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Tightening QC Relaxations of AC Optimal Power
Flow Problems via Complex Per Unit Normalization

Mohammad Rasoul Narimani,˚ Daniel K. Molzahn,: and Mariesa L. Crow˚

Abstract—Optimal power flow (OPF) is a key problem in
power system operations. OPF problems that use the nonlinear
AC power flow equations to accurately model the network physics
have inherent challenges associated with non-convexity. To ad-
dress these challenges, recent research has applied various convex
relaxation approaches to OPF problems. The QC relaxation is
a promising approach that convexifies the trigonometric and
product terms in the OPF problem by enclosing these terms
in convex envelopes. The accuracy of the QC relaxation strongly
depends on the tightness of these envelopes. This paper presents
two improvements to these envelopes. The first improvement
leverages a polar representation of the branch admittances in
addition to the rectangular representation used previously. The
second improvement is based on a coordinate transformation via
a complex per unit base power normalization that rotates the
power flow equations. The trigonometric envelopes resulting from
this rotation can be tighter than the corresponding envelopes in
previous QC relaxation formulations. Using an empirical analysis
with a variety of test cases, this paper suggests an appropriate
value for the angle of the complex base power. Comparing
the results with a state-of-the-art QC formulation reveals the
advantages of the proposed improvements.

Index Terms—Optimal power flow, Convex relaxation

I. INTRODUCTION

OPTIMAL power flow (OPF) problems are central to
many tasks in power system operations. OPF problems

optimize an objective function, such as generation cost, subject
to both the network physics and engineering limits. The AC
power flow equations introduce non-convexities in OPF prob-
lems. Due to these non-convexities, OPF problems may have
multiple local optima [1], [2] and are generally NP-Hard [3].

Many research efforts have focused on algorithms for ob-
taining locally optimal or approximate OPF solutions [4].
Recent research has also developed convex relaxations of OPF
problems [5]. Convex relaxations bound the optimal objective
values, can certify infeasibility, and, in some cases, provably
provide globally optimal solutions to OPF problems.

The capabilities of convex relaxations are, in many ways,
complementary to those of local solution algorithms. For
instance, relaxations’ objective value bounds can certify how
close a local solution is to being globally optimal. Accordingly,
local algorithms and relaxations are used together in spatial
branch-and-bound methods [6]. Solutions from relaxations are
also useful for initializing some local solvers [7]. Relaxations
are also needed for certain solution algorithms for robust
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OPF problems [8]. Moreover, the objective value bounds
provided by relaxations are directly useful in other contexts,
e.g., [9], [10]. The tractability and accuracy of these and other
algorithms are largely determined by the employed relaxation’s
tightness. Tightening relaxations is thus an active research
topic [5].

The quadratic convex (QC) relaxation is a promising ap-
proach that encloses the trigonometric and product terms in
the polar representation of power flow equations within convex
envelopes [11]. These envelopes are formed with linear and
second-order cone programming (SOCP) constraints, result-
ing in a convex formulation. The QC relaxation’s tightness
strongly depends on the quality of these convex envelopes.
This paper focuses on improving these envelopes.

Previous work has proposed a variety of approaches for
tightening the QC relaxation. These include valid inequalities,
such as “Lifted Nonlinear Cuts” [12], [13] and constraints
that exploit bounds on the differences in the voltage mag-
nitudes [14]. Additionally, since the accuracies of the trigono-
metric and product envelopes in the QC relaxation rely on
the voltage magnitude and angle difference bounds, bound
tightening approaches can significantly strengthen the QC
relaxation [12], [15]–[19]. When bound tightening approaches
provide sign-definite angle difference bounds (i.e., the upper
and lower bounds on the angle differences have the same sign),
tighter trigonometric envelopes can be applied [12].

This paper proposes two improvements to further tighten
QC relaxations of OPF problems. The first improvement
leverages a polar representation of the branch admittances in
addition to the rectangular representation used in previous QC
formulations. Within certain ranges, portions of the trigono-
metric envelopes resulting from the polar admittance repre-
sentation are at least as tight (and generally tighter) than the
corresponding portions of the envelopes from the rectangular
admittance representation. In other ranges, the trigonometric
envelopes from the polar admittance representation neither
contain nor are contained within the envelopes from the
rectangular admittance representation. Thus, combining these
envelopes tightens the QC relaxation, with empirical results
suggesting limited impacts on solution times.

The polar admittance representation also enables our second
improvement. We exploit a degree of freedom in the OPF for-
mulation related to the per unit base power normalization. Se-
lecting a complex base power (Sbase “ |Sbase| ejψ) results in a
coordinate transformation that rotates the power flow equations
relative to the typical choice of a real-valued base power.
We leverage the associated rotational degree of freedom ψ
to obtain tighter envelopes for the trigonometric functions.
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While previously proposed power flow algorithms [20] and
state estimation algorithms [21] use similar formulations, this
paper is, to the best of our knowledge, the first to exploit this
rotational degree of freedom to improve convex relaxations.

This paper is organized as follows. Sections II and III
review the OPF formulation and the previously proposed QC
relaxation, respectively. Section IV describes the coordinate
changes underlying our improved QC relaxation. Section V
then presents these improvements. Section VI empirically
evaluates our approach. Section VII concludes the paper.

II. OVERVIEW OF THE OPTIMAL POWER FLOW PROBLEM

This section formulates the OPF problem using a polar
voltage phasor representation. The sets of buses, generators,
and lines are N , G, and L, respectively. The set R con-
tains the index of the bus that sets the angle reference. Let
Sdi “ P di ` jQdi and Sgi “ P gi ` jQgi represent the complex
load demand and generation, respectively, at bus i P N , where
j “

?
´1. Let Vi and θi represent the voltage magnitude

and angle at bus i P N . Let gsh,i ` jbsh,i denote the shunt
admittance at bus i P N . For each generator, define a quadratic
cost function with coefficients c2,i ě 0, c1,i, and c0,i. For
simplicity, we consider a single generator at each bus by
setting the generation limits at buses without generators to
zero. Upper and lower bounds for all variables are indicated
by p ¨ q and p ¨ q, respectively.

For ease of exposition, each line pl,mq P L is modeled
as a Π circuit with mutual admittance glm ` jblm and shunt
admittance jbc,lm. Extensions to more general line models that
allow for off-nominal tap ratios and non-zero phase shifts are
straightforward and available in Appendix B. Define θlm “

θl ´ θm for pl,mq P L. The complex power flow into each
line terminal pl,mq P L is denoted by Plm ` jQlm, and the
apparent power flow limit is Slm. The OPF problem is

min
ÿ

iPG
c2,i pP

g
i q

2
` c1,i P

g
i ` c0,i (1a)

subject to p@i P N , @ pl,mq P Lq
P gi ´ P

d
i “ gsh,i V

2
i `

ÿ

pl,mqPL,
s.t. l“i

Plm `
ÿ

pl,mqPL,
s.t. m“i

Pml, (1b)

Qgi ´Q
d
i “ ´bsh,i V

2
i `

ÿ

pl,mqPL,
s.t. l“i

Qlm `
ÿ

pl,mqPL,
s.t. m“i

Qml, (1c)

θr “ 0, r P R, (1d)

P gi ď P gi ď P
g

i , Qg
i
ď Qgi ď Q

g

i , (1e)

V i ď Vi ď V i, (1f)

θlm ď θlm ď θlm, (1g)

Plm“glmV
2
l ´glmVlVm cos pθlmq´blmVlVm sin pθlmq , (1h)

Qlm “ ´pblm ` bc,lm{2qV
2
l ` blmVlVm cos pθlmq

´ glmVlVm sin pθlmq , (1i)

Pml“glmV
2
m´glmVlVm cos pθlmq`blmVlVm sin pθlmq , (1j)

Qml “ ´pblm ` bc,lm{2qV
2
m ` blmVlVm cos pθlmq

` glmVlVm sin pθlmq , (1k)

pPlmq
2
` pQlmq

2
ď
`

Slm
˘2
, pPmlq

2
` pQmlq

2
ď
`

Slm
˘2
.

(1l)

The objective (1a) minimizes the generation cost. Con-
straints (1b) and (1c) enforce power balance at each bus.
Constraint (1d) sets the reference bus angle. The constraints
in (1e) bound the active and reactive power generation at
each bus. Constraints (1f)–(1g), respectively, bound the voltage
magnitudes and voltage angle differences. Constraints (1h)–
(1k) relate the active and reactive power flows with the voltage
phasors at the terminal buses. The constraints in (1l) limit the
apparent power flows into both terminals of each line.

III. THE QC RELAXATION OF THE OPF PROBLEM

The QC relaxation convexifies the OPF problem (1) by
enclosing the nonconvex terms in convex envelopes [11]. The
relevant nonconvex terms are the square V 2

i , @i P N , and the
products VlVm cospθlmq and VlVm sinpθlmq, @pl,mq P L. The
envelope for the generic squared function x2 is xx2yT :

xx2yT “

#

qx :

#

x̌ ě x2,

qx ď px` xqx´ xx.
(2)

where qx is a lifted variable representing the squared term.
Envelopes for the generic trigonometric functions sinpxq and
cospxq are xsinpxqyS and xcospxqy

C :

xsinpxqyS“

$

’

’

’

’

&

’

’

’

’

%

qS :

$

’

’

’

’

&

’

’

’

’

%

qSďcos
´

xm

2

¯́

x´ xm

2

¯

`sin
´

xm

2

¯

if xď 0ď x,

qSěcos
´

xm

2

¯́

x` xm

2

¯

´sin
´

xm

2

¯

if xď 0ď x,

qS ě sinpxq´sinpxq
x´x

px´ xq ` sin pxq if x ě 0,
qS ď sinpxq´sinpxq

x´x
px´ xq ` sin pxq if x ď 0,

(3)

xcospxqyC “

#

qC :

#

qC ď 1´ 1´cospxmq

pxmq2
x2,

qC ě cospxq´cospxq
x´x

px´ xq ` cos pxq ,
(4)

where xm “ maxp|x| , |x|q. The envelopes xsinpxqyS and
xcospxqy

C in (3) and (4) are valid for ´π
2 ď x ď π

2 .
As detailed in Appendix A, similar envelopes for the sine
and cosine functions are defined analogously for other angle
difference ranges. The lifted variables qS and qC are associated
with the envelopes for the functions sinpθlmq and cospθlmq.
The QC relaxation of the OPF problem in (1) is:

min
ÿ

iPN
c2,i pP

g
i q

2
` c1,i P

g
i ` c0,i (5a)

subject to p@i P N , @ pl,mq P Lq
P gi ´ P

d
i “ gsh,i wii `

ÿ

pl,mqPL,
s.t. l“i

Plm `
ÿ

pl,mqPL,
s.t. m“i

Pml, (5b)

Qgi ´Q
d
i “ ´bsh,i wii `

ÿ

pl,mqPL,
s.t. l“i

Qlm `
ÿ

pl,mqPL,
s.t. m“i

Qml, (5c)

θr “ 0, r P R, (5d)

P gi ď P gi ď P
g

i , Qg
i
ď Qgi ď Q

g

i , (5e)

V i ď Vi ď V i, (5f)
θlm ď θlm ď θlm, (5g)

pV iq
2 ď wii ď pV iq

2, wii P
@

V 2
i

DT
, (5h)

Plm “ glmwll ´ glmclm ´ blmslm, (5i)
Qlm “ ´pblm ` bc,lm{2qwll ` blmclm ´ glmslm, (5j)
Pml “ glmwmm ´ glmclm ` blmslm, (5k)
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Qml “ ´pblm ` bc,lm{2qwmm ` blmclm ` glmslm, (5l)

pPlmq
2
` pQlmq

2
ď
`

Slm
˘2
, pPmlq

2
` pQmlq

2
ď
`

Slm
˘2
,

(5m)

clm “
ÿ

k“1,...,8

λk ρ
pkq
1 ρ

pkq
2 ρ

pkq
3 , qClm P xcospθlmqy

C
,

Vl “
ÿ

k“1,...,8

λkρ
pkq
1 , Vm “

ÿ

k“1,...,8

λkρ
pkq
2 , qClm “

ÿ

k“1,...,8

λkρ
pkq
3 ,

ÿ

k“1,...,8

λk “ 1, λk ě 0, k “ 1, . . . , 8. (5n)

slm “
ÿ

k“1,...,8

γk ζ
pkq
1 ζ

pkq
2 ζ

pkq
3 , qSlm P xsinpθlmqy

S
,

Vl “
ÿ

k“1,...,8

γkζ
pkq
1 , Vm “

ÿ

k“1,...,8

γkζ
pkq
2 , qSlm “

ÿ

k“1,...,8

γkζ
pkq
3 ,

ÿ

k“1,...,8

γk “ 1, γk ě 0, k “ 1, . . . , 8. (5o)

P 2
lm `Q

2
lm ď wll `lm, (5p)

`lm “

˜

Y 2
lm ´

b2c,lm
4

¸

wll ` Y
2
lmwmm ´ 2Y 2

lmclm ´ bc,lmQlm,

(5q)
»

—

—

–

λ1 ` λ2 ´ γ1 ´ γ2
λ3 ` λ4 ´ γ3 ´ γ4
λ5 ` λ6 ´ γ5 ´ γ6
λ7 ` λ8 ´ γ7 ´ γ8

fi

ffi

ffi

fl

ᵀ»

—

—

–

V lV m
V lV m
V lV m
V lV m

fi

ffi

ffi

fl

“ 0. (5r)

where `lm represents the squared magnitude of the current
flow into terminal l of line pl,mq P L and p¨qᵀ is the transpose
operator. The relationship between `lm and the power flows
Plm and Qlm in (5p) tightens the QC relaxation [11], [22].
Appendix B gives an expression for `lm that considers lines
with off-nominal tap ratios and non-zero phase shifts. Also,
as shown in (5h), wii is associated with the squared voltage
magnitude at bus i.

The lifted variables clm and slm represent relaxations of the
trilinear terms VlVm cospθlmq and VlVm sinpθlmq, respectively,
with (5n) and (5o) formulating an “extreme point” representa-
tion of the convex hulls for the trilinear terms VlVm qClm and
VlVm qSlm [6], [23]. The auxiliary variables λk, γk P r0, 1s,
k “ 1, . . . , 8, are used in the formulations of these convex
hulls. The extreme points of VlVm qClm are ρpkq P rVl, Vls ˆ

rVm, Vms ˆ r qClm,
qClms, k “ 1, . . . , 8 and the extreme points

of VlVm qSlm are ζpkq P rVl, Vls ˆ rVm, Vms ˆ rqSlm,
qSlms,

k “ 1, . . . , 8. Since sine and cosine are odd and even
functions, respectively, clm “ cml and slm “ ´sml.

A “linking constraint” from [19] is also enforced in (5r).
This linking constraint is associated with the bilinear terms
VlVm that are shared in VlVm cospθlmq and VlVm sinpθlmq.

IV. COORDINATE TRANSFORMATIONS

The improvements to the QC relaxation’s envelopes that
are our main contributions are based on certain coordinate
transformations. This section describes these transformations.
We first form the power flow equations using polar represen-
tations of the lines’ mutual admittances. We then introduce a
complex base power in the per unit normalization that provides
a rotational degree of freedom in the power flow equations.

While this section uses a Π circuit line model for simplicity,
extensions to more general line models are straightforward.
These extensions are presented in Appendix B.

A. Power Flow Equations with Admittance in Polar Form

Equations (1h)–(1k) model the power flows through a
line pl,mq P L via a rectangular representation of the line’s
mutual admittance, glm`jblm. In (5i)–(5l), the QC relaxation
from [11] uses this rectangular admittance representation.

The line flows can be equivalently modeled using a polar
representation of the mutual admittance, Ylmejδlm , where
Ylm “

a

g2lm ` b
2
lm and δlm “ arctan pblm{glmq are the mag-

nitude and angle of the mutual admittance for line pl,mq P L,
respectively. Using polar admittance coordinates, the complex
power flows Slm and Sml into each line terminal are:

Slm “ Vle
jθl

ˆˆ

Ylme
jδlm ` j

bc,lm
2

˙

Vle
jθl ´ Ylme

jδlmVme
jθm

˙˚

,

(6a)

Sml “ Vme
jθm

ˆ

´Ylme
jδlmVle

jθl`

ˆ

Ylme
jδlm`j

bc,lm
2

˙

Vme
jθm

˙˚

,

(6b)

where p¨q˚ is the complex conjugate. Taking the real and
imaginary parts of (6) yields the active and reactive line flows:

Plm “ RepSlmq “ Ylm cospδlmqV
2
l ´ YlmVlVm cospθlm ´ δlmq,

(7a)
Qlm “ ImpSlmq “ ´ pYlm sinpδlmq ` bc,lm{2qV

2
l

´ YlmVlVm sinpθlm ´ δlmq, (7b)

Pml “ RepSmlq “ Ylm cospδlmqV
2
m ´ YlmVlVm cospθlm ` δlmq,

(7c)
Qml “ ImpSmlq “ ´ pYlm sinpδlmq ` bc,lm{2qV

2
m

` YlmVlVm sinpθlm ` δlmq. (7d)

With the rectangular admittance representation, the active
and reactive power flow equations (1h)–(1i) each have two
trigonometric terms (i.e., cospθlmq and sinpθlmq). Conversely,
there is only one trigonometric term in each of the power flow
equations that use the polar admittance representation (7) (e.g.,
cospθlm ´ δlmq for Plm and sinpθlm ´ δlmq for Qlm). While
these formulations are equivalent, the differing representations
of the trigonometric terms suggest the possibility of using
different trigonometric envelopes. The QC formulation we will
propose in Section V-C exploits these differences.

B. Rotated Power Flow Formulation

The base power used in the per unit normalization is tradi-
tionally chosen to be a real-valued quantity. More generally,
complex-valued choices for the base power are also acceptable
and can provide benefits for some algorithms. For instance,
certain power flow [20] and state estimation algorithms [21],
[24] leverage formulations with a complex-valued base power.

To improve the QC relaxation’s trigonometric envelopes,
this section reformulates the OPF problem with a complex
base power. Let Sorigbase and Snewbasee

jψ denote the original and the
new base power, respectively, where Sorigbase, S

new
base, and ψ are

real-valued. Thus, the original base Sorigbase is real-valued, while
the new base Snewbasee

jψ is complex-valued with magnitude
Snewbase and angle ψ. Quantities associated with the new base
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power will be accented with a tilde, p˜̈q. Complex power flows
in the original base and the new base are related as:

S̃lm “ Slm ¨
Sorigbase

Snewbasee
jψ
, S̃ml “ Sml ¨

Sorigbase

Snewbasee
jψ
.

Since changing the magnitude of the base power does not af-
fect the arguments of the trigonometric functions in the power
flow equations, we choose Snewbase “ Soldbase. With this choice,

S̃lm “ Slm{e
jψ, S̃ml “ Sml{e

jψ.

The angle of the base power, ψ, affects the arguments of the
trigonometric functions, as shown in the following derivation:

S̃lm “ Slm{e
jψ “

´

Ylme
´jpδlm`ψq ` pbc,lm{2qe

´jpπ2`ψq
¯

V 2
l

´ YlmVlVme
jp´δlm`θlm´ψq, (8a)

S̃ml “ Sml{e
jψ “

´

Ylme
´jpδlm`ψq ` pbc,lm{2qe

´jpπ2`ψq
¯

V 2
m

´ YlmVmVle
´jpδlm`θlm`ψq. (8b)

Taking the real and imaginary parts of (8) yields:

P̃lm“RepS̃lmq“pYlm cospδlm ` ψq ´ pbc,lm{2q sinpψqqV 2
l

´ YlmVlVm cospθlm ´ δlm ´ ψq, (9a)

Q̃lm“ ImpS̃lmq“´ pYlm sinpδlm ` ψq`pbc,lm{2q cospψqqV 2
l

´ YlmVlVm sinpθlm ´ δlm ´ ψq, (9b)

P̃ml“RepS̃mlq“pYlm cospδlm ` ψq´pbc,lm{2q sinpψqqV 2
m

´ YlmVmVl cospθlm ` δlm ` ψq, (9c)

Q̃ml“ ImpS̃mlq“´ pYlm sinpδlm ` ψq`pbc,lm{2q cospψqqV 2
m

` YlmVmVl sinpθlm ` δlm ` ψq. (9d)

The arguments of the trigonometric functions cospθlm´δlm´
ψq, sinpθlm´δlm´ψq, cospθlm`δlm`ψq, and sinpθlm`δlm`
ψq in (9) are linear in ψ. For a given ψ, all other trigonometric
terms in (9) are constants that do not require special handling.

C. Rotated OPF Problem

We next represent the complex power generation and load
demands using the new base power:

S̃gi “ Sgi ¨
Sorigbase

Snewbasee
jψ
“

Sgi
ejψ

“
P gi ` jQ

g
i

ejψ
.

Define S̃gi “ P̃ gi `jQ̃
g
i , @i P N . Taking the real and imaginary

parts of S̃gi yields the following relationship between the
power generation in the new and original bases:

„

P̃ gi
Q̃gi



“

„

cospψq sinpψq
´ sinpψq cospψq

 „

P gi
Qgi



. (10)

The inverse relationship is well defined for any choice of ψ
since the matrix in (10) is invertible.

The analogous relationship for the power demands is:
„

P̃ di
Q̃di



“

„

cospψq sinpψq
´ sinpψq cospψq

 „

P di
Qdi



. (11)

Applying (9)–(11) to (1) yields a “rotated” OPF problem:

min
ř

iPG c2,i

´

P̃ gi cospψq ´ Q̃gi sinpψq
¯2

` c1,i

´

P̃ gi cospψq ´ Q̃gi sinpψq
¯

` c0,i (12a)

subject to p@i P N , @ pl,mq P Lq
P̃ gi ´ P̃

d
i “ pgsh,i cospψq ´ bsh,i sinpψqqV 2

i

`
ÿ

pl,mqPL,
s.t. l“i

Plm `
ÿ

pl,mqPL,
s.t. m“i

Pml, (12b)

Q̃gi ´ Q̃
d
i “ ´pgsh,i sinpψq ` bsh,i cospψqqV 2

i (12c)

`
ÿ

pl,mqPL,
s.t. l“i

Qlm `
ÿ

pl,mqPL,
s.t. m“i

Qml,

θr “ 0, r P R, (12d)

P gi ď P̃ gi cospψq ´ Q̃gi sinpψq ď P
g

i , (12e)

Qg
i
ď Q̃gi cospψq ` P̃ gi sinpψq ď Q

g

i , (12f)

V i ď Vi ď V i, θlm ď θlm ď θlm, (12g)

pP̃lmq
2 ` pQ̃lmq

2 ď pSlmq
2, pP̃mlq

2 ` pQ̃mlq
2 ď pSlmq

2,
(12h)

Eq. (9). (12i)

The rotated OPF problem (12) is equivalent to (1) in that
any solution tV ˚, θ˚, P̃ g‹, Q̃g‹u to (12) can be mapped to
a solution tV ˚, θ˚, P g‹, Qg‹u to (1) using (10). Solutions
to both formulations have the same voltage magnitudes and
angles, V ˚ and θ˚. Thus, (12) can be interpreted as revealing
a degree of freedom associated with choosing the base power’s
phase angle ψ. The next section exploits this degree of freedom
to tighten the QC relaxation’s trigonometric envelopes.

V. ROTATED QC RELAXATION

This section leverages the coordinate transformations pre-
sented in Section IV to tighten the QC relaxation. We first
propose and analyze new envelopes for the trigonometric
functions and trilinear terms. We then describe an empirical
analysis that informs the choice of the base power angle ψ in
order to tighten the relaxation for typical OPF problems.

A. Convex Envelopes for the Trigonometric Terms

A key determinant of the QC relaxation’s tightness is
the quality of the convex envelopes for the trigonometric
terms in the power flow equations. The rotated OPF formula-
tion (12) has four relevant trigonometric terms for each line:
cospθlm´ δlm´ψq, sinpθlm´ δlm´ψq, cospθlm` δlm`ψq,
and sinpθlm ` δlm ` ψq, @pl,mq P L. This contrasts with the
two unique trigonometric terms (cospθlmq and sinpθlmq) per
pair of connected buses in the OPF formulation (1).

This would seem to suggest that at least twice as many
lifted variables would be required in order to relax the rotated
OPF formulation (12) compared to the original OPF formula-
tion (1), i.e., C̃psqlm , S̃psqlm and C̃prqlm , S̃prqlm for relaxing the sending
end quantities cospθlm´δlm´ψq, sinpθlm´δlm´ψq and the
receiving end quantities cospθlm`δlm`ψq, sinpθlm`δlm`ψq
in (12) versus qClm and qSlm for relaxing cospθlmq and sinpθlmq
in (1). However, this is not the case since the arguments of the
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trigonometric terms in the rotated OPF formulation are not in-
dependent. For notational convenience, define δ̂lm “ δlm`ψ.
The angle sum and difference identities imply the following
relationships:
»

—

—

–

sinpδ̂lm ` θlmq

cospδ̂lm ` θlmq

sinpδ̂lm ´ θlmq

cospδ̂lm ´ θlmq

fi

ffi

ffi

fl

“

»

—

—

–

sinpδ̂lmq cospδ̂lmq

cospδ̂lmq ´ sinpδ̂lmq

sinpδ̂lmq ´ cospδ̂lmq

cospδ̂lmq sinpδ̂lmq

fi

ffi

ffi

fl

„

cospθlmq
sinpθlmq



. (13)

Rearranging these relationships yields:
„

sinpθlm ` δ̂lmq

cospθlm ` δ̂lmq



“

„

αlm βlm
´βlm αlm

 „

sinpθlm ´ δ̂lmq

cospθlm ´ δ̂lmq



.

(14)
where, for notational convenience, αlm “ pcospδ̂lmqq

2 ´

psinpδ̂lmqq
2 and βlm “ 2 cospδ̂lmq sinpδ̂lmq. The implication

of (14) is that only two (rather than four) lifted variables are
defined per line (chosen to be the sending end quantities C̃psqlm
and S̃psqlm for relaxing the trigonometric terms cospθlm ´ δ̂lmq

and sinpθlm ´ δ̂lmq). The remaining trigonometric functions,
sinpθlm ` δ̂lmq and cospθlm ` δ̂lmq, are representable in
terms of sinpθlm ´ δ̂lmq and cospθlm ´ δ̂lmq via the linear
transformation (14). Since the matrix in (14) is invertible for
all δ̂lm, the transformation (14) is always well-defined.

While not explicitly including the lifted variables C̃prqlm and
S̃
prq
lm for the receiving end quantities, we tighten the relaxation

of (12) by enforcing the trigonometric envelopes associated
with both the sending and receiving end quantities using (14):

C̃
psq
lm P xcospθlm ´ δlm ´ ψqy

C
, (15a)

S̃
psq
lm P xsinpθlm ´ δlm ´ ψqy

S
, (15b)

αlmS̃
psq
lm ` βlmC̃

psq
lm P xsinpθlm ` δlm ` ψqy

S
, (16a)

´βlmS̃
psq
lm ` αlmC̃

psq
lm P xcospθlm ` δlm ` ψqy

C
, (16b)

Related special consideration is needed for parallel lines.
While the rest of this section considers systems without
parallel lines for simplicity, Appendix C discusses this issue
in detail. Using the linear relationships in (14) (and in (29)
from Appendix C for systems with parallel lines), all relevant
trigonometric terms in (12) can be represented as linear
combinations of sinpθlm ´ δlm ´ ψq and cospθlm ´ δlm ´ ψq
for each unique pair of connected buses pl,mq P L. The QC
relaxations of (1) and (12) hence have the same number of
lifted variables (two per pair of connected buses).

There are two characteristics that distinguish the trigono-
metric expressions in (1) and (12): First, the power flow
equations (1h)–(1k) contain weighted sums of two trigono-
metric functions of θlm, while (9a)–(9d) each contain a single
trigonometric function of θlm. (The trigonometric expressions
cospδlm ` ψq, sinpδlm ` ψq, cospψq, and sinpψq in (9a)–
(9d) are constants that do not require special consideration.)
Second, the base power angle ψ used to formulate (12)
provides a degree of freedom that shifts the arguments of
the trigonometric functions in (9a)–(9d). We next discuss how
both of these characteristics can be exploited to tighten the
QC relaxation.

Regarding the first distinguishing characteristic, factoring
out ´VlVm to focus on the trigonometric functions shows
that the relaxation of (1h) depends on the quality of a
weighted sum of trigonometric envelopes: glm xcos pθlmqy

C
`

blm xsin pθlmqy
S . The relaxation of (9a) depends on the quality

of the envelope Ylm xcos pθlm ´ δlm ´ ψqy
C . (The relaxations

of (1h)–(1k) and (9a)–(9d) are analogous.) To focus on the first
characteristic, consider the latter envelope with ψ “ 0.

Fig. 1 on the following page illustrates examples of these
envelopes for a line with the same mutual admittance (glm `
jblm “ 0.6´ j0.8) for different intervals of angle differences
(θlm ď θlm ď θlm). While transmission lines with such large
resistances are atypical, we choose this admittance to better
visualize our approach in Fig. 1. Our approach is valid for all
values of line admittances.

To compare these envelopes, we consider their boundaries.
As shown in Appendix D, either the upper or lower bound-
ary of the envelope Ylm xcos pθlm ´ δlmqy

C is at least as
tight (and sometimes tighter) compared to the corresponding
boundary of the envelope glm xcos pθlmqy

C
`blm xsin pθlmqy

S

for certain values of δlm, θminlm , and θmaxlm . In this case,
there is no general dominance relationship for the other
boundary. For other values of δlm, θminlm , and θmaxlm , none
of the boundaries of the envelope Ylm xcos pθlm ´ δlmqy

C

dominate or are dominated by a boundary of the envelope
glm xcos pθlmqy

C
` blm xsin pθlmqy

S . Thus, a QC relaxation
that enforces the intersection of these envelopes is generally
tighter than relaxations constructed using either of these en-
velopes individually. Section V-D discusses this further.

The second characteristic distinguishing between the en-
velopes for (1) and (12) is the ability to choose ψ in the latter
envelopes. As shown in Fig. 2, changing ψ rotates the argu-
ments of these envelopes. We also visualize the impacts that
different values of ψ have on the sine and cosine envelopes in
an animation available at https://arxiv.org/src/1912.05061v3/
anc/rotated_envelope_animation.gif.

Analytically comparing the impacts of different values for
ψ is not straightforward. Accordingly, this section will later
describe an empirical study that suggests a good choice for ψ
for typical OPF problems.

B. Envelopes for Trilinear Terms

In addition to the trigonometric functions considered thus
far, the products between the voltage magnitudes and the
trigonometric functions in (9) are another source of non-
convexity in the rotated OPF problem (12). We next exploit the
relationship between the sending and receiving end trigono-
metric functions (14) in order to relax these products using a
limited number of additional lifted variables.

Similar to (5n)–(5o), we relax the trilinear products by con-
structing linear envelopes using the upper and lower bounds on
Vl, Vm, cospθlm´δlm´ψq, sinpθlm´δlm´ψq, cospθlm`δlm`
ψq, and sinpθlm`δlm`ψq. We use the linear relationship (14)
to represent the upper and lower bounds on the receiving
end quantities cospθlm ` δlm ` ψq (denoted C̃

prq
lm , C̃prqlm ) and

sinpθlm`δlm`ψq (denoted S̃prqlm , S̃prqlm ) in terms of the bounds
on the sending end quantities cospθlm´δlm´ψq (denoted C̃psqlm ,

https://arxiv.org/src/1912.05061v3/anc/rotated_envelope_animation.gif
https://arxiv.org/src/1912.05061v3/anc/rotated_envelope_animation.gif
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(a) ´90˝ ď θlm ď 90˝

(b) ´60˝ ď θlm ď 0˝

(c) ´30˝ ď θlm ď 30˝

(d) ´30˝ ď θlm ď 0˝

Figure 1. Comparison of envelopes for the trigonometric terms in (1) and (12).
The yellow and magenta regions (with dotted and dashed borders, respec-
tively) in (a)–(d) show the envelopes glm xcos pθlmqy

C
` blm xsin pθlmqy

S

and Ylm xcos pθlm ´ δlmqy
C , respectively. The black solid lines correspond

to the function glm cos pθlmq ` blm sin pθlmq “ Ylm cos pθlm ´ δlmq.

(a) xcos pθlm ´ δlm ´ ψqy
C

(b) xsin pθlm ´ δlm ´ ψqy
S

Figure 2. Comparison of envelopes for the sine and cosine functions for differ-
ent values of ψ. The yellow and red regions (with dashed and dotted borders,
respectively) in (a) and (b) show the envelopes xcos pθlm ´ δlm ´ ψqy

C and
xsin pθlm ´ δlm ´ ψqy

S , for ψ1 “ ´15˝ and ψ2 “ 45˝, respectively. The
angle difference θlm varies within 0˝ ď θlm ď 72˝, and δlm “ ´53˝.

C̃
psq
lm) and sinpθlm ´ δlm ´ ψq (denoted S̃psqlm , S̃psqlm). We then

enforce constraints on the sending end quantities derived from
the intersection of the transformed bounds associated with the
receiving end quantities along with the bounds on the sending
end quantities. Intersecting these bounds forms a polytope
in terms of the sending end quantities C̃

psq
lm (representing

cospθlm´δlm´ψq) and S̃psqlm (representing sinpθlm´δlm´ψq),
expressible as a convex combination of its extreme points.

Fig. 3 on the following page shows the bounds on both the
sending and receiving end quantities in terms of the sending
end quantities. The yellow region is the polytope formed by
the bounds on cospθlm´δlm´ψq and sinpθlm´δlm´ψq. The
red region is the polytope formed by using (14) to represent
the bounds on the receiving end quantities cospθlm`δlm`ψq
and sinpθlm` δlm`ψq in terms of the sending end quantities
cospθlm´δlm´ψq and sinpθlm´δlm´ψq. The black dots are
the vertices of the polytope shown by the dashed black lines
formed from the intersection of the yellow and red polytopes.
Appendix E shows how to compute these vertices.

Enforcing the constraints associated with both the yellow
and red polytopes adds an unnecessary computational burden.
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αlmC̃
psq
lm ´ βlmS̃

psq
lm P rC̃

prq
lm , C̃

prq
lm s and

βlmC̃
psq
lm ` αlmS̃

psq
lm P rS̃

prq
lm , S̃

prq
lm s

C̃
psq
lm P rC̃

psq
lm , C̃

psq
lms and S̃

psq
lm P rS̃

psq
lm , S̃

psq
lms

C̃
psq
lm

S̃
psq
lm

Figure 3. A projection of the four-dimensional polytope associated with the
trilinear products between voltage magnitudes and trigonometric functions, in
terms of the sending end variables S̃psqlm and C̃psqlm representing cospθlm ´
δlm´ψq and sinpθlm´ δlm´ψq. The polytope formed by intersecting the
sending end polytope (yellow) and receiving end polytope (red) is outlined
with the dashed black lines and has vertices shown by the black dots.

We instead restrict the sending end quantities cospθlm´δlm´
ψq and sinpθlm ´ δlm ´ ψq to lie within the polytope shown
by the black dashed line in Fig. 3. This implicitly ensures
satisfaction of the bounds on the receiving end quantities.

To relax the product terms VlVm cospθlm ´ δlm ´ ψq and
VlVm sinpθlm ´ δlm ´ ψq, we first represent the quantities
cospθlm ´ δlm ´ ψq and sinpθlm ´ δlm ´ ψq using lifted
variables C̃

psq
lm and S̃

psq
lm , respectively. We then extend the

polytope shown by the black dashed lines in Fig. 3 using
the upper and lower bounds on Vl and Vm. The resulting
four-dimensional polytope is the convex hull of the quadrilin-
ear polynomial VlVmC̃

psq
lm S̃

psq
lm , which we represent using an

extreme point formulation similar to (5n)–(5o). Let Tlm “

tpC̃int,1lm , S̃int,1lm q, pC̃int,2lm , S̃int,2lm q, . . . , pC̃int,Ñlm , S̃int,Ñlm qu de-
note the coordinates of the intersection points (black dots)
in Fig. 3, where Ñ is the number of intersection points
which ranges from 4 to 8 depending on the value of ψ.
The extreme points of VlVmC̃

psq
lm S̃

psq
lm are then denoted as

ηpkq P rVl, VlsˆrVm, VmsˆTlm, k “ 1, . . . , 4Ñ . The auxiliary
variables λk P r0, 1s, k “ 1, . . . , 4Ñ , are used to form the
convex hull of the quadrilinear term VlVmC̃

psq
lm S̃

psq
lm .

The envelopes for the trilinear terms are:

c̃lm “
ÿ

k“1,...,4Ñ

λk η
pkq
1 η

pkq
2 η

pkq
3 , s̃lm “

ÿ

k“1,...,4Ñ

λk η
pkq
1 η

pkq
2 η

pkq
4 ,

Vl “
ÿ

k“1,...,4Ñ

λkη
pkq
1 , Vm “

ÿ

k“1,...,4Ñ

λkη
pkq
2 , S̃

psq
lm “

ÿ

k“1,...,4Ñ

λkη
pkq
4 ,

C̃
psq
lm “

ÿ

k“1,...,4Ñ

λkη
pkq
3 ,

ÿ

k“1,...,4Ñ

λk “ 1, λk ě 0, k “ 1, . . . , 4Ñ ,

C̃
psq
lm P xcospθlm ´ δlm ´ ψqy

C
,

S̃
psq
lm P xsinpθlm ´ δlm ´ ψqy

S
,

αlmS̃
psq
lm ` βlmC̃

psq
lm P xsinpθlm ` δlm ` ψqy

S
,

´ βlmS̃
psq
lm ` αlmC̃

psq
lm P xcospθlm ` δlm ` ψqy

C
, (17)

where the last four trigonometric envelope constraints corre-
spond to (15)–(16).

Note that (17) precludes the need for the linking con-
straint (5r) that relates the common term VlVm in the products
VlVm sinpθlmq and VlVm cospθlmq.

C. QC Relaxation of the Rotated OPF Problem
Replacing the squared and trilinear terms with the corre-

sponding lifted variables in the rotated OPF formulation (12)
results in our proposed “Rotated QC” (RQC) relaxation:

min (12a) (18a)
subject to p@i P N ,@ pl,mq P Lq
P̃ gi ´ P̃

d
i “ pgsh,i cospψq ´ bsh,i sinpψqqwii

`
ÿ

pl,mqPL,
s.t. l“i

P̃lm `
ÿ

pl,mqPL,
s.t. m“i

P̃ml, (18b)

Q̃gi ´ Q̃
d
i “ ´pgsh,i sinpψq ` bsh,i cospψqqwii

`
ÿ

pl,mqPL,
s.t. l“i

Q̃lm `
ÿ

pl,mqPL,
s.t. m“i

Q̃ml, (18c)

P̃lm “ pYlm cospδlm ` ψq ´ bc,lm{2 sinpψqqwll ´ Ylmc̃lm, (18d)
Q̃lm “ ´pYlm sinpδlm ` ψq ` bc,lm{2 cospψqqwll ´ Ylms̃lm,

(18e)
P̃ml “ ´Ylmc̃lm ` pYlm cospδlm ` ψq ´ bc,lm{2 sinpψqqwmm,

(18f)
Q̃ml “ Ylms̃lm ´ pYlm sinpδlm ` ψq ` bc,lm{2 cospψqqwmm,

(18g)

P̃ 2
lm ` Q̃

2
lm ď wll ˜̀lm, (18h)

˜̀
lm “

ˆ

b2c,lm{4` Y
2
lm ´ Ylmbc,lm cospδlm ` ψq sinpψq

` Ylmbc,lm sinpδlm ` ψq cospψq

˙

wll ` Y
2
lmwmm

`
`

´2Y 2
lm cospδlm ` ψq ` Ylmbc,lm sinpψq

˘

c̃lm

`
`

2Y 2
lm sinpδlm ` ψq ` Ylmbc,lm cospψq

˘

s̃lm, (18i)
Equations (5h), (12d)–(12h), (17). (18j)

Note that trilinear terms are relaxed via the extreme point
approach in (17) that yields the convex hulls for these terms.
The variables c̃lm and s̃lm are relaxations of the trilinear
terms VlVm cospθlm´ δlm´ψq and VlVm sinpθlm´ δlm´ψq,
respectively. Appendix B gives an expression for ˜̀

lm that
considers off-nominal tap ratios and non-zero phase shifts.

D. Tightened QC Relaxation of the Rotated OPF Problem
Applying the angle sum and difference identities in com-

bination with (14) reveals a linear relationship between the
trigonometric functions used in the original QC relaxation (5),
cospθlmq and sinpθlmq, and those in the RQC relaxation (18),
cospθlm ´ δlm ´ ψq and sinpθlm ´ δlm ´ ψq:

„

cospθlmq
sinpθlmq



“Mlm

„

sinpθlm ´ δlm ´ ψq
cospθlm ´ δlm ´ ψq



, (19)

where the constant matrix Mlm is defined as

Mlm “
1

2

ˆ„

sinpδlm ` ψq cospδlm ` ψq
cospδlm ` ψq ´ sinpδlm ` ψq

 „

αlm βlm
´βlm αlm



`

„

´ sinpδlm ` ψq cospδlm ` ψq
cospδlm ` ψq sinpδlm ` ψq

˙

with αlm and βlm defined as in (14). As mentioned in
Section V-A, the RQC relaxation (18) can be further tightened
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by additionally enforcing the envelopes xcos pθlmqy
C and

xsin pθlmqy
S used in the original QC relaxation (5). This

results in the “Tightened Rotated QC” (TRQC) relaxation:

min (12a) (20a)
subject to p@i P N ,@ pl,mq P Lq

Mlm

„

C̃
psq
lm

S̃
psq
lm



P

„

xcospθlmqy
C

xsinpθlmqy
S



(20b)

Equations (5h), (12d)–(12h), (17), (18b)–(18i). (20c)

E. An Empirical Analysis for Determining the Rotation ψ

The key parameter in our proposed QC formulation is the
rotation ψ. Choosing an appropriate value for ψ using an
analytical method is challenging because, as shown in Fig. 1,
ψ simultaneously affects the envelopes for both the sine and
cosine functions such that values of ψ which lead to tighter
envelopes for the cosine function can result in looser envelopes
for the sine function (and vice-versa). Moreover, the single
value for ψ applied to the entire system requires balancing the
impacts of ψ among all lines simultaneously. Thus, choosing
an appropriate value for ψ is not straightforward. We therefore
use the following empirical analysis to choose a value for ψ
that works well for a range of test cases. In our results, we
denote the best value of ψ for each case as ψ˚.

Fig. 4 shows the optimality gaps for the PGLib-OPF test
cases as a function of ψ, each normalized by the maximum
gap for that case over all values for ψ. The results in the figure
were generated by sweeping ψ from ´90˝ to 90˝ in steps of
0.5˝. (The figure is exactly symmetric for values of ψ from
90˝ to -90˝.) The shaded red bands around the median line
(in black) show every fifth percentile of the results.

The results in Fig. 4 indicate that good values of ψ are
consistent across the test systems. Thus, we suggest using ψ “
80˝, which is where the median of the optimality gaps over all
the test cases was smallest. Moreover, the symmetry in Fig. 4
implies that selecting ψ within the intervals [´90˝, ´80˝],
[´15˝, ´5˝], and [80˝, 90˝] results in nearly the smallest
optimality gaps for almost all of the test cases compared to
the optimality gaps from the RQC relaxation using ψ˚.

Figure 4. Normalized optimality gap as a function of ψ for PGLib-OPF cases.

Our ongoing work is generalizing the rotated QC for-
mulation proposed in this paper by allowing for different
values of ψ for each line in the system in order to construct

tighter envelopes (i.e., independent choices of ψlm for each
pl,mq P L rather than one value of ψ for the entire system).
While complicating the overall formulation, this generalization
simplifies the impacts from choosing each ψlm and thus has
the potential to enable analytical methods for identifying the
best values for ψlm for each pl,mq P L. One possible approach
is to compute the value of ψlm that minimizes the areas of
the envelopes (i.e., the yellow and red regions in Fig. 2).

VI. NUMERICAL RESULTS

This section demonstrates the effectiveness of the proposed
approach using selected test cases from the PGLib-OPF v18.08
benchmark library [25]. These test cases were selected since
existing relaxations fail to provide tight bounds on the best
known objective values. Our implementations use Julia 0.6.4,
JuMP v0.18 [26], PowerModels.jl [27], and Gurobi 8.0 as
modeling tools and the solver. The results are computed using
a laptop with an i7 1.80 GHz processor and 16 GB of RAM.

Table I summarizes the results from applying the QC (5),
RQC (18), and TRQC (20) relaxations to selected test cases.
The first column lists the test cases. The next group of columns
represents optimality gaps, defined as

Optimality Gap “
ˆ

Local Solution´ QC Bound
Local Solution

˙

. (21)

The optimality gaps are defined using the local solutions to
the non-convex problem (1) from PowerModels.jl. The final
group of columns shows the solver times.

Comparing the second and third columns in Table I reveals
that using admittances in polar form without rotation (i.e., the
RQC relaxation (18) with ψ “ 0) can improve the optimality
gaps of some test cases (e.g., improvements of 3.76% and
3.19% for “case30_ieee” and “case24_ieee_rts__api”, respec-
tively, relative to the original QC relaxation (5)) . However, the
RQC relaxation with ψ “ 0 has worse performance in other
cases, such as “case300_ieee” and “case14_ieee__sad”, which
have 0.02% and 2.29% larger optimality gaps, respectively.

Using a non-zero value for ψ can improve the optimality
gaps. Solving the RQC relaxation (18) with the suggested
ψ “ 80˝ obtained from the empirical analysis in Section V-E
results in 1.08% better optimality gaps, on average, compared
to the original QC relaxation. The RQC relaxation (18) with
ψ˚ (the best value of ψ for each case) provides optimality
gaps that are not worse than those obtained by the original QC
relaxation (5) for all test cases, yielding an improvement of
1.36% on average compared to the original QC relaxation. As
one specific example, the gap from the original QC relaxation
for “case162_ieee_dtc__sad” is 6.22% compared to 6.30% for
the RQC relaxation (18) with ψ “ 0 relaxation (18). Use of
the suggested ψ “ 80˝ reduces the gap to 5.65%, which is
superior to the gap obtained from the QC relaxation (5). Using
ψ˚ further reduces the optimality gap to 5.59%.

Enforcing the envelopes from both the original QC relax-
ation and the RQC relaxation, i.e., the TRQC relaxation (20),
further improves the optimality gaps. Solving the TRQC relax-
ation (20) with the suggested ψ “ 80˝ results in 1.29% better
gaps, on average, compared to the original QC relaxation.
The TRQC relaxation with ψ˚ yields optimality gaps that
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Table I
RESULTS FROM APPLYING THE QC AND RQC RELAXATIONS WITH VARIOUS OPTIONS TO SELECTED PGLIB TEST CASES

Test Cases QC
Gap (%)

RQC
(ψ “ 0)

Gap (%)

RQC
(ψ “ 80˝)
Gap (%)

RQC pψ˚q TRQC
(ψ “ 80˝)
Gap (%)

TRQC (ψ˚) QC
Time
(sec)

RQC
Time
(sec)

TRQC
Time
(sec)Gap (%) ψ˚ Gap (%) ψ˚

case3_lmbd 0.97 0.97 0.89 0.79 ´81˝ 0.84 0.63 11˝ 0.34 0.01 0.01
case30_ieee 18.67 14.91 13.14 12.11 65˝ 13.14 11.82 ´25˝ 0.33 0.03 0.03
case118_ieee 0.77 0.90 0.65 0.64 70˝ 0.64 0.62 70˝ 0.55 0.19 0.23
case300_ieee 2.56 2.58 2.43 2.26 ´13˝ 2.32 2.24 ´13˝ 1.54 1.50 3.15
case9241_pegase 1.71 1.70 1.70 1.69 ´10˝ 1.70 1.69 ´10˝ 265.39 190.80 297.56
case3_lmbd__api 4.57 4.31 4.42 4.28 2˝ 4.17 3.93 ´71˝ 0.51 0.01 0.01
case24_ieee_rts__api 11.02 7.83 7.51 7.24 79˝ 7.31 6.98 ´11˝ 0.71 0.03 0.04
case39_epri__api 1.71 1.38 1.33 1.33 ´11˝ 1.32 1.32 79˝ 0.39 0.05 0.05
case73_ieee_rts__api 9.54 8.12 7.36 7.36 ´10˝ 7.24 7.24 ´10˝ 1.00 0.29 0.37
case118_ieee__api 28.67 28.03 26.82 26.52 ´8˝ 27.11 26.38 ´8˝ 0.53 0.20 0.97
case179_goc__api 5.86 6.01 5.57 4.90 ´81˝ 4.90 4.06 ´78˝ 0.82 0.61 0.64
case14_ieee__sad 19.16 21.45 17.89 16.30 77˝ 15.82 15.39 ´12˝ 0.35 0.03 0.03
case24_ieee_rts__sad 2.74 2.55 2.31 2.19 78˝ 2.26 2.12 ´12˝ 0.40 0.05 0.06
case30_ieee__sad 5.66 5.95 4.81 4.59 ´13˝ 4.56 4.45 66˝ 0.32 0.05 0.06
case73_ieee_rts__sad 2.37 2.24 1.98 1.90 79˝ 1.84 1.82 78˝ 0.41 0.28 0.41
case118_ieee__sad 6.67 8.10 5.45 5.39 81˝ 5.45 5.07 69˝ 0.58 0.25 0.39
case162_ieee_dtc__sad 6.22 6.30 5.65 5.59 ´14˝ 5.65 5.54 76˝ 0.86 0.55 0.84
case300_ieee__sad 2.34 2.59 1.80 1.61 83˝ 1.78 1.59 83˝ 1.94 1.29 2.06

AC: AC local solution from (1), QC Gap: Optimality gap for the QC relaxation from (5), RQC Gap: Optimality gap for the Rotated QC relaxation from (18),
TRQC Gap: Optimality gap for the Tightened Rotated QC Relaxation from (20), ψ˚: Use of the best ψ for this case.
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*

Figure 5. Comparison of optimality gap differences with respect to the
original QC relaxation (5) for different QC relaxation variants.

are 1.57% and 0.21% better, on average, compared to the
original QC relaxation and the RQC relaxation with ψ˚. The
additional envelopes xsin pθlmqy

S and xcos pθlmqy
C in the

TRQC relaxation increase the average solver time by 22%.
Fig. 5 visualizes the optimality gaps for variants of the

QC relaxation over a range of test cases. Positive values
indicate an improvement in the optimality gap of the associated
variant relative to the original QC relaxation (5). The test
cases are sorted in order of increasing optimality gaps obtained
from the original QC relaxation. The TRQC relaxation with
ψ˚ achieves the smallest optimality gaps. While the RQC
relaxation with ψ “ 0 obtains a worse optimality gap for
some test cases compared to the original QC relaxation, both
the RQC and TRQC relaxations with ψ˚ outperform the QC
relaxation for all test cases. As expected from the analysis in
Section V-E, applying the suggested ψ “ 80˝ results in good
performance across a variety of test cases.

VII. CONCLUSION

This paper proposes and empirically tests two improve-
ments for strengthening QC relaxations of OPF problems by

tightening the envelopes used for the trigonometric terms.
The first improvement represents the line admittances in polar
form. The second improvement applies a complex base power
normalization with angle ψ in order to rotate the arguments
of the trigonometric terms. An empirical analysis is used to
suggest a good value for ψ. Comparison to the state-of-the-
art QC relaxation reveals the effectiveness of the proposed
improvements. Our ongoing work is extending the RQC re-
laxation to allow for distinct values of ψ for each line.

APPENDIX

A. Sine and Cosine Envelopes for Extended Angle Ranges

Tables II and III on the following page extend the envelopes
for the sine and cosine functions, xsinpxqyS and xcospxqy

c,
defined in (3) and (4) in order to consider all angle ranges.

B. More General Line Models
This appendix extends the paper’s results to a line model

that considers transformers with a non-zero phase shift θshiftlm
and/or an off-nominal voltage ratio τlm. With this model, the
complex power flows into both terminals of line pl,mq P L
are:

Slm “ Vle
jθl

«

ˆ

Ylme
jδlm ` j

bc,lm
2

˙

Vle
jθl

τ2lm
´
Ylme

jδlmVme
jθm

τlme
´jθ

shift
lm

ff˚

(22a)

Sml “ Vme
jθm

«

ˆ

Ylme
jδlm ` j

bc,lm
2

˙

Vme
jθm´

Ylme
jδlmVle

jθl

τlme
jθ
shift
lm

ff˚

(22b)

We follow the procedure in Section IV-B by applying a
complex base power normalization:

S̃lm “
Slm
ejψ

“

ˆ

Ylm
τ2lm

e´jpδlm`ψq `
bc,lm

2

e´jp
π
2`ψq

τ2lm

˙

V 2
l

´
Ylm
τlm

VlVme
jpθlm´δlm´θ

shift
lm ´ψq, (23a)
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Table II
SINE FUNCTION ENVELOPES FOR EXTENDED ANGLE RANGES

Envelope Interval

qS ď 1´ 1´cospxmq

pxmq2

`

x` 3π
2

˘2
,

qS ě sinpxq´sinpxq
x´x

px´ xq ` sin pxq ,

xm “ maxp
ˇ

ˇx` 3π
2

ˇ

ˇ ,
ˇ

ˇx` 3π
2

ˇ

ˇq

´2π ď x
x ď ´π

qSď ´ cos
´

xm

2

¯́

x` π ` xm

2

¯

`sin
´

xm

2

¯

,

qSě ´ cos
´

xm

2

¯́

x` π ´ xm

2

¯

´sin
´

xm

2

¯

,

xm “ maxp|x` π| , |x` π|q
´ 3π

2
ď x ď ´π

´π ď x ď ´π
2

qS ě ´
´

1´ 1´cospxmq

pxmq2

`

x` π
2

˘2
¯

,

qS ď sinpxq´sinpxq
x´x

px´ xq ` sin pxq ,

xm “ maxp
ˇ

ˇx` π
2

ˇ

ˇ ,
ˇ

ˇx` π
2

ˇ

ˇq

´π ď x
x ď 0

qSďcos
´

xm

2

¯́

x´ xm

2

¯

`sin
´

xm

2

¯

,

qSěcos
´

xm

2

¯́

x` xm

2

¯

´sin
´

xm

2

¯

,

xm “ maxp|x| , |x|q
´π

2
ď x ď 0

0 ď x ď π
2

qS ď 1´ 1´cospxmq

pxmq2

`

x´ π
2

˘2
,

qS ě sinpxq´sinpxq
x´x

px´ xq ` sin pxq ,

xm “ maxp
ˇ

ˇx´ π
2

ˇ

ˇ ,
ˇ

ˇx´ π
2

ˇ

ˇq

0 ď x
x ď π

qSď ´ cos
´

xm

2

¯́

x´ π ` xm

2

¯

`sin
´

xm

2

¯

,

qSě ´ cos
´

xm

2

¯́

x´ π ´ xm

2

¯

´sin
´

xm

2

¯

,

xm “ maxp|x´ π| , |x´ π|q

π
2
ď x ď π

π ď x ď 3π
2

qS ě ´
´

1´ 1´cospxmq

pxmq2

`

x´ 3π
2

˘2
¯

,

qS ď sinpxq´sinpxq
x´x

px´ xq ` sin pxq ,

xm “ maxp
ˇ

ˇx´ 3π
2

ˇ

ˇ ,
ˇ

ˇx´ 3π
2

ˇ

ˇq

π ď x
x ď 2π

S̃ml “
Sml
ejψ

“

ˆ

Ylme
´jpδlm`ψq `

bc,lm
2

e´jp
π
2`ψq

˙

V 2
m

´
Ylm
τlm

VlVme
jp´θlm´δlm`θ

shift
lm ´ψq. (23b)

Taking the real and imaginary parts of (23) yields:

P̃lm“RepS̃lmq“

ˆ

Ylm
τ2lm

cospδlm ` ψq ´
bc,lm
2τ2lm

sinpψq

˙

V 2
l

´
Ylm
τlm

VlVm cospθlm ´ δlm ´ θ
shift
lm ´ ψq, (24a)

Q̃lm“ ImpS̃lmq“

ˆ

´
Ylm
τ2lm

sinpδlm ` ψq´
bc,lm
2τ2lm

cospψq

˙

V 2
l

´
Ylm
τlm

VlVm sinpθlm ´ δlm ´ θ
shift
lm ´ ψq, (24b)

P̃ml“RepS̃mlq“

ˆ

Ylm cospδlm ` ψq´
bc,lm

2
sinpψq

˙

V 2
m

´
Ylm
τlm

VmVl cospθlm ` δlm ´ θ
shift
lm ` ψq, (24c)

Q̃ml“ ImpS̃mlq“

ˆ

´Ylm sinpδlm ` ψq´
bc,lm

2
cospψq

˙

V 2
m

`
Ylm
τlm

VmVl sinpθlm ` δlm ´ θ
shift
lm ` ψq. (24d)

The arguments of the trigonometric terms in (24) are not
independent since cospθlm` δlm´ θ

shift
lm `ψq and sinpθlm`

Table III
COSINE FUNCTION ENVELOPES FOR EXTENDED ANGLE RANGES

Envelope Interval

qCď ´ cos
´

xm

2

¯́

x` 3π
2
` xm

2

¯

`sin
´

xm

2

¯

,

qCě ´ cos
´

xm

2

¯́

x` 3π
2
´ xm

2

¯

´sin
´

xm

2

¯

,

xm “ maxp
ˇ

ˇx` 3π
2

ˇ

ˇ ,
ˇ

ˇx` 3π
2

ˇ

ˇq

´2π ď x ď ´ 3π
2

´ 3π
2
x ď ´π

qC ě ´
´

1´ 1´cospxmq

pxmq2
px` πq2

¯

,

qC ď cospxq´cospxq
x´x

px´ xq ` cos pxq ,

xm “ maxp|x` π| , |x` π|q
´ 3π

2
ď x

x ď ´π
2

qCď cos
´

xm

2

¯́

x` π
2
´ xm

2

¯

`sin
´

xm

2

¯

,

qCě cos
´

xm

2

¯́

x` π
2
` xm

2

¯

´sin
´

xm

2

¯

,

xm “ maxp
ˇ

ˇx` π
2

ˇ

ˇ ,
ˇ

ˇx` π
2

ˇ

ˇq

´π ď x ď ´π
2

´π
2
ď x ď 0

qC ď
´

1´ 1´cospxmq

pxmq2
px` πq2

¯

,

qC ě cospxq´cospxq
x´x

px´ xq ` cos pxq ,

xm “ maxp|x| , |x|q
´π

2
ď x

x ď π
2

qCď ´ cos
´

xm

2

¯́

x´ π
2
` xm

2

¯

`sin
´

xm

2

¯

,

qCě ´ cos
´

xm

2

¯́

x´ π
2
´ xm

2

¯

´sin
´

xm

2

¯

,

xm “ maxp
ˇ

ˇx´ π
2

ˇ

ˇ ,
ˇ

ˇx´ π
2

ˇ

ˇq

0 ď x ď π
2

π
2
ď x ď π

qC ě ´
´

1´ 1´cospxmq

pxmq2
px´ πq2

¯

,

qC ď cospxq´cospxq
x´x

px´ xq ` cos pxq ,

xm “ maxp|x´ π| , |x´ π|q

π
2
ď x

x ď 3π
2

qCď cos
´

xm

2

¯́

x´ 3π
2
´ xm

2

¯

`sin
´

xm

2

¯

,

qCě cos
´

xm

2

¯́

x´ 3π
2
` xm

2

¯

´sin
´

xm

2

¯

,

xm “ maxp
ˇ

ˇx´ 3π
2

ˇ

ˇ ,
ˇ

ˇx´ 3π
2

ˇ

ˇq

π ď x ď 3π
2

3π
2
ď x ď 2π

δlm ´ θshiftlm ` ψq are linearly related with cospθlm ´ δlm ´

θshiftlm ´ ψq and sinpθlm ´ δlm ´ θ
shift
lm ´ ψq via the general

form of (14). Extending (14) to consider off-nominal voltage
ratios and non-zero phase shifts is accomplished by replacing
θlm in (14) with θlm ´ θ

shift
lm .

Extensions of the expressions for the squared magnitudes
of the current flows in the original QC relaxation (5) and the
RQC relaxation (18), `lm and ˜̀

lm, respectively, are derived by
dividing pP 2

lm `Q
2
lmq and pP̃ 2

lm ` Q̃
2
lmq by V 2

l :

`lm “

˜

Y 2
lm

τ4lm
´
b2c,lm
4τ4lm

¸

V 2
l `

Y 2
lm

τ2lm
V 2
m ´

bc,lm
τ2lm

Qlm

´ 2
Y 2
lm

τ3lm
pcospδlmqclm ` sinpδlmqslmq , (25)

˜̀
lm “

ˆ

Y 2
lm

τ4lm
`
b2c,lm
4τ4lm

´
Ylm
τ4lm

bc,lm cospδlm ` ψq sinpψq

`
Ylm
τ4lm

bc,lm sinpδlm ` ψq cospψq

˙

V 2
l `

Y 2
lm

τ2lm
V 2
m

`

ˆ

Ylm
τ3lm

bc,lmpsinpψq ´
2Y 2

lm

τ3lm
cospδlm ` ψq

˙

c̃lm

`

ˆ

Ylm
τ3lm

bc,lm cospψq `
2Y 2

lm

τ3lm
sinpδlm ` ψq

˙

s̃lm (26)

Extending the TRQC relaxation (20) to the more general
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line model is achieved by modifying (19):
„

cospθlmq
sinpθlmq



“M 1
lm

„

sinpθlm ´ δlm ´ ψ ´ θ
shift
lm q

cospθlm ´ δlm ´ ψ ´ θ
shift
lm q



, (27)

where the constant matrix M 1
lm is defined as

M 1
lm “

1

2

ˆ„

´ sinpδ̂lm ` θ
shift
lm q cospδ̂lm ` θ

shift
lm q

cospδ̂lm ` θ
shift
lm q sinpδ̂lm ` θ

shift
lm q



`

„

sinpδ̂lm ´ θ
shift
lm q cospδ̂lm ´ θ

shift
lm q

cospδ̂lm ´ θ
shift
lm q ´ sinpδ̂lm ´ θ

shift
lm q

 „

αlm βlm
´βlm αlm

˙

and, for notational convenience, δ̂lm “ δlm ` ψ.

C. Parallel Lines

In the original QC relaxation (5), the power flow equa-
tions for parallel lines between buses l and m shared the
same envelopes, xcospθlmqy

C and xsinpθlmqy
S . In the RQC

relaxation (18), the arguments of the trigonometric terms for
parallel lines can differ due to the inclusion of the δlm terms.
Rather than defining separate envelopes, we derive a linear
relationship between the trigonometric terms for parallel lines.
Let δlm1 , δlm2 and θshiftlm1

, θshiftlm2
be the admittance angles and

phase shifts, respectively, for two parallel lines between buses l
and m. Applying the angle sum identity yields
»

—

–

sinpσlm1 ´ θlmq
cospσlm1 ´ θlmq
sinpσlm2 ´ θlmq
cospσlm2 ´ θlmq

fi

ffi

fl

“

»

—

–

sinpσlm1q ´ cospσlm1q

cospσlm1q sinpσlm1q

sinpσlm2q ´ cospσlm2q

cospσlm2q sinpσlm2q

fi

ffi

fl

„

cospθlmq
sinpθlmq



,

(28)
where, for notational convenience, σlm1

“ δlm1
` θshiftlm1

` ψ

and σlm2
“ δlm2

` θshiftlm2
` ψ. Rearranging (28) to eliminate

cospθlmq and sinpθlmq yields the desired linear relationship:
„

sinpθlm ´ σlm2q

cospθlm ´ σlm2q



“

„

cospσlm1 ´ σlm2q sinpσlm1 ´ σlm2q

´ sinpσlm1 ´ σlm2q cospσlm1 ´ σlm2q

 „

sinpθlm ´ σlm1q

cospθlm ´ σlm1q



.

(29)

Since the matrix in (29) is invertible, this relationship is always
well defined.

D. Tighter Boundaries for Certain Trigonometric Envelopes

This appendix formalizes and proves a statement in Sec-
tion V-A regarding the tightness of the trigonometric envelopes
in the original formulation of the QC relaxation (5) and the
proposed polar admittance QC formulation (18).

To assist the derivations in this appendix, we define a
function F pθlmq which represents the difference between the
trigonometric function cospθlm´δlmq itself and the line which
connects the endpoints of cospθlm ´ δlmq at θminlm and θmaxlm :

F pθlmq “ cospθlm ´ δlmq ´ cospθmaxlm ´ δlmq

´
cospθmaxlm ´ δlmq ´ cospθminlm ´ δlmq

θmaxlm ´ θminlm

pθlm ´ θ
max
lm q

(30)

Fig. 6 shows illustrative examples of the function
Ylm cospθlm ´ δlmq (black curve) and the line connecting the
endpoints of this function at θminlm and θmaxlm (dashed red line)

cospθlm ´ δlmq F pθlmq

-150 -100 -50 0
-1

-0.5

0

0.5

1

-150 -100 -50 0
-0.1

0

0.1

0.2

0.3

0.4

(a) ´165˝ ď θlm ´ δlm ď 15˝

cospθlm ´ δlmq F pθlmq

-100 -50 0 50
-0.5

0

0.5

1

-100 -50 0 50
0

0.2

0.4

0.6

0.8

1

(b) ´110˝ ď θlm ´ δlm ď 70˝

Figure 6. The left figures show visualizations of the function cospθlm´δlmq
(black curve) and the line connecting the endpoints of this function at θminlm
and θmaxlm (dashed red line) for different values of δlm, θminlm , and θmaxlm .
The right figures show the corresponding function F pθlmq.

on the left, with corresponding visualizations of the function
F pθlmq itself on the right.

The derivative of F pθlmq is

dF pθlmq

dθlm
“ ´ sinpθlm ´ δlmq

´
cospθmaxlm ´ δlmq ´ cospθminlm ´ δlmq

θmaxlm ´ θminlm

. (31)

A key quantity in the following proposition is the set of
zeros of the derivative of F pθlmq, i.e., the set of solutions to
dF pθlmq
dθlm

“ 0. This set, which we denote by Zθminlm ,θmaxlm ,δlm
where the subscripts indicate that the set is parameterized by
θminlm , θmaxlm , and δlm, is

Zθminlm ,θmaxlm ,δlm “

!

p´1qκ arcsin

˜

cospθminlm ´ δlmq ´ cospθmaxlm ´ δlmq
`

θmaxlm ´ θminlm

˘

¸

` πκ,

κ “ . . . ,´3,´2,´1, 0, 1, 2, 3, . . .
)

.

Finally, we let | ¨ | denote the cardinality of a set.
Using these definitions, we next state and prove the follow-

ing proposition.
Proposition 1. The lower boundary of the envelope
Ylm xcospθlm ´ δlmqy

C is at least as tight as the lower bound-
ary of the envelope glm xcospθlmqy

C
` blm xsinpθlmqy

S if
θminlm , θmaxlm , and δlm satisfy both of the following conditions:

ˇ

ˇ

ˇ
Zθminlm ,θmaxlm ,δlm

č

 

θminlm ă θlm ă θmaxlm

(

ˇ

ˇ

ˇ
“ 1, (32a)

F
``

θmaxlm ` θminlm

˘

{2
˘

ą 0. (32b)
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Moreover, the upper boundary of the envelope
Ylm xcospθlm ´ δlmqy

C is at least as tight as the upper
boundary of the envelope glm xcospθlmqy

C
` blm xsinpθlmqy

S

if θminlm , θmaxlm , and δlm satisfy both (32a) and the condition

F
``

θmaxlm ` θminlm

˘

{2
˘

ă 0. (33)

Proof. The proof is based on the following observation: if
the line connecting the points pθminlm , cospθminlm ´ δlmqq and
pθmaxlm , cospθmaxlm ´ δlmqq (i.e., the dashed red line in Fig. 6)
does not intersect the function cospθlm´δlmq itself within the
range θminlm ă θlm ă θmaxlm , then this line is either the lower
boundary or upper boundary of the tighest convex envelope for
the function cospθlm ´ δlmq within this range. (For instance,
the dashed red line in Fig. 6b is the lower boundary of the
tighest envelope for cospθlm´δlmq within the range ´165˝ ď
θlm ď 15˝.) In this case, the line is the tightest lower (upper)
boundary if the function cospθlm ´ δlmq is above (below) the
line for any point between θminlm and θmaxlm (e.g., the midpoint
pθminlm ` θmaxlm q{2, which is used in (32b) and (33)).

Observe that the line connecting the points
pθminlm , cospθminlm ´ δlmqq and pθmaxlm , cospθmaxlm ´ δlmqq
does not intersect the function cospθlm ´ δlmq between
θminlm and θmaxlm if and only if F pθlmq is non-zero for all
θminlm ă θlm ă θmaxlm . We next argue that this is implied
by (32a).

The condition (32a) is equivalent to the existence of one
critical point θ˚lm of the function F pθlmq. (i.e., the derivative of
F pθq has a single zero, θ˚lm, in the range θminlm ă θlm ă θmaxlm .
Since F pθlmq is continuous and F pθminlm q “ F pθmaxlm q “ 0,
the critical point θ˚lm must either correspond to a minimum
or maximum of F pθlmq. Since the function F pθlmq is zero
at the endpoints θminlm and θmaxlm , having a single minimum
or maximum in the range θminlm ă θlm ă θmaxlm implies that
F pθlmq ‰ 0 within this range.

To complete the conditions in the proposition, (32b)
and (33) determine whether the line connecting the points
pθminlm , cospθminlm ´ δlmqq and pθmaxlm , cospθmaxlm ´ δlmqq is
above or below the function cospθlm ´ δlmq by evaluating
the function F pθlmq at an arbitrary point between θminlm and
θmaxlm , here selected to be the midpoint

`

θminlm ` θmaxlm

˘

{2.
Since multiplication by Ylm only rescales (but does not

otherwise change) the envelope xcospθlm ´ δlmqy
C , the argu-

ments above trivially extend to Ylm xcospθlm ´ δlmqy
C . More-

over, since Ylm cospθlm´δlmq “ glm cospθlmq`blm sinpθlmq,
the envelope glm xcospθlmqy

C
` blm xsinpθlmqy

S cannot be
tighter than the tightest possible envelope for Ylm cospθlm ´
δlmq. Since the boundaries of Ylm xcospθlm ´ δlmqy

C con-
sidered in the proof form portions of the tightest possible
convex envelope for Ylm cospθlm ´ δlmq, they are at least
as tight as the corresponding boundaries of the envelope
glm xcospθlmqy

C
`blm xsinpθlmqy

S . Furthermore, the example
envelopes in Fig. 2 show that the corresponding boundaries
of Ylm xcospθlm ´ δlmqy

C are strictly tighter than those of
glm xcospθlmqy

C
` blm xsinpθlmqy

S for some values of δlm,
θminlm , and θmaxlm .

Table IV
LINE SEGMENT INTERSECTIONS CORRESPONDING TO FIG. 7

ψ (degrees) A1B1 B1C1 C1D1 A1D1

´45 ď ψ ď 0 AB & BC BC & CD CD & AD AB & AD
´90 ď ψ ď ´45 BC & CD CD & AD AB & AD AB & BC
´135 ď ψ ď ´90 CD & AD AB & AD AB & BC BC & CD
´180 ď ψ ď ´135 AB & AD AB & BC BC & CD CD & AD

0 ď ψ ď 45 AD & AB AB & BC BC & CD CD & AD
45 ď ψ ď 90 CD & AD AD & AB AB & BC BC & CD

90 ď ψ ď 135 BC & CD CD & AD AD & AB AB & BC
135 ď ψ ď 180 AB & BC BC & CD CD & AD AD & AB

We finally note that values of θminlm , θmaxlm , and δlm such that
maxp´90˝,´90˝ ` δlmq ď θminlm ă θmaxlm ď minp90˝, 90˝ `
δlmq satisfy (32). Thus, the trigonometric envelopes corre-
sponding to the polar admittance representation have lower
boundaries that are at least as tight as those in the original QC
relaxation for many typical values of θminlm , θmaxlm , and δlm.

E. Expressions for the Vertices of the Polytope Associated with
the Trilinear Products

This appendix presents expressions for the vertices of the
polytope consisting of the black dashed lines in Fig. 3. To
compute the coordinates of these vertices (black dots in Fig. 7),
we intersect the edges of the receiving end polytope, which is
formed by the upper and lower bounds on the receiving end
quantities, S̃prqlm , C̃prqlm and S̃

prq
lm , C̃prqlm , respectively, with the

edges of the sending end polytope, which is formed by the
upper and lower bounds on the sending end quantities S̃psqlm ,
C̃
psq
lm and S̃psqlm , C̃psqlm , respectively.
When written in terms of the sending end quantities S̃psqlm

and C̃
psq
lm , the coordinates for the upper and lower bounds

on the receiving end quantities are functions of ψ. To write
the coordinates of the vertices as functions of ψ, consider
the line segments labeled in Fig. 7. The yellow and purple
polytopes in this figure represent the bounds on the sending
and receiving end quantities, respectively. Table IV describes
the relevant intersections of the line segments that form these
polytopes. For the ranges of ψ in the first column of Table IV,
the remaining columns indicate the line segments whose
intersections form the corresponding vertices. The coordinates
of these intersections are given in Table V. As an example
for ´45˝ ď ψ ď 0˝, the A1D1 line segment in Fig. 7 should
intersect line segments AB and AD. The coordinates of these
intersections are given in rows 13 and 16 of Table V.
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