2a) as

E[(pjx—pj)?] = E[p%] — 2E[pjipj] + E[p%). (9

For the first term [E[f)?k] in (9), we use the ansatz (2d) for the
active power flow p;; and compute the moments according
to (5). We obtain (recall from (2) that £ = [y, £p, lo] ")

E[p3,] = £TWE, where (10)
1 t7 ey
W= LT = § Y.
t T QP QR

Notice that the matrix W is positive (semi)deﬁnite. For the
second term E[p;zp;x] in (9), we substitute (2¢) and (2d) and
then apply the moment equation (5) to obtain

Elpjibje] = w' e, (11)

3We slightly abuse notation since  is vector-valued but the scalar product
(-, -) is defined in (3) for scalar-valued arguments. Equation (7) takes the
scalar product of every component of h with ¢, for all m =0,..., L.

where the vector w is defined in (12) at the top of the
following page. Finally, using (5), the third term [E[p?k]
becomes E[p%,]| = S Doy, =: wo, where pj; is given
in (8a). To summarize, the objective (2a) subject to the equality
constraints (2¢) and (2d) can be written as an unconstrained
convex quadratic program in the linearization parameters ¢,

min El(pjr—Bjr)’]

—min 0T Wl — 2wl + wy. (13)
s. t. (2¢), (2d)

The “ingredients” (W, w,wy) are computed after the proba-
bilistic power flow has been solved, as they require knowledge
of all vectors of PCE coefficients P, Q,, ey, fi forl1=0,..., L.
Notice that wq is constant with respect to the hnearlzatlon
parameters ¢ and therefore only affects the optimal value.

D. Computational Characteristics

As demonstrated, the linearization problem (2) can be de-
composed into two parts: probabilistic power flow and an un-
constrained optimization. Using PCE, the probabilistic power
flow problem is rewritten as an enlarged deterministic power
flow problem in terms of the PCE coefficients. Specifically,
PCE-overloaded power flow is a square system that consists
of 2n(L+1) equations in 2n(L+1) unknowns, namely, all the
PCE coefficients from (8c) and (8d). Hence, all methods that
solve deterministic power flow (e.g., Newton-Raphson) can,
in principle, be applied to solve probabilistic power flow via
PCE. The dimension of the PCE basis is given by (L+1) =
(N + Ng)!/(N,Ng!), where N, is the number of distinct
sources of uncertainties and Ny is the maximum polynomial
degree of the basis. For many applications, maximum degrees
of Ny = 2 or N; = 3 suffice to achieve sufficient numerical
accuracy [14, 19]. The unconstrained convex optimization
problem (13) poses no significant computational burden; in
fact, it could be solved analytically.

IV. NUMERICAL RESULTS

This section demonstrates the performance of the proposed
expected-error-minimizing linearizations from (2). These lin-
earizations are computed by implementing the algorithm from
Section III in Julia with the solver Ipopt [20], and the packages
JuMP [21] and PowerModels.jl [22].

For each example (IEEE 9-, 14- and 24-bus system), we
solve an optimal power flow problem to obtain a nominal
operating point. The active and reactive power injections at
the nominal point are given by pi°™ and ¢;°". We consider
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a range of operation around this nominal point defined by a
specified probability distribution in terms of the active and
reactive power injections at certain buses. In this paper, we
consider uniform distributions:

P; ~ Upi°™(1 — £/100), p;°"(1 + €/100)],

7

Q; ~ U™ (1 — £/100), g™ (1 + £/100))].

?

(14a)
(14b)

The uncertainty is considered at PQ buses ¢ € PQ with a non-
zero load. The random variables in (14) represent a uniform
distribution with a fluctuation radius of € % around the nominal
value, which can represent the size of the forecast uncertainty.
The linearizations from (2) are compared to first-order Taylor
expansions around the nominal operating point, pi°™, ¢™,
whose errors are determined using Monte-Carlo simulations.

1) Quality of Approximation: For the IEEE 9-bus test
case Figure 1 shows the characteristics of the linearization
error as a function of the fluctuation radius ¢ in (14) for
both our linearizations (“PCE-Optimal”) and the first-order
Taylor expansions (“MC-Taylor”). The error predicted by the
proposed method is very accurate in the sense that it is over-
lapping with the validation solution via Monte-Carlo (“MC-
PCE”), see Figure 1. As expected, the optimal linearizations
obtained using the proposed method outperform the first-order
Taylor expansions. The improvement obtained can be quite
significant for some lines, as is the case for the reactive
power approximation of line #1, see Figure 1. The optimal
linearization for this line has an error that is 5 MVAR lower
than the Taylor expansion for an uncertainty radius of 100 %,
which is significant compared to the 12.9 MVAR nominal
flow. At the same time, the approximation errors are very
small in other cases, indicating that Taylor approximations are
appropriate for these lines.

2) High-Voltage Solution: Since the AC power flow equa-
tions are nonlinear and are known to admit multiple solutions,
including so-called “low-voltage solutions” [23], we need to
make sure that the PCE-overloaded power flow (8) represents
the appropriate high-voltage solution for different uncertainty
realizations. This is ensured in our numerical experiments by
warm-starting the system of equations (8) with the nominal
solution for the zero-order coefficients; the higher-order co-
efficients are initialized to zero. Also, Figure 1 and Figure 2
show that the error increases in a smooth manner from zero as
the radius is increased, thus providing a-posteriori verification
that the results obtained from solving the PCE-overloaded
problem (8) indeed correspond to the high-voltage solutions.

3) Comparing the Linearization Coefficients: We compare
the difference between the linearization coefficients obtained
from the proposed optimal linearization and the first-order
Taylor expansion. The root mean square (RMS) difference is
plotted in Figure 2 as a function of the fluctuation radius €.

We observe that while the differences in the coefficients are
rather small, the resulting improvement in the approximation
errors can be quite significant, as shown in Figure 1.

4) Comparison Across Test Cases: We present the results
of the optimal linearizations and the Taylor expansions for
the IEEE 9-, 14- and 24-bus systems in Table I. There are
several trends that generalize to all systems tested. First,
there is a significant difference between expected squared
error averaged over all lines (eae) and the largest expected
squared error (en,) for any line, suggesting that the Taylor
approximation is reasonable for most of the lines except some
critical lines where the optimal linearization shows significant
improvements. Second, the approximation errors for reactive
power flows are higher than the errors for active power flows.
This is in agreement with the observations in [4] for the worst-
case linearization error and is in accordance with the general
intuition that reactive power tends to display higher levels of
nonlinearity than active power.

5) Computation Time: The computation times for the two
steps of the proposed method are given in the last column of
Table I. Most of the time is spent solving the PCE-overloaded
probabilistic power flow in (6). Once (6) is solved, comput-
ing an unconstrained convex quadratic program provides the
optimal linearizations. This step is completed very quickly.

V. CONCLUSION AND FUTURE WORK

This paper proposes a method for computing power flow
linearizations that are 1) adaptive to a specific system and
operating range of interest, as defined by a specified proba-
bility distribution for the active and reactive power injections,
and 2) optimal in the sense that they minimize the expected
linearization errors relative to the nonlinear power flow equa-
tions. These optimal adaptive linearizations are computed
using an approach based on Polynomial Chaos Expansion.
Linearizations constructed for several test cases demonstrate
the capabilities of this approach, such as expected linearization
errors that are up to approximately a factor of two smaller
than the errors resulting from a first-order Taylor expansion.
Additionally, the error bounds provided by the proposed
algorithm are validated using Monte Carlo sampling.

Our future work will improve the computational tractability
of the approach with respect to the number of uncertainty
sources (i.e. > 10). This may be achievable by characterizing
which higher-order components of the PCE expansions are
most relevant. We also plan to compare the performance of
the expected-error-minimizing linearizations with alternatives,
such as the adaptive linearizations proposed in [4, 9—11].
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4 9-bus 0.00 0.01 0.00 002 | 000 027 0.00 053] 004 08 0.05 1.68 0.81 225 125 428 3 <1

5 14-bus | 0.00 0.00 0.00 0.01 | 0.00 0.10 000 0.15 | 0.00 032 000 046 | 0.13 0.78 0.21 1.24 7 <1

24-bus | 0.00 001 0.00 0.03 | 0.00 032 000 078 | 0.01 1.07 002 258 094 278 158 657 25 <1
Radius = 10 % Radius = 50 % Radius = 90 % Radius = 140 %

%‘ IEEE PCE Taylor PCE Taylor PCE Taylor PCE Taylor Time (sec.)

S System Cavg Cmax Cavg €max Cavg €max Cavg €max Cavg €max Cavg €max Cavg ©€max Cavg €max PCE OPT

E 9-bus 0.00 010 0.00 015 | 001 244 001 375 | 022 804 034 1166 | 512 203 790 30.30 3 <1

5 14-bus | 0.00 0.00 0.00 0.00 | 0.00 0.08 000 012 | 0.00 0.28 0.01 036 | 023 067 036 098 8 <1

& 24-bus | 0.00 0.04 000 008 | 000 113 000 209 | 0.03 377 005 697 277 977 465 18.10 25 <1
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