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Abstract—By providing the optimal operating point that sat-
isfies both the power flow equations and engineering limits, the
optimal power flow (OPF) problem is central to the operation of
electric power systems. While extensive research efforts have fo-
cused on reliably computing high-quality OPF solutions, assessing
the feasibility of transitioning between operating points remains
challenging since the feasible spaces of OPF problems may
consist of multiple disconnected components. It is not possible
to transition between operating points in different disconnected
components without violating OPF constraints. To identify such
situations, this paper introduces an algorithm for certifying
the infeasibility of transitioning between two operating points
within an OPF feasible space. As an indication of potential
disconnectedness, the algorithm first seeks an infeasible point
on the line connecting a pair of feasible points. The algorithm
then certifies disconnectedness by using convex relaxation and
bound tightening techniques to show that all points on the plane
that is normal to this line are infeasible. Using this algorithm,
we provide the first certifications of disconnected feasible spaces
for a variety of OPF test cases.

I. INTRODUCTION

Optimal power flow (OPF) is a crucial problem in power
system operations. This problem seeks an optimal operating
point based on a specified objective while remaining within
a feasible space determined by the power flow equations and
inequality constraints including limits on voltage magnitudes,
line flows, and generator outputs. OPF feasible spaces are
nonconvex and may consist of multiple disconnected com-
ponents [1], making the OPF problem generally NP-hard [2]
with the potential for multiple local optima [3].

Since it was first formulated by Carpentier in 1962 [4]], a
wide variety of local optimization and approximation algo-
rithms have been applied to OPF problems [5[]-[7]]. Numerous
convex relaxation techniques have also been applied to OPF
problems to derive bounds on optimal objective values, certify
infeasibility, and in some cases, obtain globally optimal solu-
tions [7]]. The difficulty of an OPF problem is closely related
to the convexity characteristics of the feasible space. In this
context, many research efforts have studied the geometry of
the OPF feasible spaces, e.g., [1[I, [7]-[14].

The rapid growth in fluctuating renewable generation moti-
vates the need to manage increasingly frequent transitions be-
tween operating points in order to avoid significant constraint
violations (e.g., voltages and line flows exceeding limits).
There is limited literature on this topic, with prior work
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focusing on computing feasible paths between operating points
within non-convex OPF feasible spaces [15][17]. Using linear
power flow approximations, related work in [18], [19] seeks
the fewest control actions necessary to actuate a transition
between operating points. However, the failure of existing
algorithms to identify a feasible path does not guarantee that
no such path exists, i.e., they do not ensure that the initial and
target operating points are necessarily in different disconnected
components of the OPF feasible space.

In this context, we propose an algorithm which certifies that
the feasible space of an OPF problem is disconnected. This
algorithm and associated analysis contributes to the large lit-
erature on the characteristics of OPF feasible spaces (e.g., [1]],
[7]-[14]) and identifies when feasible path algorithms such
as [15]-[17] will necessarily fail. Moreover, certifying the
disconnectedness of an OPF feasible space helps system oper-
ators determine when constraint violations will be encountered
during an operating point transition, enabling the selection of
a different target operating point.

Our proposed algorithm leverages concepts from [[13]] which
identifies and characterizes non-convexities within OPF feasi-
ble spaces. The algorithm in [13]] searches for a pair of feasible
points connected by a line segment containing an infeasible
point. The existence of such points certifies the presence of a
non-convex region within an OPF problem’s feasible space,
but does not necessarily indicate that the feasible space is
disconnected. Note that the causes of non-convexities in OPF
feasible spaces are empirically investigated in [[12], with results
showing that non-convexities are often associated with binding
lower bounds on voltage magnitudes and reactive generation.

The algorithm proposed in this paper first uses the approach
in [13]] to identify two candidate operating points which may
be in different disconnected components of an OPF problem’s
feasible space due to the presence of an infeasible point
between them. Our algorithm then formulates an optimization
problem which augments the OPF constraints with a constraint
restricting its solution to a plane that is perpendicular to the
line connecting the two feasible points and passes through
the previously identified infeasible point. Infeasibility of this
optimization problem certifies that the OPF problem’s feasible
space is disconnected. To prove infeasibility, we relax this
optimization problem using the Quadratic Convex (QC) power
flow relaxation [20]—[23]] and apply optimization-based bound
tightening techniques [24]—[28]. To the best of our knowledge,
this is the first algorithm that can rigorously identify the
presence of disconnected components in OPF feasible spaces.
Our numerical results show that several challenging OPF test
cases have disconnected feasible spaces.

This paper is organized as follows. Section [lIf reviews the
OPF formulation. Section reviews the QC relaxation and



optimization-based bound tightening. Section [[V|describes the
proposed algorithm for determining the disconnectedness of
OPF feasible spaces. Section |V| empirically demonstrates this
algorithm. Section concludes the paper.

II. OPTIMAL POWER FLOW OVERVIEW

This section overviews the AC OPF problem. Consider an
n-bus system, where A" = {1,...,n}, G, and L are the sets of
buses, generators, and lines. Let Py ; + jQq; and Py ; + Qg
represent the active and reactive load demand and generation,
respectively, at bus i € N, where j = v/—1. Let gspi + jbsn.i
denote the shunt admittance at bus 4. Let V; and 6; represent
the voltage magnitude and angle at bus ¢ € N. For each
generator i € G, define a quadratic generation cost function
with coefficients ¢z ; > 0, ¢1 4, and cg ;. Denote 6;,,, = 6;—0,,.
Specified upper and lower limits are denoted by (=) and (),
respectively. Buses ¢ € A\G have generation limits set to zero.

Each line (I,m) € L is modeled as a II circuit with mutual
admittance g;,, + jb;», and shunt admittance jbgp . (Our
approach is applicable to more general line models, such the
MATPOWER [29] model that allows for off-nominal tap ratios
and non-zero phase shifts.) Let py,,, ¢, and 5, represent
the active and reactive power flows and the maximum apparent
power flow limit on the line that connects buses ! and m.

Using these definitions, the OPF problem is

min Z C2; (Pg7i)2 + cy1; Pg,i + Co; (1a)
i€G
subject to  (Vie N, YV (I,m) e L)
Pyi—Pai=gniVii+ D, pm+ Y, pmi, (1b)
(I,m)eLl (I,m)eLl
st l=1 s.t. m=1
Qi —Qai==bsniVP+ D @m+ Y, Gu, (10)
(I,m)eLl (I,m)el
eref =0, st 1= st m=i (1d)
P, < Pyi <Py (le)
an’ < Qi < Qi (1f)
Zi < Vz < Via (1g)
01 < Ot < Opms (1h)
Pim = Gim Vi — GimViVim €08 (Bm) — bim Vi Vi sin (61
Gim = — (bim + banim/2) V2 + b ViVim 08 (Opm) 7
— g ViV sin (0) , 1j
(plm)2 + (qlm)2 < (glm)Qv (1K)
(Pm)? + () < (5im)* - (11

The objective function (Td) minimizes the active power gen-
eration cost. Constraints (Ib) and enforce power balance
at each bus. Constraint (Id) sets the angle reference. Con-
straints (Te) limit the active and reactive power generation,
voltage magnitudes, and angle differences between connected
buses. Constraints (Ti)—(Tj) relate the voltage phasors and
power flows on each line, and (IK)—(TI) limit the apparent
power flows into both terminals of each line.

III. REVIEW OF THE QC RELAXATION AND
OPTIMIZATION-BASED BOUND TIGHTENING

We next review the QC relaxation [20] and optimization-
based bound tightening techniques [24]-[28]] that underlie our
proposed algorithm.

A. Formulation of the QC Relaxation

The QC relaxation convexifies the OPF problem (1) by
enclosing the non-convex terms within convex envelopes. The
QC relaxation defines new variables w;;, Wi, Cim, and s, for
the products of voltage magnitudes and the products of voltage
magnitudes and trignometric terms for connected buses, i.e.

ViVin cos(0in) and V,V,, sin(0;.,,):

wi; = V2, VieN, (2a)
Wim = ViV, V(l,m)eL, (2b)
Cim = Wi 08 (O1) , V(l,m)eL, (2¢)
Stm = Wy sin (Oy,) , V(l,m)e L. (2d)

For every (I,m) € L, these definitions imply the following
relationships among the variables wy;, iy, and sp,:

Clzm + Sl2m = W Wmm,, (3a)
Clm = Cml, (3b)
Sim = —Sml (3C)

Following [30], (3a) is relaxed to a convex second-order cone
constraint by replacing the equality with an inequality:

2 2
Cim, + Sim < WWmm - (4)

The QC relaxation encloses the squared and bilinear product
terms in convex envelopes, shown here as set-valued functions:

. 2
N T - T =x”,
T =<T: Sa
@ { {Eé T+z)r—Tz ©a)
Ty = xy + yr — zy,
Ty = Ty + Jxr — T,
R TR S (5b)
TY < zY + YT — 27,
Ty < Ty +yr — Ty

Here, T and Ty stand for “dummy” variables symbolizing their
respective sets. The envelope (z?)T" is the convex hull of the
square function. The McCormick envelope denoted as (xy)™
is the convex hull of a bilinear product [31].

The QC relaxation additionally uses convex envelopes
(sin (2))” and (cos (x)) for the trigonometric functions:

(sin(z))® =

S < cos(””m) ( - I;) +sin($m),
5,350 (e ) ().
S > Sm(i):;n(w) (x — ) +sin (z)if z > 0,
S < Sm(@i:;n@) (x — ) +sin (z)if T < 0.
- (6a)



1—cos(z™) 2
1- zm)2 )

c ¢ (6b)
| C
Here, ™ = max(|z|, |Z|). The variables S and C' are place-
holders for their respective sets. When —90° < z <7 < 90°,
bounds on the sine and cosine functions are as follows:

cos(g)—gos(f) (

VoA

r—x)+cos(x).

s = sin (z) < sin(z) < 3 = sin () ,

in (cos(z), cos(Z)) < cos(x)

., Jmax (cos(z), cos( )), if sign (z) =sign (T),
X C=
1, otherwise.

(7a)

(7b)

With a slight abuse of notation, the QC relaxation substitutes
the square, product, and trigonometric terms in (I) with the
variables w;;, Wim, Cim, and sy, in these envelopes as follows:

Z Coi (Pg,i)2 + c15 Py i + cos (8a)
i€G
subjectto  (Vie N, Y (I,m) e L)
Pg,i - Pd,i = Gsh,i Wi + Z Pim + Z Pmi, (8b)
(l,m)e[l (I,m)eLl
s.t. =1 s.t. m=1¢
Q Qd i = sh i Wig + Z qim + Z dml, (8C)
(, m)EL', (I,m)el
s.t. =1 s.t. m=1
(V)2 <wi < (V)3 3d)
Pim = gimWii — GimCim — birm Sim, (8e)
dim = — (blm + bsh7lm/2) Wi + blmclm — 9imSim, (8f)
wi; € (V2" (82)
Wi € ViV (8h)
c M .
Cim € <wlm <COS (alm)> > s (81)
. s\ M .
Sim € <wzm (sin (0im)) > ; (&)
Equations (Td)-(Th), (Tk)-(TD, @3B), Bc), @). (8k)

Note that the product terms in and (Ij) are addressed
in Bh)-(8j) through a recursive application of McCormick
envelopes (5b)—initially employed on the product of volt-
age magnitudes to derive wy,,, which is then extended to
encompass the product of wy,, and either {(cos (Glm)>c or
sin (Glm)>s. The optimization problem (8) is a second-order
cone program (SOCP), which is convex and can be solved
efficiently using commercial tools (e.g., Gurobi, Mosek, etc.).

Convex relaxations of the power flow equation have several
complementary advantages over applying local optimization
methods to the non-convex OPF problem [7]. In our
context, we leverage the fact that infeasibility of the QC
relaxation (8] is sufficient to ensure infeasibility of the original
non-convex OPF problem (I). In fact, convex relaxations are
the only approach capable of rigorously certifying infeasibility
of non-convex OPF problems.

B. Bound Tightening

The tightness of the QC relaxation is intricately linked to
the precision of the bounds established for voltage magnitudes,

Vi and V;, as well as angle differences, 6;,, and 6;m. The
values for these limits in the dataset are often much larger
than what is actually attainable considering the limitations
imposed by other constraints. In other words, some limits are
never binding. Leveraging this insight, algorithms focused on
enhancing bound accuracy provide tighter bounds that enhance
the quality of the QC relaxation [24]—[28]].

We employ the optimization-based bound tightening al-
gorithm introduced in [24]. This iterative approach involves
minimizing and maximizing each squared voltage magnitude
and angle difference variable while adhering to the constraints
of the QC relaxation. To illustrate, we next examine the upper
limit for the voltage magnitude at bus 1:

subject to

(BB)—(BK). (€))

The value wj; establlshes an upper limit on the maximum
attainable Value of (Vl) within the feasible space. If wi, is
less than (Vl) , then (@) yields a smaller value of +/w¥,,
serving as a tighter upper bound for V;, thereby tightening
the QC relaxation. As the act of tightening a bound on any
particular variable may improve the achievable bounds for
other variables, the bound tightening procedure follows an
iterative procedure until no further bounds can be refined.
Improving the variable bounds tightens the feasible space
of the relaxed OPF problem such that the relaxation is capable
of certifying infeasibility for a broader set of OPF problems.
Importantly, since the QC relaxation constraints enforced in (9)
admit all feasible points for , note that the tightened bounds
will never cut off portions of the original non-convex OPF
problem’s feasible space. Thus, infeasibility of the bound-
tightened QC relaxation still ensures infeasibility of the orig-
inal non-convex OPF problem (I)). As described in the next
section, we leverage this in our algorithm for certifying the
presence of disconnected components in OPF feasible spaces.

wi, = max  wiy

IV. AN ALGORITHM FOR CERTIFYING
DISCONNECTEDNESS OF AN OPF FEASIBLE SPACE

This section presents our algorithm for certifying the pres-
ence of disconnected components in the feasible space of OPF
problems. We first summarize our prior method from [13]
which identifies a pair of feasible operating points which have
an infeasible point in between. We then describe our proposed
algorithm for using these points to certify disconnectedness.

A. Identifying Non-Convexities in OPF Feasible Spaces

To identify two feasible operating points with an infeasible
point in between, we rely on the concept of convexity. A
feasible space is convex if and only if it includes all points
along the line segments that connect every pair of feasible
points. In this context, we utilize the algorithm developed
in [13]] to locate an infeasible point, denoted as point C, on
the line connecting two feasible points, denoted as points A
and B, within the feasible space of the OPF problem. Fig. [I|
provides illustrative examples of convexity characteristics for
both convex and non-convex sets.

In the domain of active power generation and voltage
magnitudes, any point on the line segment connecting points



Figure 1. Demonstrative instances showcasing convex and non-convex
feasible regions. For the region on the left, all points along the line segment
between feasible points A and B are feasible. This is true for all possible
pairs of feasible points. In contrast, for the region on the right, the infeasible
point C' is on the line between points A and B. The presence of points A,
B, and C confirms that the region on the right is non-convex.

A and B has active power generation at non-slack generator
buses described by the expression )\P;‘ + (1= X\)PP, where
A is a scalar value in the range [0,1]. Similarly, the generator
bus voltage magnitudes along this segment are characterized
by A\VA + (1 — \)VB. To identify non-convexity, the method
in [13]] seeks values for RA, PE, VA VB, and ) such that:
o There exist power flow solutions corresponding to
PA VA and PP VB that are feasible for the OPF

constraints (TB)—(TI).

« All power flow solutions that correspond to the point
P = AP+ (1= NPP, VC = \VA + (1 - N)VE
are infeasible for the OPF constraints (TB)—(TI).

The method in [[13]] uses local optimization solvers to seek
such points A, B, and C for a given OPF problem.

B. Proposed Algorithm for Certifying Disconnectedness

If the method from [13] succeeds, the resulting points A,
B, and C identify a non-convexity in the OPF feasible space.
Since a disconnected region is necessarily non-convex, the
points A, B, and C' may (but do not necessarily) indicate
disconnectedness. To certify disconnectedness, we seek to
further show that the feasible points A and B are separated by
a hyperplane on which all points are infeasible with respect to
the OPF constraints (Tb)—(TI). Since all feasible paths between
points A and B must pass through this hyperplane, no feasible
path exists and the points A and B thus belong to different
disconnected components of the OPF feasible space.

While any separating hyperplane would suffice, we leverage
knowledge regarding the infeasibility of point C' by selecting
the hyperplane perpendicular to the line segment between
points A and B that passes through point C. This ensures
that at least one point on the hyperplane is infeasible. Note
that our numerical results in Section [V] also consider various
rotations when the hyperplane that is perpendicular to the line
between points A and B fails to certify disconnectedness.

To certify infeasibility for all points on the hyperplane,
we formulate a feasibility problem consisting of the OPF
problem’s constraints (Tb)—(TI) augmented with an additional
constraint corresponding to the hyperplane. We then apply
the QC relaxation to the constraints (Tb)—(TI) as described in
Section [[I[=Al to obtain the set of constraints
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(a) A projection of the OPF feasible space for the
cyclic three-bus test case in [12]. The proposed
algorithm certifies the feasible space as being
disconnected.
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(b) A projection of the OPF feasible space for the
acyclic three-bus test case in [12]. The OPF feasible
space is non-convex but connected. The proposed
algorithm does not certify disconnectedness.

Figure 2. Illustrative examples of applying the proposed algorithm to two
test cases from [12]. The OPF feasible spaces, which are computed using
the method in [1]], are shown in gray. The pink regions correspond to the QC
relaxation’s feasible spaces (without bound tightening). The method from [13]]
identifies non-convexities in both feasible spaces via the feasible points A
and B along with the infeasible point C' on the line connecting points A
and B. The yellow hyperplane is normal to the line connecting points A and
B and passes through point C'. Applying bound tightening to certifies
infeasibility of all points on the yellow hyperplane in Fig. and thus
this feasible space is disconnected. Conversely, the OPF problem’s feasible
space intersects the yellow hyperplane in Fig. @ and thus (I0) is feasible.
Accordingly, the proposed algorithm does not indicate disconnectedness of
this OPF feasible space.

where n is the vector for the line between points A and B, i.e.,

PA—PpB
n = v A)92 B (‘i By2 > and w denotes the vector consisting

of w;; for all i € G corresponding to the squared voltage
magnitudes at each generator bus. Since the restriction to the
hyperplane is a linear constraint, (I0) is an SOCP.
Infeasibility of (T0) guarantees that all points on the hyper-
plane are infeasible. Applying bound tightening techniques, as
described in Section [[I[-B] identifies cases where the relaxed
formulation (T0) is infeasible, thus certifying the disconnected-
ness for the corresponding OPF feasible spaces. Conversely, if
applying bound tightening to (I0) does not prove infeasibility,
then the test for disconnectedness is indeterminate. Rotating
the hyperplane in (I0) may help certify infeasibility in such
cases, as shown numerically in Section M via ad hoc rotations.
To illustrate the proposed algorithm, Fig. 2] visualizes results
from two three-bus test cases from [12]]. In Fig. @ the
proposed algorithm certifies that the OPF feasible space is
disconnected via infeasibility of (I0) for the yellow hyper-



plane, after bound tightening. Conversely, the OPF feasible
space in Fig. [2b] is non-convex but connected. Accordingly,
the proposed algorithm does not certify disconnectedness since
the yellow plane passes through the OPF feasible space, and
thus (TO) is feasible.

Fig. [3] shows another example using the nine-bus system
from [3|] which has a feasible space with three disconnected
components. The method from [13]] identifies points A and
B as feasible with the infeasible point C' on the connecting
line segment. In this example, the normal hyperplane at point
C, shown in yellow, does not certify disconnectedness as
it passes through the third disconnected component of the
feasible space in the lower-left corner of the figure. Conversely,
applying bound tightening using the green hyperplane, which
rotates the yellow hyperplane by 45° around the P, axis, does
certify disconnectedness of the feasible space. This particular
rotation was identified via trial and error. Future work includes
developing systematic methods for adjusting the angles of
candidate separating hvnernlanes.
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Figure 3. Feasible space projection for the nine-bus test system from [3].
Although the OPF problem’s feasible space shown by the gray regions is
disconnected, the proposed algorithm fails to certify disconnectedness since
the yellow plane that is normal to the line segment between point A and B
passes through the component of the feasible space in the lower-left corner
of the figure. Conversely, applying bound tightening to the green hyperplane
which is rotated by 45° around the P» axis certifies disconnectedness.

V. NUMERICAL RESULTS

This section summarizes numerical results from applying
our proposed algorithm to various challenging OPF test cases
from [3], [12], [32]. These numerical studies were performed
on a computer with a 3.3 GHz Intel Core i7 processor and
16 GB of RAM. The proposed algorithm is implemented in
MATLAB using YALMIP [33]] and solved using MOSEK.

Table [[] shows selected results obtained by applying the
proposed algorithm to different test cases. The proposed
algorithm identifies disconnectedness for several test cases,
ranging from very small to mid-size systems. For the small
cases, visualizing the feasible spaces as in [12] (see Figs. [2a]
and [3] for two examples) corroborates the disconnectedness
certificates from our proposed algorithm. For the test cases
in Table [} the voltage phasors for the feasible points which
belong to different disconnected components of the feasible
space are given in the appendix. We note that these test cases
are known to challenge OPF solution algorithms, with many

Table 1
RESULTS FOR CHECKING THE FEASIBILITY OF TRANSITIONING BETWEEN
DIFFERENT POINTS IN VARIOUS TEST CASES.

Test Rotation Disconnected

Cases Angles Feasible Space
Cyclic 3-bus [12] (0°,0°,0°) Yes
5-bus [12] (0°,0°,0°) Yes
5-bus 3] (0°,0°,0°) Yes
9-bus [3] (0°,45°,0°) Yes
14-bus-sad [32] (0°,0°,0°) Yes
30-bus-ieee [32] (0°,0°,0°) Yes
118-bus-api 3] (0°,0°,0°) Yes

relaxations of these problems yielding large relaxation gaps
and/or local solvers finding suboptimal local solutions. This
is consistent with our expectation that OPF algorithms often
struggle with problems that have disconnected feasible spaces.

For other test cases, the proposed algorithm returned an
indeterminate result, i.e., did not certify disconnectedness of
the OPF feasible spaces. We note that this does not necessarily
indicate that the feasible spaces for these problems are con-
nected. Different combinations of points A, B, and C and/or
different angular orientations of the candidate separating hy-
perplanes may potentially be able to certify disconnectedness,
as our condition is sufficient but not necessary. The proposed
algorithm does not certify disconnectedness for many of the
PGLib test cases, particularly mid-size networks such as the
“57-bus-ieee” and “118-bus-api” systems. This indeterminate
result means that it is unclear whether the feasible spaces for
these problems are connected.

Lastly, we discuss the computational aspects of the proposed
algorithm. The most computationally demanding step is the
application of optimization-based bound tightening to certify
infeasibility of (I0). However, for all the OPF problems we
tested, the bound tightening step was not computationally
intensive relative to typical bound tightening applications such
as global solution methods for OPF problems [24]-[28]]. In
our algorithm, the bound tightening step only requires a few
iterations to either certify infeasibility of transitioning between
the candidate operating points or terminate without certifying
infeasibility. For example, the algorithm certifies the discon-
nectedness for the “118-bus-api” test case in approximately
six minutes, whereas traditional optimization-based bound
tightening methods applied in global OPF solvers typically
require substantially longer runtimes, often on the order of
hours, for large systems of this size. For smaller systems, such
as the “5-bus” or “9-bus” test cases in Table[l] the certification
is obtained within only a few seconds. Moreover, the com-
putation time can be further reduced through parallelization,
making the algorithm practical for both small- and large-scale
OPF problems.

VI. CONCLUSION

This paper introduces an algorithm for certifying the pres-
ence of disconnected components in the feasible spaces of OPF
problems. The proposed algorithm first applies the method
from [|13] to identify a candidate pair of points which may be
in disconnected components of the feasible space due to the



Table 11
VOLTAGES FOR POINTS A AND B FOR THE 3-BUS TEST SYSTEM IN [12].

[ [ Point A [
1 0.8962 - 0.0919i
2 | 0.9040 + 0.00001
3 1.0282 + 0.0888i

Point B |
0.8846 - 0.16601
0.9996 + 0.00001
0.9278 - 0.07401

Table III
CORRESPONDING VOLTAGES FOR POINTS A AND B FOR THE 5-BUS TEST
SYSTEM IN [[12]].

[ Bus | Point A [

1 0.9184 - 0.1354i
0.9030 - 0.1643i
0.9878 + 0.0000i
0.9040 - 0.1524i
1.0495 + 0.27001

Point B |

0.8463 - 0.3785i1
0.8436 - 0.40491
1.0878 + 0.00001
0.8370 - 0.39401
0.9428 - 0.2943i

(91 =N OS] I )

presence of an infeasible point between them. Our algorithm
then uses the QC relaxation and bound tightening techniques
in an attempt to certify that all points on a candidate separating
hyperplane are infeasible for the OPF problem’s constraints.
In that case, the candidate pair of points indeed belong
to different disconnected components of the OPF problem’s
feasible space and thus no feasible path exists between them.
Otherwise, the disconnectedness is indeterminate. Numerical
results illustrate the algorithm’s ability to certify that a range
of OPF test cases have disconnected feasible spaces.

To the best of our knowledge, this is the first algorithm capa-
ble of rigorously certifying disconnectedness for an OPF fea-
sible space. Characterizing whether OPF feasible space non-
convexities are associated with disconnected components is
key to better understanding the challenges encountered by OPF
solution algorithms and also helps inform system operators
when it is not possible to maintain OPF constraint feasibility
while transitioning between pairs of operating points.

Our future work aims to develop systematic methods for se-
lecting the angular rotation of the candidate separating hyper-
plane. While perpendicular orientations to the line connecting
the pair of feasible points works well for many test cases, we
also have examples where alternate orientations are necessary
to certify disconnectedness. Additionally, we aim to combine
the algorithm in this paper with recently developed feasible
path algorithms [15[], [I7] to more extensively study OPF
problems where feasible paths cannot be identified and thus
better characterize non-convexities in OPF feasible spaces.

APPENDIX

Tables II-VIII provide the voltage phasors for points A and
B which our proposed algorithm identifies as belonging to
different disconnected components of the corresponding OPF
problems’ feasible spaces.
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