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Abstract—AC optimal power flow (AC OPF) is a challenging
non-convex optimization problem that plays a crucial role in
power system operation and control. Recently developed convex
relaxation techniques provide new insights regarding the global
optimality of AC OPF solutions. The quadratic convex (QC)
relaxation is one promising approach that constructs convex
envelopes around the trigonometric and product terms in the
polar representation of the power flow equations. This paper
proposes two methods for tightening the QC relaxation. The
first method introduces new variables that represent the voltage
magnitude differences between connected buses. Using “bound
tightening” techniques, the bounds on the voltage magnitude
difference variables can be significantly smaller than the bounds
on the voltage magnitudes themselves, so constraints based
on voltage magnitude differences can tighten the relaxation.
Second, rather than a potentially weaker “nested McCormick”
formulation, this paper applies “Meyer and Floudas” envelopes
that yield the convex hull of the trilinear monomials formed by
the product of the voltage magnitudes and trignometric terms
in the polar form of the power flow equations. Comparison to a
state-of-the-art QC implementation demonstrates the advantages
of these improvements via smaller optimality gaps.

I. INTRODUCTION

The optimal power flow (OPF) problem seeks an operating
point that optimizes a specified objective subject to constraints
from the network physics and engineering limits. Using the
nonlinear AC power flow model to accurately represent the
power flow physics results in the AC OPF problem, which
is non-convex, may have multiple local optima [1], and is
generally NP-Hard [2], [3]. A wide variety of algorithms have
been applied in order to find locally optimal solutions [4], [5].

Many recent research efforts have developed convex relax-
ations of OPF problems to obtain bounds on the optimal ob-
jective values, certify infeasibility, and, in some cases, achieve
globally optimal solutions. Solutions from a relaxation are
also useful for initializing certain local solution techniques [6].
Convex relaxations are under active development with ongo-
ing efforts aiming to improve the relaxations’ computational
tractability and tightness. Recent work is surveyed in [7].

The quadratic convex (QC) relaxation [8] is one promising
approach that uses convex envelopes around the trigonometric
functions, squared terms, and bilinear products in the polar
form of the power flow equations. The tightness of the QC
relaxation depends on the size of the bounds on the voltage
magnitude and angle difference variables. Therefore, bound
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tightening techniques, which use convex relaxations to infer
tighter bounds than those initially specified in the OPF prob-
lem data, can improve the QC relaxation’s tightness [9]–[12].
Several enhancements have also been proposed to tighten the
QC and other relaxations, including Lifted Nonlinear Cuts [9],
[13] that exploit voltage magnitude and angle difference
bounds; tighter trigonometric envelopes [9], [14] that leverage
sign-definite angle difference bounds, which can sometimes
be obtained via bound tightening; and a variety of valid
inequalities, convex envelopes, and cutting planes [11], [12].

This paper proposes two additional improvements for tight-
ening the QC relaxation. The first is based on the observation
that adding redundant constraints to a non-convex optimization
problem can tighten a relaxation [15]. One approach for
constructing appropriate constraints is to change coordinate
systems. We derive constraints based on a coordinate change
using voltage magnitude differences in addition to the voltage
magnitudes themselves. Bound tightening techniques are often
more effective for variables representing voltage magnitude
differences, thus resulting in tighter constraints.

The second improvement is related to the trilinear mono-
mials formed by the product of the voltage magnitudes and
the trigonometric functions in the polar representation of the
power flow equations. Previous formulations of the QC relax-
ation [8], [9] treat these monomials with recursive application
of McCormick envelopes [16]. While McCormick envelopes
form the convex hull of bilinear monomials, recursive appli-
cation of McCormick envelopes does not necessarily yield the
convex hulls of trilinear monomials. We apply the potentially
tighter envelopes developed by Meyer and Floudas [17], [18],
which form the convex hulls of trilinear monomials.

This paper is organized as follows. Section II overviews the
OPF problem. Section III reviews the QC relaxation of the
OPF problem. Sections IV and V formulate our proposed im-
provements. Section VI evaluates the proposed improvements
on various test cases. Section VII concludes the paper.

II. OVERVIEW OF OPTIMAL POWER FLOW PROBLEM

This section overviews the AC OPF problem. Consider an
n-bus system, where N “ t1, . . . , nu, G, and L are the sets
of buses, generators, and lines. Let P d

i ` jQd
i and P g

i ` jQg
i

represent the active and reactive load demand and generation,
respectively, at bus i P N , where j “

?
´1. Let gsh,i ` jbsh,i

denote the shunt admittance at bus i. Let Vi and θi represent
the voltage magnitude and angle at bus i P N . For each
generator i P G, define a quadratic generation cost function
with coefficients c2,i ě 0, c1,i, and c0,i. Denote θlm “ θl´θm.
Specified upper and lower limits are denoted by p ¨ q and p ¨ q,
respectively. Buses i P N zG have generation limits set to zero.



Each line pl,mq P L is modeled as a Π circuit with mutual
admittance glm ` jblm and shunt admittance jbsh,lm. (Our
approach is applicable to more general line models, such the
MATPOWER [19] model that allows for off-nominal tap ratios
and non-zero phase shifts.) Let Plm, Qlm, and Slm represent
the active and reactive power flows and the maximum apparent
power flow limit on the line that connects buses l and m.

Using these definitions, the OPF problem is

min
ÿ

iPG
c2i pP

g
i q

2
` c1i P

g
i ` c0i (1a)

subject to p@i P N , @ pl,mq P Lq
P g
i ´ P

d
i “ gsh,i V

2
i `

ÿ

pl,mqPL
s.t. l“i

Plm `
ÿ

pl,mqPL
s.t. m“i

Pml, (1b)

Qg
i ´Q

d
i “ ´bsh,i V

2
i `

ÿ

pl,mqPL
s.t. l“i

Qlm `
ÿ

pl,mqPL
s.t. m“i

Qml, (1c)

θref “ 0, (1d)

P g
i ď P g

i ď P
g

i , (1e)

Qg

i
ď Qg

i ď Q
g

i , (1f)

V i ď Vi ď V i, (1g)

θlm ď θlm ď θlm, (1h)

Plm “ glmV
2
l ´ glmVlVm cos pθlmq ´ blmVlVm sin pθlmq ,

(1i)
Qlm “ ´pblm ` bsh,lm{2qV

2
l ` blmVlVm cos pθlmq

´ glmVlVm sin pθlmq , (1j)

pPlmq
2
` pQlmq

2
ď
`

Slm

˘2
, (1k)

pPmlq
2
` pQmlq

2
ď
`

Slm

˘2
. (1l)

The objective function (1a) minimizes the active power gen-
eration cost. Constraints (1b) and (1c) enforce power bal-
ance at each bus. Constraint (1d) sets the angle reference.
Constraints (1e)–(1h) limit the active and reactive power
generation, voltage magnitudes, and angle differences between
connected buses. Constraints (1i)–(1j) relate the voltage pha-
sors and power flows on each line, and (1k)–(1l) limit the
apparent power flows into both terminals of each line.

III. REVIEW OF THE QC RELAXATION

A. Formulation of the QC Relaxation

The QC relaxation is formed by defining new variables wii,
wlm, clm, and slm for the products of voltage magnitudes and
the trilinear monomials representing the products of voltage
magnitudes and trignometric functions for connected buses:

wii “ V 2
i , @i P N , (2a)

wlm “ VlVm, @ pl,mq P L, (2b)
clm “ wlm cos pθlmq , @ pl,mq P L, (2c)
slm “ wlm sin pθlmq , @ pl,mq P L. (2d)

For each line pl,mq P L, these definitions imply the following
relationships between the variables wll, clm, and slm:

c2lm ` s
2
lm “ wllwmm, (3a)

clm “ cml, (3b)

slm “ ´sml (3c)

The QC relaxation is formulated by enclosing the squared
and bilinear product terms in convex envelopes, here repre-
sented as set-valued functions:

xx2yT “

#

qx :

#

x̌ ě x2,

qx ď px` xqx´ xx.
(4a)

xxyyM “

$

’

’

’

&

’

’

’

%

|xy :

$

’

’

’

&

’

’

’

%

|xy ě xy ` yx´ xy,

|xy ě xy ` yx´ xy,

|xy ď xy ` yx´ xy,

|xy ď xy ` yx´ xy.

(4b)

where qx and |xy are “dummy” variables representing the
corresponding set. The envelope xx2yT is the convex hull
of the square function. The so-called “McCormick envelope”
xxyyM is the convex hull of a bilinear product [16].

The QC relaxation also formulates convex envelopes
xsin pxqy

S and xcos pxqy
C for the trigonometric functions:

xsinpxqy
S
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’
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qS ď cos
`

xm

2

˘ `

x´ xm

2

˘

` sin
`

xm

2

˘

,
qS ě cos

`

xm

2

˘ `

x` xm

2

˘

´ sin
`

xm

2

˘

,
qS ě sinpxq´sinpxq

x´x px´ xq ` sin pxq if x ě 0,

qS ď sinpxq´sinpxq
x´x px´ xq ` sin pxq if x ď 0.

(5a)

xcospxqy
C
“

#

qC :

#

qC ď 1´ 1´cospxm
q

pxmq2
x2,

qC ě cospxq´cospxq
x´x px´ xq ` cos pxq .

(5b)

where xm “ maxp|x| , |x|q. The dummy variables Š and Č
again represent the corresponding set. For ´90˝ ă x ă x ă
90˝, bounds on the sine and cosine functions are

s “ sin pxq ď sinpxq ď s “ sin pxq , (6a)
c “ min pcospxq, cospxqq ď cospxq

ď c“

#

max pcospxq, cospxqq , if sign pxq“sign pxq ,

1, otherwise. (6b)

Slightly abusing notation, the QC relaxation is formed by
replacing the square, product, and trigonometric terms in (1)
with the variables wii, wlm, clm, and slm in these envelopes:

min
ÿ

iPG
c2i pP

g
i q

2
` c1i P

g
i ` c0i (7a)

subject to p@i P N , @ pl,mq P Lq
P g
i ´ P

d
i “ gsh,i wii `

ÿ

pl,mqPL
s.t. l“i

Plm `
ÿ

pl,mqPL
s.t. m“i

Pml, (7b)

Qg
i ´Q

d
i “ ´bsh,i wii `

ÿ

pl,mqPL
s.t. l“i

Qlm `
ÿ

pl,mqPL
s.t. m“i

Qml, (7c)

pV iq
2 ď wii ď pV iq

2, (7d)
Plm “ glmwll ´ glmclm ´ blmslm, (7e)



Qlm “ ´pblm ` bsh,lm{2qwii ` blmclm ´ glmslm, (7f)

wii P
@

V 2
i

DT
, (7g)

wlm P xVlVmy
M
, (7h)

clm P
A

wlm xcos pθlmqy
C
EM

, (7i)

slm P
A

wlm xsin pθlmqy
S
EM

, (7j)

c2lm ` s
2
lm ď wll wmm (7k)

Equations (1d)–(1h), (1k)–(1l), (3b), (3c). (7l)

Note that the non-convex constraint (3a) is relaxed to (7k) us-
ing a less-stringent rotated second-order cone constraint [20].
Also note that the trilinear terms in (1i) and (1j) are ad-
dressed in (7h)–(7j) by recursively applying McCormick en-
velopes (4b) (i.e., first applying (4b) to the product of voltage
magnitudes to obtain wlm and then to the product of wlm and
xcos pθlmqy

C or xsin pθlmqy
S).

The optimization problem (7) is a second-order cone pro-
gram (SOCP), which is convex and can be solved efficiently
using commercial tools (e.g., CPLEX, Gurobi, and Mosek).

B. Bound Tightening and Other Improvements

The tightness of the QC relaxation strongly depends on
the accuracy of the bounds on voltage magnitudes, V i, V i,
and angle differences, θlm, θlm. The values specified in the
dataset for these bounds may be significantly larger than
the values that are actually achievable due to the restrictions
imposed by other constraints. In other words, certain bounds
may never be binding. Exploiting this observation, bound
tightening algorithms yield tighter bounds that improve the
QC relaxation [9]–[12].

We apply the optimization-based bound tightening algo-
rithm in [9], which iteratively minimizes and maximizes each
voltage magnitude and angle difference variable subject to the
QC relaxation’s constraints. For instance, consider the upper
bound on the voltage magnitude at bus 1:

w˚11 “ max w11 subject to (7b)–(7l). (8)

The value w˚11 upper bounds the maximum achievable value
of pV1q

2 within the feasible space. If w˚11 ă
`

V 1

˘2
, then (8)

provides a smaller value of
a

w˚11 for the upper bound on V1,
which tightens the QC relaxation. Since tightening the bound
on any variable may improve the achievable bounds on other
variables, the bound tightening algorithm proceeds iteratively
until no further bounds can be tightened. Optimization-based
bound tightening algorithms, e.g., [9], [11], [12], are typically
slower than analytical methods [10] but provide tighter bounds.

Previous literature proposes a variety of other improvements
to the QC relaxation. To form a benchmark for comparing our
improvements, we augment (7) with quadratic envelopes for
the trigonometric terms [14], arctangent envelopes [12], and
lifted nonlinear cuts (LNC) [9], [13].

IV. VOLTAGE MAGNITUDE DIFFERENCE CONSTRAINTS

As discussed in Section III-B, the QC relaxation’s tight-
ness strongly depends on having accurate bounds on voltage
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Figure 1. A projection of the feasible space for the “case6_c” [22] test system.

magnitudes and angle differences. While bound tightening
techniques are often successful in reducing the range of the
phase angle differences, tightening the voltage magnitudes
can be more challenging since OPF feasible spaces typically
contain points for which the voltage magnitudes are both
near the top and near the bottom of their allowed ranges.
The bound tightening algorithms are therefore often unable
to significantly improve the voltage magnitude bounds.

However, there is usually an exploitable correlation between
the voltage magnitudes at neighboring buses. While the voltage
magnitudes at a pair of neighboring buses may be near their
upper limits or near their lower limits, typical problems with
limited reactive power injection capabilities require that these
voltage magnitudes must be close to each other. This suggests
that “box constraints” on the voltage magnitudes (1g) are not
a good match to the voltage magnitude variation exhibited in
typical OPF feasible spaces.

As an illustrative example, Figure 1 shows a projection of
the feasible space, generated using the approach in [21], for
the six-bus system “case6_c” [22] in terms of certain voltage
magnitudes. The ranges of the voltage magnitude variations
after implementing a bound tightening approach are shown
by the dashed lines. The best achievable voltage magnitude
bounds are only 17.0% tighter than the originally specified
bounds for this case. In contrast, as shown in Figure 1, the
difference in voltage magnitudes between neighboring buses
can be significantly tighter (e.g., 80.5% tighter for the example
in Figure 1).

To exploit this observation, we derive new constraints by
representing the decision variables in an alternate coordinate
system. Let Ainc P R|L|ˆ|N | denote the network incidence
matrix, which has rows corresponding to the lines pl,mq P L
with `1 in the ith entry and -1 in the kth entry. Define V ∆ P

R|L| as the vector of voltage differences between neighboring
buses, V ∆ “ AincV (i.e., V ∆

lm “ Vl ´ Vm). Rewriting the
voltage magnitude products VlVm using V ∆ yields

Vl Vm “
´

V 2
l ` V

2
m ´

`

V ∆
lm

˘2
¯

{ 2. (9)

Applying the envelopes in (4a) for each term in (9) gives

wlm “
`

wll ` wmm ´W
∆
lm

˘

{ 2, (10a)

W∆
lm P

A

`

V ∆
lm

˘2
ET

. (10b)



A valid inequality is also formed by expanding pVl ´ Vmq
2:

`

V ∆
lm

˘2
ď V 2

l ´ 2Vl Vm ` V
2
m. (11)

Relaxing (11) using (4) yields
`

V ∆
lm

˘2
ď wll ´ 2wlm ` wmm. (12)

Note that it is not necessary to use a convex envelope on the
term V ∆

lm since (12) is already an SOCP constraint.
Finally, we leverage the relaxation proposed in [23], which

is derived by taking linear combinations of the non-linear
expressions for the active and reactive line flow expressions.
Specifically, the following constraint from [23] couples the
voltage magnitude differences and the power flows:

V 2
l ´ V

2
m “

˜

glm pPlm ´ Pmlq ´ blm pQlm ´Qmlq

g2
lm ` b

2
lm ` blm

bsh,lm

2

¸

.

(13)

Factoring the left hand side of (13) yields V 2
l ´ V 2

m “

V ∆
lm pVl ` Vmq. Relaxing this expression yields

wll ´ wmm “ Ŵlm,l ` Ŵlm,m

“

˜

glm pPlm ´ Pmlq ´ blm pQlm ´Qmlq

g2
lm ` b

2
lm ` blm

bsh,lm

2

¸

, (14a)

Ŵlm,l P
@

V ∆
lm Vl

DM
, (14b)

Ŵlm,m P
@

V ∆
lm Vm

DM
. (14c)

Observe that (14a) describes two constraints.
Our proposed improvement based on voltage magnitude dif-

ferences augments the QC relaxation (7) with constraints (10),
(12), and (14). The main advantage of these constraints is the
quality of the achievable bounds on the voltage magnitude
differences V ∆

lm. These bounds are computed by extending
the bound tightening techniques described in Section III-B to
directly consider to the variables V ∆

lm. This requires initially
specified bounds on V ∆

lm, which are derived from the bounds
on the voltage magnitudes, V l, V l, V m, and V m:

V l ´ V m ď V ∆
lm ď V l ´ V m. (15)

After applying bound tightening to the voltage magnitudes,
voltage angle differences, and voltage magnitude differences,
bounds on the remaining variables (Wlm, Ŵlm,l, and Ŵlm,m)
are derived by straightforward manipulations of the bounds on
voltage magnitudes and voltage magnitude differences.

V. TRILINEAR ENVELOPES

Previous formulations of the QC relaxation recursively
apply McCormick envelopes (4b) to represent the trilinear
products formed by the voltage magnitudes and trigonometric
terms. However, this approach rarely results in the convex
hull of the trilinear products [17]. The Meyer and Floudas
envelopes [17], [18] form the convex hulls of trilinear products
whose variables range in a box. These envelopes thus provide
a mechanism for strengthening the QC relaxation.

Due to the signs of the variables (i.e., positive voltage
magnitudes and cosine terms, sign-indefinite sine terms), only

certain facets of these envelopes are applicable to the QC
relaxation. The appendix provides equations for these facets.

VI. NUMERICAL RESULTS

This section demonstrates the proposed improvements using
test cases from the NESTA 0.7.0 archive [22] and four cases
“nmwc14”, “nmwc24,” “nmwc57,” and “nmwc118” from [24].
With large optimality gaps between the objective values from
the best known local optima and the lower bounds from
various relaxations, these test cases challenge a variety of
solution algorithms and are therefore suitable for our purposes.

The implementation uses MATLAB 2013a, YALMIP
2016.09.30 [25], Mosek 8.0.0.42, and a laptop computer with
an i5 3.20 GHz processor and 8 GB of RAM.

Table I details the results for selected test cases. The first
column indicates the test case. The second column provides
the objective value from MATPOWER [19]. The next group
of columns presents the optimality gaps corresponding to the
solution of a QC relaxation variant relative to the local solution
from MATPOWER. The optimality gap is

Optimality gap “
ˆ

Local solution´ QC bound
QC bound

˙

. (16)

For many applications, such as branching algorithms that com-
pute global optima [11]–[13], mixed-integer problems [14],
[26], and certain bi-level problems [27], the optimality gap
is of primary importance. We therefore use the optimality
gap to measure the relaxations’ tightness.1 The final group of
columns in Table I provides the solution times, listing both the
bound tightening time and the QC relaxation’s execution time.
Note that the bounds were tightened using the corresponding
variant of the QC relaxation in the computations. For typo-
graphical purposes, Table I uses several abbreviations: “All
Constraints” (All Cons.), “without” (w/o), “Meyer and Floudas
Envelopes” (MF), “Voltage Magnitude Difference constraints”
(∆), and “Bound Tightening” (BT).

The results indicate that bound tightening has a sub-
stantial impact on the optimality gaps for all variants of
the QC relaxation. For instance, comparing the third and
seventh columns in Table I reveals that applying bound
tightening reduces the gaps for “nesta_case30_fsr__api” and
“nesta_case118_ieee__api” cases by 77.91% and 58.43%,
respectively. The reinforces the fact that the accuracy of the
QC relaxation strongly depends on the tightness of the bounds.

Comparing the fourth and seventh columns with the
third column demonstrates the impact of the Meyer and
Floudas envelopes and voltage difference constraints, both
individually and jointly. For instance, the optimality gap for
“nesta_case118_ieee__api” without applying these constraints
was 22.07% while applying the Meyer and Floudas envelopes
and the voltage difference constraints reduces the gap to

1Note that the optimality gap depends on both the lower bound from the
relaxation and the upper bound from a local solution. Thus, non-zero gaps
may be partially due to a suboptimal local solution. However, the same local
optima are used to compute the optimality gap for each relaxation, and the
gaps can therefore be consistently compared among various relaxations for
each test case.



19.08% and 21.29%, respectively. Applying both at the same
time reduces the gap to 18.34%, revealing that the Meyer
and Floudas envelopes are the larger contributor to the im-
provement for this test case. Similar results are obtained
for “nesta_case30_fsr__api”. Without the Meyer and Floudas
envelopes and the voltage difference constraints, the gap is
5.73%. Applying these improvements reduces the gap by
1.0% and 0.25%, respectively. For most of the case studies
in Table I, the Meyer and Floudas envelopes are responsible
for more of the improvement than the voltage difference
constraints. However, there are cases where the opposite is
true, such as “nmwc118”, “nmwc57”, and “nmwc14”. For
these cases, the voltage difference constraints outperformed
the Meyer and Floudas envelopes in reducing the optimality
gap, by up to 5.88% in the case of “nmwc118”.

The results suggest that the Meyer and Floudas en-
velopes and the voltage difference constraints are most
effective when applied in combination with a bound
tightening algorithm. However, there are cases, such as
“nesta_case73_ieee_rts__api” and “nesta_case29_edin__sad”
where the proposed improvements have significant impact
even without bound tightening (4.7% and 8.27% reductions,
respectively). Note that the Meyer and Floudas envelopes
play a more important role in both cases. For instance, they
reduce the optimality gap for “nesta_case29_edin__sad” by
almost 8.25%, whereas the voltage difference constraints only
reduce the gap by 0.01%. This matches the intuition that the
voltage magnitude difference constraints strongly depend on
tight bounds on V ∆

lm.
Several comparisons underscore the contributions of differ-

ent improvements to a basic QC relaxation (with no previ-
ous or proposed improvements, i.e., without applying bound
tightening, the approaches proposed in this paper, or those
in [9], [11]–[14]). Separately adding different improvements
to the basic QC relaxation reveals the individual contribu-
tions. The optimality gap of the basic QC relaxation for
“nesta_case73_ieee_rts__api” is 16.52%. Separately adding
the LNC constraints in [9], [13] and the arctangent envelopes
in [12] does not reduce the gap while separately adding the
voltage difference constraints and the Meyer and Floudas
envelopes reduces the gap by 0.02%, and 4.68%, respec-
tively. Note that using bound tightening with the basic QC
relaxation reduces the gap by 6.43%. Similarly, the opti-
mality gap resulting from applying the basic QC relaxation
to “nesta_case29_edin__sad” is 34.53%. Separately enforcing
the LNC constraints and the voltage magnitude difference
constraints does not reduce the gap while the arctangent
envelopes and the Meyer and Floudas envelopes reduce the
gap by 6.59% and 14.85%, respectively. For this case, it is
interesting to note that the bound tightening approach alone
only reduces the gap by 0.62%.

The impact of the voltage magnitude difference constraints
strongly depends the quality of the bounds on V ∆

lm. Thus,
applying these constraints without using bound tightening
has a limited effect, as discussed above. In contrast, the
voltage magnitude difference constraints contribute to reducing
the optimality gap when combined with a bound tightening

approach. For instance, these constraints reduce the optimality
gap for “nmwc118” by 6.08%, whereas the Meyer and Floudas
envelopes only reduce the gap by 0.20%. Thus, the contri-
butions of each improvement to reducing the optimality gap
depend on the test case. Our future work includes identifying
which system characteristics are most relevant for various
types of improvements.

Our proposed improvements substantially reduce the op-
timality gaps for many challenging test cases. As shown in
Table I, this improved tightness comes at the cost of slower
(but still tractable) computational times for some test cases.
Comparing the last two columns in Table I reveals that
enforcing the Meyer and Floudas envelopes and the voltage
difference constraints results in less than a 41.9% increase in
the time required to solve the QC relaxation (without bound
tightening) on average across the test cases. Comparing the
execution times in the ninth and twelfth columns of Table I
shows that adding the Meyer and Floudas envelopes and the
voltage difference constraints has a disparate impact on the to-
tal execution time (bound tightening plus QC execution). There
are cases such as “nesta_case29_edin__sad” where enforcing
the Meyer and Floudas envelopes reduces the execution time
by 10.8%. For these cases, the bound tightening algorithm
converges in fewer iterations, which more than accounts for
the additional time required per iteration due to the addition
of new variables and constraints. Since the bound tightening
times dominate the execution time for the QC relaxation, the
overall time decreases for some cases. Conversely, other test
cases require more time, resulting in an average increase of
5.2% over all the test cases and up to an 31.9% increase for
some cases.

VII. CONCLUSION

This paper proposes and empirically tests two improvements
for the QC relaxation of the OPF problem: a set of constraints
based on voltage magnitude differences and the Meyer and
Floudas envelopes for trilinear monomials. The former relies
on the observation that bound tightening algorithms can ef-
fectively tighten the voltage magnitude differences between
connected buses. The latter yields the convex hull of the
trilinear monomials in contrast to the potentially weaker nested
McCormick formulation used in previous work. Comparison
to a state-of-the-art QC implementation demonstrates the value
of these improvements via reduced optimality gaps on chal-
lenging test cases while maintaining computational tractability.
Our ongoing work aims to improve computational speed by
targeting the application of the bound tightening techniques
to the most relevant variables. Other ongoing work is devel-
oping further improvements to convex relaxations based on
physically intuitive coordinate transformations.

APPENDIX
EXPRESSIONS FOR THE MEYER AND FLOUDAS ENVELOPES

This appendix provides the facets of the Meyer and Floudas
envelopes that are applicable to the QC relaxation (7). In the
following seven boxes, the upper portion gives conditions for
which the constraints in the lower portion apply.



Case I: s ď 0.

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms.

Case II: s ě 0.

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms.

Case III: s ě 0. Map tVl, Vm, su to tx, y, zu such that
xyz ` xyz ď xyz ` xyz and xyz ` xyz ď xyz ` xyz.

qslm ě yzx` xzy ` xyz ´ 2xyz,

qslm ě yzx` xzy ` xyz ´ 2xyz,

qslm ě yzx` xzy ` xyz ´ xyz ´ xyz,

qslm ě yzx` xzy ` xyz ´ xyz ´ xyz,

qslm ě
Λ3

x´ x
x` xzy ` xyz ´

Λ3x

x´ x
´ xyz ´ xyz ` xyz,

where Λ3 “ xyz ´ xyz ´ xyz ` xyz,

qslm ě
Γ3

x´ x
x` xzy ` xyz ´

Γ3x

x´ x
´ xyz ´ xyz ` xyz,

where Γ3 “ xyz ´ xyz ´ xyz ` xyz.

We define qS P xsin pθlmqy
S , where this trigonometric

envelope is given in (5a), and Vi as the voltage magnitude
at bus i as in (7). Let xx y zyMF denote the convex hull
defined by the Meyer and Floudas envelopes for the trilinear
product of three generic variables, x, y, and z. The variable

qslm P

A

Vl Vm qS
EMF

replaces slm in (7). Note that multiple
cases apply simultaneously (e.g., Case IV implies Case I)
such that there are six upper bounds and six lower bounds
for each monomial. The same procedure is applied using
qC P xcos pθlmqy

C , with the variable qclm P

A

Vl Vm qC
EMF

replacing clm in (7). Since the cosine function is non-negative
in the first and fourth quadrants, only Cases II and III are
applicable for this function.
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