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Tightening QC Relaxations of AC Optimal Power
Flow through Improved Linear Convex Envelopes

Mohammad Rasoul Narimani,˚ Daniel K. Molzahn,: Katherine R. Davis,˚˚ and Mariesa L. Crow;

Abstract—AC optimal power flow (AC OPF) is a fundamental
problem in power system operations. Accurately modeling the
network physics via the AC power flow equations makes AC OPF
a challenging nonconvex problem. To search for global optima,
recent research has developed various convex relaxations that
bound the optimal objective values of AC OPF problems. The QC
relaxation convexifies the AC OPF problem by enclosing the non-
convex terms within convex envelopes. The QC relaxation’s accu-
racy strongly depends on the tightness of these envelopes. This pa-
per proposes two improvements for tightening QC relaxations of
OPF problems. We first consider a particular nonlinear function
whose projections are the nonlinear expressions appearing in the
polar representation of the power flow equations. We construct a
polytope-shaped convex envelope around this nonlinear function
and derive convex expressions for the nonlinear terms using its
projections. Second, we use sine and cosine expression properties,
along with changes in their curvature, to tighten this convex
envelope. We also propose a coordinate transformation to tighten
the envelope by rotating power flow equations based on individual
bus-specific angles. We compare these enhancements to a state-
of-the-art QC relaxation method using PGLib-OPF test cases,
revealing improved optimality gaps in 68% of the cases.

Index Terms—Optimal power flow, Convex relaxation

I. INTRODUCTION

THE optimal power flow (OPF) problem seeks an operat-
ing point that optimizes a specified objective function

(often generation cost minimization) subject to constraints
from the network physics and engineering limits. Using the
nonlinear AC power flow model to accurately represent the
power flow physics results in the AC OPF problem, which
is non-convex, may have multiple local optima [1], and is
generally NP-Hard [2].

Since first being formulated by Carpentier in 1962 [3], a
wide variety of optimization algorithms have been applied to
the OPF problem [4]–[6]. Much of this research has focused
on algorithms for obtaining locally optimal or approximate
OPF solutions. Recently, many convex relaxation techniques
have been applied to OPF problems to obtain bounds on the
optimal objective values, certify infeasibility, and in some
cases, achieve globally optimal solutions [7].

As a key metric for solution quality, the objective value
bounds obtained via convex relaxations characterize how close
a local solution is to being globally optimal. Thus, local
algorithms and relaxations are often used together in spatial
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branch-and-bound algorithms to solve nonlinear programs
(NLPs) and mixed-integer nonlinear programs (MINLPs) [8].
With nonlinear constraints modeling AC power flows, many
problems relevant to power systems take the form of NLPs
and MINLPs (e.g., OPF [9], unit commitment [10], and
topology reconfiguration [11], [12] problems with AC power
flow models as well as a variety of emerging problems related
to power systems resilience and restoration [13]–[16]). Similar
to the integral relaxations in branch-and-bound solvers for
mixed-integer linear programs (MILPs), spatial branch-and-
bound algorithms relax and then iteratively tighten nonconvex
expressions associated with the power flow equations. Thus,
the tightness of power flow relaxations and the quality of their
associated objective value bounds are of key importance in
such algorithms. The wide range of power system optimiza-
tion problems formulated as NLPs and MINLPs for which
spatial branch-and-bound algorithms are applicable motivates
the development of tighter power flow relaxations. Notable
recent developments include new commercial and open-source
solvers (e.g., a spatial branch-and-bound algorithm in recent
versions of Gurobi [17] as well as Alpine [18] and Mino-
taur [19], among others) along with related applications to
various power systems optimization problems, e.g., [20]–[26].

Beyond spatial branch-and-bound, we emphasize that power
flow relaxations are also key to algorithms developed for
a range of other applications, including solving robust OPF
problems [27], [28], calculating voltage stability margins [29],
[30], exploring feasible operating ranges [31], [32], designing
resilient networks [33], assessing severe contingencies [15],
mitigating wildfire ignition risk [16], protecting against ge-
omagnetic storms [34], computing operating envelopes for
aggregators of distributed energy resources [35], [36], etc.
With the need to repeatedly bound the objective values of
certain subproblems, only convex relaxations provide the rigor-
ous guarantees needed for many of these algorithms. Stronger
relaxations that provide tighter objective value bounds are thus
a key enabling methodology for many important applications.
For applications where good estimates of the optimal decision
variables are also important, we note recent work that enables
high-accuracy recovery of AC power flow solutions from the
outputs of power flow relaxations [37].

This paper focuses on improving a particular formulation
known as the “Quadratic Convex” (QC) relaxation. The QC
relaxation encloses the trigonometric, squared, and product
terms in a polar representation of power flow equations within
convex envelopes [38]. Since the quality of these envelopes
determines the tightness of the QC relaxation, a number of
research efforts have focused on improving these envelopes.
These include tighter trigonometric envelopes that leverage
sign-definite angle difference bounds [39], [40]; Lifted Non-
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linear Cuts that exploit voltage magnitude and angle differ-
ence bounds [39], [41]; cuts based on the voltage magnitude
differences between connected buses [42]; tighter envelopes
for the product terms [23], [43]; and other valid inequalities,
convex envelopes, and cutting planes [44], [45]. Most recently,
we developed a “rotated QC” relaxation [46] which applies a
coordinate transformation via a complex per unit base power
normalization to tighten envelopes for the trigonometric terms.

This paper proposes two additional improvements for tight-
ening the QC relaxation. The first improvement considers a
particular nonlinear function which has projections that are
the nonlinear expressions appearing in a polar representation
of the power flow equations. We construct a convex envelope
around this nonlinear function that takes the form of a polytope
and then use projections of this envelope to obtain convex
expressions for the nonlinear terms in the OPF problem. The
second improvement uses certain characteristics of the sine and
cosine expressions along with the changes in their curvature to
tighten the first improvement’s convex envelope. We also ex-
tend our previous work on the coordinate transformation [46],
[47] via rotating the power flow equations by an angle specific
to each bus in order to obtain a tighter envelope. A heuristic
approach is proposed for choosing reasonable values for these
rotation angles. The proposed relaxation improves the opti-
mality gaps for 68% of the PGLib-OPF test cases compared
to a state-of-the-art QC relaxation [48].

We develop and demonstrate our proposed relaxation on bal-
anced single-phase equivalent networks without requirements
on the network topology (no restriction to radial systems).
Such network representations are most appropriate for typical
transmission systems. However, we note that the underlying
convex envelopes upon which we build our algorithm are
suitable for general trigonometric functions without restriction
on the range of the input arguments. Thus, extensions to unbal-
anced three-phase network models are conceptually straight-
forward by simply constructing envelopes for each phase
along with corresponding constraints and variables [49]. More
specifically, our approach to relaxing the OPF problem centers
around the relaxation of nonlinear expressions formulated as
the products of voltage magnitudes at neighboring buses and
trigonometric terms involving the voltage angle differences.
Expressions of this form are the key nonlinear terms in the
power flow equations associated with any type of network
model. With the ability to handle voltage angle arguments
centered at any value, the convex envelopes underlying our
formulation are thus versatile in their applicability to the non-
linear expressions in the network models for both transmission
and distribution systems. Building on the balanced single-
phase equivalent transmission system models in this paper,
our future work therefore aims to apply these envelopes to
unbalanced three-phase distribution system models.

This paper is organized as follows. Sections II and III
review the OPF formulation and the previous QC relaxation,
respectively. Section IV presents a rotated OPF problem and
associated QC relaxation with multiple rotation angles (one
per bus). Section V describes a nonlinear function which has
projections that are the nonlinear expressions appearing in the
polar representation of the power flow equations. This section
also presents a convex envelope that encloses this function.
Section VI exploits characteristics of the trigonometric terms

to tighten this envelope. Bringing this all together, Section VII
formulates our proposed tightened QC relaxation. Section VIII
presents a method for selecting the rotation angles at each
bus to tighten the relaxation. Section IX presents a method
for selecting the number of extreme points for the polytopes
that formulate our envelopes in order to balance tradeoffs in
tractability and tightness of the relaxation. Section X provides
an empirical evaluation, and Section XI concludes the paper.

II. OVERVIEW OF THE OPTIMAL POWER FLOW PROBLEM

This section formulates the OPF problem using a polar
voltage phasor representation. The sets of buses, generators,
and lines are N , G, and L, respectively. The set R con-
tains the index of the bus that sets the angle reference. Let
Sdi “ P di ` jQdi and Sgi “ P gi ` jQgi represent the complex
load demand and generation, respectively, at bus i P N , where
j “

?
´1. Let Vi and θi represent the voltage magnitude

and angle at bus i P N . Let gsh,i ` jbsh,i denote the
shunt admittance at bus i P N . For each generator, define
a quadratic cost function with coefficients c2,i ě 0, c1,i, and
c0,i. Upper and lower bounds for all variables are indicated
by p ¨ q and p ¨ q, respectively. For ease of exposition, each line
pl,mq P L is modeled as a Π circuit with mutual admittance
glm ` jblm and shunt admittance jbc,lm. The voltage angle
difference between buses l and m for pl,mq P L is denoted as
θlm “ θl´θm. The complex power flow into each line terminal
pl,mq P L is denoted by Plm` jQlm, and the apparent power
flow limit is Slm. The OPF problem is

min
ÿ

iPG
c2,i pP gi q

2
` c1,i P

g
i ` c0,i (1a)

subject to p@i P N , @ pl,mq P Lq

P gi ´ P di “ gsh,i V
2
i `

ÿ

pl,mqPL,
s.t. l“i

Plm `
ÿ

pl,mqPL,
s.t. m“i

Pml, (1b)

Qgi ´Qdi “ ´bsh,i V
2
i `

ÿ

pl,mqPL,
s.t. l“i

Qlm `
ÿ

pl,mqPL,
s.t. m“i

Qml, (1c)

θr “ 0, r P R, (1d)

P gi ď P gi ď P
g

i , Qg
i

ď Qgi ď Q
g

i , (1e)

V i ď Vi ď V i, (1f)

θlm ď θlm ď θlm, (1g)

Plm“glmV
2
l ´glmVlVm cos pθlmq´blmVlVm sin pθlmq , (1h)

Qlm “ ´ pblm ` bc,lm{2qV 2
l ` blmVlVm cos pθlmq

´ glmVlVm sin pθlmq , (1i)

Pml“glmV
2
m´glmVlVm cos pθlmq`blmVlVm sin pθlmq , (1j)

Qml “ ´ pblm ` bc,lm{2qV 2
m ` blmVlVm cos pθlmq

` glmVlVm sin pθlmq , (1k)

pPlmq
2

` pQlmq
2

ď
`

Slm
˘2
, pPmlq

2
` pQmlq

2
ď

`

Slm
˘2
.

(1l)

The objective (1a) minimizes the generation cost. Con-
straints (1b) and (1c) enforce power balance at each bus.
Constraint (1d) sets the reference bus angle. The constraints
in (1e) bound the active and reactive power generation at
each bus. Constraints (1f)–(1g), respectively, bound the voltage
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magnitudes and voltage angle differences. Constraints (1h)–
(1k) relate the active and reactive power flows with the voltage
phasors at the terminal buses. The constraints in (1l) limit the
apparent power flows into both terminals of each line.

III. TRADITIONAL QC RELAXATION

As typically formulated, the QC relaxation convexifies the
OPF problem (1) by enclosing the nonconvex expressions (V 2

i ,
@i P N , VlVm cospθlmq and VlVm sinpθlmq, @pl,mq P L)
in convex envelopes [38], [48]. The envelope for the generic
squared function x2 is xx2yT :

xx2yT “

#

qx :

#

x̌ ě x2,

qx ď px` xqx´ xx,
(2)

where qx is a lifted variable representing the squared term.
Envelopes for the generic trigonometric functions sinpxq and
cospxq are xsinpxqy

S and xcospxqy
C :

xsinpxqy
S
“

$

’

’

’

’

&

’

’

’

’

%

qS :

$

’

’

’

’

&

’

’

’

’

%

qSďcos
´

xm

2

¯́

x´ xm

2

¯

`sin
´

xm

2

¯

if xď 0ď x,

qSěcos
´

xm

2

¯́

x` xm

2

¯

´sin
´

xm

2

¯

if xď 0ď x,

qS ě
sinpxq´sinpxq

x´x
px´ xq ` sin pxq if x ě 0,

qS ď
sinpxq´sinpxq

x´x
px´ xq ` sin pxq if x ď 0,

(3)

xcospxqy
C

“

#

qC :

#

qC ď 1 ´
1´cospxmq

pxmq2
x2,

qC ě
cospxq´cospxq

x´x
px´ xq ` cos pxq ,

(4)

where xm “ maxp|x| , |x|q. The envelopes xsinpxqy
S and

xcospxqy
C in (3) and (4) are valid for ´π

2 ď x ď π
2 .

The lifted variables qS and qC are associated with the
envelopes for the functions sinpθlmq and cospθlmq. The QC
relaxation of the OPF problem in (1) is:

min
ÿ

iPN
c2,i pP gi q

2
` c1,i P

g
i ` c0,i (5a)

subject to p@i P N , @ pl,mq P Lq

P gi ´ P di “ gsh,i wii `
ÿ

pl,mqPL,
s.t. l“i

Plm `
ÿ

pl,mqPL,
s.t. m“i

Pml, (5b)

Qgi ´Qdi “ ´bsh,i wii `
ÿ

pl,mqPL,
s.t. l“i

Qlm `
ÿ

pl,mqPL,
s.t. m“i

Qml, (5c)

pV iq
2 ď wii ď pV iq

2, wii P
@

V 2
i

DT
, (5d)

Plm “ glmwll ´ glmclm ´ blmslm, (5e)
Qlm “ ´ pblm ` bc,lm{2qwll ` blmclm ´ glmslm, (5f)
Pml “ glmwmm ´ glmclm ` blmslm, (5g)
Qml “ ´ pblm ` bc,lm{2qwmm ` blmclm ` glmslm, (5h)

pPlmq
2

` pQlmq
2

ď
`

Slm
˘2
, pPmlq

2
` pQmlq

2
ď

`

Slm
˘2
,

(5i)

clm “
ÿ

k“1,...,8

µlm,k ρ
pkq

lm,1ρ
pkq

lm,2ρ
pkq

lm,3,
qClm P xcospθlmqy

C
,

Vl “
ÿ

k“1,...,8

µlm,kρ
pkq

lm,1, Vm “
ÿ

k“1,...,8

µlm,kρ
pkq

lm,2,

qClm “
ÿ

k“1,...,8

µlm,kρ
pkq

lm,3,

ÿ

k“1,...,8

µlm,k “ 1, µlm,k ě 0, k “ 1, . . . , 8, (5j)

slm “
ÿ

k“1,...,8

γlm,k ζ
pkq

lm,1ζ
pkq

lm,2ζ
pkq

lm,3,
qSlm P xsinpθlmqy

S
,

Vl “
ÿ

k“1,...,8

γlm,kζ
pkq

lm,1, Vm “
ÿ

k“1,...,8

γlm,kζ
pkq

lm,2,

qSlm “
ÿ

k“1,...,8

γlm,kζ
pkq

lm,3,

ÿ

k“1,...,8

γlm,k “ 1, γlm,k ě 0, k “ 1, . . . , 8, (5k)

P 2
lm `Q2

lm ď wll ℓlm, (5l)

ℓlm“

˜

Y 2
lm ´

b2c,lm
4

¸

wll ` Y 2
lmwmm ´ 2Y 2

lmclm ´ bc,lmQlm,

(5m)
»

—

–

µlm,1 ` µlm,2 ´ γlm,1 ´ γlm,2
µlm,3 ` µlm,4 ´ γlm,3 ´ γlm,4
µlm,5 ` µlm,6 ´ γlm,5 ´ γlm,6
µlm,7 ` µlm,8 ´ γlm,7 ´ γlm,8

fi

ffi

fl

⊺ »

—

—

–

V lV m
V lV m
V lV m
V lV m

fi

ffi

ffi

fl

“ 0, (5n)

Equations (1d)–(1g), (1l), (5o)

where ℓlm represents the squared magnitude of the current
flow into terminal l of line pl,mq P L and p¨q

⊺ is the transpose
operator. The relationship between ℓlm and the power flows
Plm and Qlm in (5l) tightens the QC relaxation [38], [50].
Also, as shown in (5d), wii is associated with the squared
voltage magnitude at bus i. Note that (5i) and (5l) are convex
quadratic constraints, while all other constraints are linear.

The lifted variables clm and slm represent relaxations of
the product terms VlVm cospθlmq and VlVm sinpθlmq, respec-
tively, with (5j) and (5k) formulating an “extreme point”
representation of the convex hulls for the product terms
VlVm qClm and VlVm qSlm [23], [43], [51].1 The auxiliary vari-
ables µlm,k, γlm,k P r0, 1s, k “ 1, . . . , 8, pl,mq P L, are used
in the formulations of these convex hulls. The extreme points
of VlVm qClm are ρ

pkq

lm P rVl, Vls ˆ rVm, Vms ˆ r qClm,
qClms,

k “ 1, . . . , 8, and the extreme points of VlVm qSlm are ζpkq P

rVl, VlsˆrVm, Vmsˆr qSlm,
qSlms, k “ 1, . . . , 8. Since sine and

cosine are odd and even functions, respectively, clm “ cml and
slm “ ´sml.

“Linking constraints” (5n) associated with the VlVm terms
that are shared in VlVm cospθlmq and VlVm sinpθlmq are also
enforced to tighten the QC relaxation [48].

IV. EXPLOITING ROTATIONAL DEGREES OF FREEDOM

To provide tighter envelopes for the nonlinear terms in the
OPF problem, our previous work in [46] considered a polar
representation of the branch admittances, Ylmejδlm , as op-
posed to the rectangular admittance representation glm` jblm
used in (5). We also used a per unit normalization with a
complex base power, i.e., Sbaseejψ, to improve the QC relax-
ation’s trigonometric envelopes. The angle of the base power,
ψ, affects the arguments of the trigonometric functions [46]:

S̃lm “ Slm{ejψ “

´

Ylme
´jpδlm`ψq ` pbc,lm{2qe´jp π

2 `ψq
¯

V 2
l

´ YlmVlVme
jp´δlm`θlm´ψq, (6a)

S̃ml “ Sml{e
jψ “

´

Ylme
´jpδlm`ψq ` pbc,lm{2qe´jp π

2 `ψq
¯

V 2
m

1An extreme point representation formulates a polytope as a convex
combination of its vertices [51].
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´ YlmVmVle
´jpδlm`θlm`ψq. (6b)

The angle of the complex base power, ψ, linearly enters
the arguments of the trigonometric terms, thus providing a
rotational degree of freedom in the power flow equations [46].
In [46], we exploited this rotational degree of freedom to
improve the QC relaxation’s envelopes. In this section, we
extend this prior work by considering multiple rotation angles
(one per bus) as opposed to the single rotation angle in [46].
We first describe the new rotated OPF formulation and then
formulate its convex relaxation.

A. Rotated OPF Formulation

Permitting each bus to have a different rotation angle
extends our previous work [46]. We define an angle ψl for each
bus l via a unit-length complex parameter ejψl . To ensure that
the power balance constraints at each bus consider quantities
that have been rotated consistently, the power flow equations
for each line connected to bus l must use the same angle ψl.
Thus, when formulating the power balance equations for a
specific bus, e.g., bus l, the power flow equations for every line
connected to bus l are rotated by a consistent angle, denoted
as ϕl. To achieve this, we form rotated versions of the line
flow equations for all lines connected to bus l as follows:

S̃lm “
Slm
ejψl

, S̃ml “
Sml
ejψl

.

Rotated quantities are accented with a tilde, p˜̈q. The power
generation and load demands are adapted by the rotation
angles as formulated in (7) and (8):

„

P̃ gl
Q̃gl

ȷ

“

„

cospψlq sinpψlq
´ sinpψlq cospψlq

ȷ „

P gl
Qgl

ȷ

, (7)
„

P̃ dl
Q̃dl

ȷ

“

„

cospψlq sinpψlq
´ sinpψlq cospψlq

ȷ „

P dl
Qdl

ȷ

. (8)

The rotation angles, ψl, linearly enter the arguments of the
trigonometric terms in the power flow equations in the rotated
OPF problem, as shown in (9), where ℜp ¨ q and ℑp ¨ q are the
real and imaginary parts of a quantity:

P̃lm“ℜpS̃lmq“pYlm cospδlm ` ψlq ´ pbc,lm{2q sinpψlqqV 2
l

´ YlmVlVm cospθlm ´ δlm ´ ψlq, (9a)

Q̃lm“ℑpS̃lmq“´ pYlm sinpδlm ` ψlq`pbc,lm{2q cospψlqqV 2
l

´ YlmVlVm sinpθlm ´ δlm ´ ψlq, (9b)

P̃ml“ℜpS̃mlq“pYlm cospδlm ` ψlq´pbc,lm{2q sinpψlqqV 2
m

´ YlmVmVl cospθlm ` δlm ` ψlq, (9c)

Q̃ml“ℑpS̃mlq“´ pYlm sinpδlm ` ψlq`pbc,lm{2q cospψlqqV 2
m

` YlmVmVl sinpθlm ` δlm ` ψlq. (9d)

Applying (7)–(9) to (1) yields a “rotated” OPF problem. The
rotation angles, ψl, add degrees of freedom to the arguments
of the trigonometric terms in (9). As we will discuss in
Section VIII, appropriately chosen values for ψl can yield
tighter envelopes for these terms.

B. Rotated QC Relaxation

Enclosing the product and trigonometric terms in the rotated
OPF problem yield a “Rotated QC” (RQC) relaxation:

min
ř

kPG c2,k

´

P̃ gk cospψlq ´ Q̃gk sinpψlq
¯2

` c1,k

´

P̃ gk cospψlq ´ Q̃gk sinpψlq
¯

` c0,k (10a)

subject to p@i P N ,@ pl,mq P Lq

P̃ gi ´ P̃ di “ pgsh,i cospψlq ´ bsh,i sinpψlqqwii

`
ÿ

pl,mqPL,
s.t. l“i

P̃lm `
ÿ

pl,mqPL,
s.t. m“i

P̃ml, (10b)

Q̃gi ´ Q̃di “ ´ pgsh,i sinpψlq ` bsh,i cospψlqqwii

`
ÿ

pl,mqPL,
s.t. l“i

Q̃lm `
ÿ

pl,mqPL,
s.t. m“i

Q̃ml, (10c)

pV iq
2 ď wii ď pV iq

2, wii P
@

V 2
i

DT
, (10d)

θref “ 0, (10e)

P gi ď P̃ gi cospψlq ´ Q̃gi sinpψlq ď P
g

i , (10f)

Qg
i

ď Q̃gi cospψlq ` P̃ gi sinpψlq ď Q
g

i , (10g)

V i ď Vi ď V i, θlm ď θlm ď θlm, (10h)
pP̃lmq2 ` pQ̃lmq2 ď pSlmq2, pP̃mlq

2 ` pQ̃mlq
2 ď pSlmq2,

(10i)
P̃lm“pYlm cospδlm`ψlq ´ bc,lm{2 sinpψlqqwll

´ Ylmc̃lm, (10j)
Q̃lm“´ pYlm sinpδlm`ψlq ` bc,lm{2 cospψlqqwll

´ Ylms̃lm, (10k)
P̃ml“´Ylmc̃lm`pYlm cospδlm`ψlq ´ bc,lm{2 sinpψlqqwmm,

(10l)
Q̃ml“Ylms̃lm ´ pYlm sinpδlm`ψlq ` bc,lm{2 cospψlqqwmm,

(10m)
P̃ 2
lm ` Q̃2

lm ď wll ℓ̃lm, (10n)

ℓ̃lm “

ˆ

b2c,lm{4 ` Y 2
lm ´ Ylmbc,lm cospδlm ` ψlq sinpψlq

` Ylmbc,lm sinpδlm ` ψlq cospψlq

˙

V 2
l ` Y 2

lmV
2
m

`
`

´2Y 2
lm cospδlm ` ψlq ` Ylmbc,lm sinpψlq

˘

c̃lm

`
`

2Y 2
lm sinpδlm ` ψlq ` Ylmbc,lm cospψlq

˘

s̃lm,
(10o)

c̃lm “
ÿ

k“1,...,4Ñ

λk η
pkq

1 η
pkq

2 η
pkq

3 , s̃lm “
ÿ

k“1,...,4Ñ

λk η
pkq

1 η
pkq

2 η
pkq

4 ,

Vl “
ÿ

k“1,...,4Ñ

λkη
pkq

1 , Vm “
ÿ

k“1,...,4Ñ

λkη
pkq

2 , S̃lm “
ÿ

k“1,...,4Ñ

λkη
pkq

4 ,

C̃lm “
ÿ

k“1,...,4Ñ

λkη
pkq

3 ,
ÿ

k“1,...,4Ñ

λk “ 1, λk ě 0, k “ 1, . . . , 4Ñ ,

C̃lm P xcospθlm´δlm´ψlqy
C
, S̃lm P xsinpθlm´δlm´ψlqy

S

(10p)
Equation (5n). (10q)

V. CONVEXIFICATIONS AND PROJECTIONS OF AN
ALTERNATIVE NONLINEAR FUNCTION

In this section, we propose tighter convex envelopes for the
nonlinear terms in the power flow equations. Most previous
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Figure 1: A projection of VlVm cospxq sinpxq. The argument
x corresponds to θlm ´ δlm ´ ψl.

research convexifies the VlVm cospθlmq and VlVm sinpθlmq

terms in (1h)–(1k) independently. Instead of individually
convexifying these terms, we focus on a different function,
VlVm cospθlm´ δlm´ψlq sinpθlm´ δlm´ψlq. Fig. 1 shows a
projection of this function. As we will describe, projections of
a convexified form of this function provide tighter envelopes
for the product terms in the rotated power flow equations (9).
We first summarize prior QC formulations for comparison
purposes and then discuss our proposed formulation.

A. Previous Envelopes for Product Terms
By independently convexifying the terms in the products

VlVm cospθlmq and VlVm sinpθlmq, the original QC relaxation
proposed in [38] effectively encloses these terms in a rectangle
defined by the bounds on cospθlmq, sinpθlmq, Vl, and Vm.
Fig. 2a shows a projection of this envelope.

The approach in [46] also uses the bounds on cospθlm ´

δlm´ψlq, sinpθlm´δlm´ψlq, Vl, and Vm to create a rectangle
enclosing the expressions in (9a) and (9b). Another rectangle is
similarly constructed using the bounds on cospθlm`δlm`ψlq,
sinpθlm`δlm`ψlq, Vl, and Vm in (9c) and (9d). Considering
the intersection of these rectangles yields a convex envelope
in the form of a polytope. As shown in Fig. 2b, the envelopes
from the rotated QC relaxation [46] can be tighter than those
from the original QC relaxation [38].

B. Proposed Envelopes for Product Terms
This paper tightens the QC relaxation by constructing

an envelope tailored to the function VlVm cospθlm ´ δlm ´

ψlq sinpθlm ´ δlm ´ ψlq. To accomplish this, we consider the
projection of this function in terms of cospθlm ´ δlm ´ ψlq
and sinpθlm ´ δlm ´ ψlq, as shown by the solid orange line
in Fig. 3. In this projection, the function is an arc of the unit
circle defined using the angle difference bounds θlm and θlm,
i.e., θlm ´ δlm ´ ψl and θlm ´ δlm ´ ψl.

To construct the convex envelope in Fig. 3, we first compute
the green lines that are tangent at the equally spaced black
dots. The extreme points defining the polytope that forms the
convex envelope are then obtained from the intersections of
neighboring tangent lines, denoted by the red squares in Fig. 3.
Finally, the polytope is extended using the bounds on Vl and

Algorithm 1: Compute Extreme Points

1 function Extreme_Point(θlm,θlm,δlm,ψl,Nseg)
2 U Ð θlm ´ δlm ´ ψl, L Ð θlm ´ δlm ´ ψl.
3 Divide the arc between U and L into Nseg equal

segments.
for i “ 1, . . . , Nseg do

4 E “

”

pC̃lm,1, S̃lm,1q, . . . , pC̃lm,Nseg , S̃lm,Nseg q

ı

Ð

Intersection of the tangent lines corresponding to
both ends of the i-th segment.

5 end

6 EXT “

”

E, pC̃lm,L, S̃lm,Lq, pC̃lm,U , S̃lm,U q

ı

Ð Add
the points on the closest tangent line to the arc at the
endpoints U and L to E; see Fig. 3.

7 Extend the resulting points by the upper and lower
bounds on voltage magnitudes,
rEXT s ˆ rVl, Vls ˆ rVm, Vms.

8 return rEXT s ˆ rVl, Vls ˆ rVm, Vms.

Vm in the same manner as in both the original and rotated QC
relaxations [38], [46].

Formally, let Tlm “ tpCint,1lm , Sint,1lm q, pCint,2lm , Sint,2lm q, . . . ,

pC
int,Nseg

lm , S
int,Nseg

lm qu denote the coordinates of the extreme
points (red squares) in Fig. 3, where Nseg is a user-selected
parameter for the number of extreme points. Extend these
extreme points using the bounds on the voltage magnitudes
to obtain the extreme points for a convex envelope enclosing
the function VlVm cospθlm ´ δlm ´ ψlq sinpθlm ´ δlm ´ ψlq,
denoted as ηpkq

lm P rVl, VlsˆrVm, VmsˆTlm, k “ 1, . . . , 4Nseg .
Algorithm 1 describes how to compute these extreme points.

By introducing auxiliary variables denoted as λlm,k P r0, 1s,
k “ 1, . . . , 4Nseg , we next form a convex envelope for the
function VlVm cospθlm ´ δlm ´ ψlq sinpθlm ´ δlm ´ ψlq as
the convex combination of the extreme points ηpkq. Finally,
we take projections of this convex envelope to obtain en-
velopes enclosing the products VlVm cospθlm ´ δlm ´ψlq and
VlVm sinpθlm ´ δlm ´ ψlq.

Using this procedure, we obtain the following constraints
that link the lifted variables clm and slm corresponding to the
expressions VlVm cospθlm ´ δlm ´ ψlq and VlVm sinpθlm ´

δlm ´ ψlq with the remainder of the variables in the prob-
lem (i.e., the lifted variables qClm and qSlm for the cosine
and sine terms, qClm P xcospθlm´δlm´ψlqy

C and qSlm P

xsinpθlm´δlm´ψlqy
S , and the variables θlm, Vl, and Vm):

c̃lm “
ÿ

k“1,...,4Nseg

λlm,k η
pkq

lm,1η
pkq

lm,2η
pkq

lm,4, Vl “
ÿ

k“1,...,4Nseg

λlm,kη
pkq

lm,1,

s̃lm “
ÿ

k“1,...,4Nseg

λlm,k η
pkq

lm,1η
pkq

lm,2η
pkq

lm,5, Vm “
ÿ

k“1,...,4Nseg

λlm,kη
pkq

lm,2,

C̃lm “
ÿ

k“1,...,4Nseg

λlm,kη
pkq

lm,4, S̃lm “
ÿ

k“1,...,4Nseg

λlm,kη
pkq

lm,5 ,

θlm “
ÿ

k“1,...,4Nseg

λlm,kη
pkq

lm,3,

ÿ

k“1,...,4Nseg

λlm,k “ 1, λlm,k ě 0, k “ 1, . . . , 4Nseg. (11)

Fig. 2c visualizes a projection of the convex envelope
obtained using this approach. Comparing Fig. 2c with Figs. 2a
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sinpxq
cospxq

Vl

(a) The original QC formulation from [38].

sinpxq
cospxq

Vl

(b) The rotated QC relaxation from [46].

sinpxq
cospxq

Vl

(c) The proposed QC relaxation from Section V-B.
The envelope (light green region) appears nearly
coincident with the function itself (orange region).

Figure 2: Projections of various envelopes for the function VlVm cospxq sinpxq in terms of Vl, cospxq, and sinpxq. The argument
x indicates the angle difference θlm for the original QC relaxation in Fig. 2a and the rotated argument from the polar admittance
representation, θlm ´ δlm ´ ψl, for the rotated QC relaxations in Figs. 2b and 2c. The pink region common to Figs. 2a–2c is
the function VlVm cospxq sinpxq that we seek to enclose in a convex envelope. The light green regions in Figs. 2a, 2b, and 2c
are the surfaces of the convex envelopes proposed in the original QC relaxation [38], the rotated QC relaxation from [46], and
our proposed formulation from Section V-B, respectively.

si
n

pθ
lm

´
δ l
m

´
ψ
lq

cospθlm ´ δlm ´ ψlq

Figure 3: Projection of the function VlVm cospθlm ´ δlm ´

ψlq sinpθlm ´ δlm ´ ψlq in terms of cospθlm ´ δlm ´ ψlq
and sinpθlm ´ δlm ´ ψlq. The black line is the function
cospθlm ´ δlm ´ ψlq sinpθlm ´ δlm ´ ψlq that we seek to
enclose in a convex envelope. The light green lines are tangent
to the function at the equally spaced black points. The convex
region enclosed by these lines is depicted in light green,
encompassing the nonconvex trigonometric function shown
in orange. The extreme points of the convex envelope for
this function are shown by the red squares and are at the
intersections of the green lines. See Algorithm 1 for details.

and 2b demonstrates the superiority of the proposed approach
in providing tighter envelopes compared to those in [38],
[46]. Note that (11) precludes the need for the linking con-
straint (5n) that relates the common term VlVm in the products
VlVm sinpθlm ´ δlm ´ ψlq and VlVm cospθlm ´ δlm ´ ψlq.

VI. TIGHTER TRIGONOMETRIC ENVELOPES

Having addressed the product terms, we next turn our
attention to the trigonometric functions cospθlm ´ δlm ´ ψlq
and sinpθlm ´ δlm ´ ψlq. This section leverages certain
characteristics of the sine and cosine functions along with the
changes in their curvature to provide tighter convex envelopes
derived using multiple tangent lines to these functions. Figs. 4a
and 4b illustrate these tangent lines for the sine and cosine

functions, respectively. The remainder of this section focuses
solely on the cosine envelopes since the sine envelopes can
be constructed as rotated versions of the cosine envelopes. In
this section, we present an overview of the key ideas without
delving into extensive mathematical details. The complete
mathematical derivations related to the concepts discussed in
this section can be found in the appendix.

We note that the method proposed in this section is a specific
form of an approach recently developed in [52] that uses a
sequence of linear programming relaxations which converge
towards the convex hull of a univariate function. Our proposed
method is an explicit form for a sequence of polyhedral
relaxations that convexify the trigonometric terms in the power
flow equations. In contrast to the approach in [52], which
requires solving a series of linear programs to identify the
convex hull of a univariate function, our proposed method does
not necessitate solving any optimization problems to construct
convex envelopes for the trigonometric function. Our proposed
approach also has conceptual similarities to algorithms that
construct the convex hull of a set of points [53], [54], as
we aim to find tight convex envelopes for the nonconvex
expressions in the power flow equations.

Convex envelopes constructed using tangent lines were also
previously used to convexify the cosine function in the Linear
Programming AC (LPAC) approximation proposed in [55].
However, those envelopes are specific to arguments ranging
from ´90˝ and 90˝. Since the arguments for the trigonometric
functions in our formulation change with the values of δlm and
ψl, we must consider ranges that admit any possible argument,
including ranges for which the curvature changes. This is
challenging since a tangent line to the trigonometric function
at one point may intersect the function in another point, with
the resulting envelope failing to enclose the function.

This section addresses this issue by finding the largest
ranges of values for which tangent lines to the trigonometric
function form an enclosing envelope. These ranges are defined
by the lower bound of the argument, θlm´δlm´ψl, to a point
denoted as Rlm as well as from a point denoted as Rlm to the
upper bound of the argument, θlm ´ δlm ´ ψl. Fig. 5 shows
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(a) Envelope for sinpθlm ´ δlm ´ ψlq, θlm P

r´75˝, 75˝s and ψl ` δlm “ 5˝

co
sp
θ l
m

´
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m

´
ψ
lq

θlm ´ δlm ´ ψl

(b) Envelope for cospθlm ´ δlm ´ ψlq, θlm P

r´75˝, 75˝s and ψl ` δlm “ 5˝

Figure 4: Convex regions (light green) constructed using
tangents (solid green lines) to the sine and cosine functions,
sinpθlm ´ δlm ´ψlq and cospθlm ´ δlm ´ψlq, as described by
Algorithm 2 in the appendix.

Rlm and Rlm via red and yellow stars, respectively. More
specifically, to assist in finding Rlm and Rlm, we define a
function F pθlmq which represents the difference between the
trigonometric function cospθlm ´ δlm ´ψlq itself and the line
which connects the endpoints of cospθlm ´ δlm ´ ψlq at θlm
and θlm:

F pθlmq “ cospθlm ´ δlm ´ ψlq ´ cospθlm ´ δlm ´ ψlq

´
cospθlm ´ δlm ´ ψlq ´ cospθlm ´ δlm ´ ψlq

θlm ´ θlm
ˆ

`

θlm ´ θlm ´ ψl
˘

. (12)

The set of zeros of the first derivative of F pθlmq, i.e., the set
of solutions to dF pθlmq

dθlm
“ 0, is a key quantity to determine if

the curvature of cospθlm ´ δlm ´ψlq changes between θlm ´

δlm ´ ψl and θlm ´ δlm ´ ψl.
If dF pθlmq

dθlm
“ 0 has no solutions, then the curvature of the

trigonometric function does not change between θlm´δlm´ψl
and θlm ´ δlm ´ ψl. Accordingly, any tangent lines can be
selected to form an enclosing envelope for the trigonometric
function. We select equally spaced tangent lines within the
range rθlm´δlm´ψl, θlm´δlm´ψls as illustrated in Fig. 4a.

Conversely, if dF pθlmq

dθlm
“ 0 has one or more solutions,

then the trigonometric function’s curvature changes. This
necessitates special consideration, i.e., finding Rlm and Rlm,
to select appropriate tangent lines to cospθlm ´ δlm ´ ψlq.

-50 0 50

-0.5

0

0.5

1

θlm ´ δlm ´ ψl

si
n

pθ
lm

´
δ l
m

´
ψ
lq

Rlm

Rlm

L

U

Figure 5: Envelope for sinpθlm´δlm´ψlq, θlm P [´60˝, 60˝],
δlm “ ´5˝, and ψl “ 0˝. The curvature of the sine function
changes within the interval considered here. Rlm and Rlm are
shown by red and yellow stars, respectively. Tangent lines to
these points from the endpoints of the interval are plotted. The
endpoints of the interval, i.e., L “ θlm ´ δlm ´ ψl and U “

θlm´δlm´ψl, are shown by black circles. The trigonometric
function’s curvature does not change sign within the intervals
rL,Rlms and rRlm, U s. Thus, tangent lines to points in these
ranges can be selected to form an enclosing envelope for the
trigonometric function.

To compute Rlm and Rlm for the cosine function, we first
identify the tangent line to the cosine function that also passes
through the endpoint θlm ´ δlm ´ ψl. We then define another
auxiliary function representing the difference between this
tangent line and the cosine function. The value of Rlm is given
by the root of the first derivative of this auxiliary function that
is between θlm ´ δlm ´ψl and θlm ´ δlm ´ψl. Note that the
voltage angle difference restriction, i.e., ´90˝ ď θlm ď 90˝,
ensures that the sine and cosine functions have at most one
curvature sign change in any given interval. Rlm is computed
similarly by formulating the tangent line to the cosine function
that also pass through the endpoint θlm ´ δlm ´ ψl and
following the steps above. A comprehensive explanation of
how to compute Rlm and Rlm is available in the appendix.

By construction, the trigonometric function’s curvature does
not change sign within the intervals rθlm´δlm´ψl,Rlms and
rRlm, θlm ´ δlm ´ψls. Accordingly, tangent lines to points in
these ranges can be selected to form an enclosing envelope for
the trigonometric function. As shown in Fig. 4b, we choose
equally spaced tangent lines within each of these ranges.

Our proposed QC relaxation uses envelopes
xsinpθlm ´ δlm ´ ψlqy

S1

and xcospθlm ´ δlm ´ ψlqy
C1

based on the tangent lines described above. The formulations
of the upper and lower bounds of these envelopes depend
on the curvature’s sign and the number of solutions for
dF pθlmq

dθlm
“ 0. For brevity, we present a summary of the

envelopes for the cosine function. Further details for the
cosine function along with expressions for the sine envelopes
are given in the appendix.

If
dF pθlmq

dθlm
“ 0 has one or more solutions:

xcospθlm ´ δlm ´ ψlqy
C1

“

#

qC 1 :

#

qC 1
ď Lcos,i, i “ 1, . . . , Ntan

qC 1
ě Lcos,i, i “ 1, . . . , Ntan

(13a)
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If
dF pθlmq

dθlm
“ 0 has no solutions & curvature sign is negative:

xcospθlm ´ δlm ´ ψlqy
C1

“

#

qC 1 :

#

qC 1
ď Lcos,i, i “ 1, . . . , Ntan

qC 1
ě Lcos,i, i “ 1

(13b)

If
dF pθlmq

dθlm
“ 0 has no solutions & curvature sign is positive:

xcospθlm ´ δlm ´ ψlqy
C1

“

#

qC 1 :

#

qC 1
ď Lcos,i, i “ 1

qC 1
ě Lcos,i, i “ 1, . . . , Ntan

(13c)

where Lsin,i, Lcos,i, Lsin,i, and Lcos,i are the ith tangent lines
which upper and lower bound the sine and cosine functions,
respectively. When the sign of the trigonometric function’s
curvature does not change within an interval, either the upper
or lower boundary of the envelope (depending on the sign of
the curvature) is defined via the line connecting the endpoints
of the trigonometric function, as defined in (13b) and (13c).

The envelopes in (13) are valid for any argument θlm ´

δlm´ψl. The lifted variables qS1 and qC 1 are associated with the
envelopes for the functions sinpθlm´δlm´ψlq and cospθlm´

δlm ´ ψlq. Detailed expressions for Lsin,i, Lcos,i, Lsin,i, and
Lcos,i are available in the appendix.

VII. THE LINEAR ROTATED QC RELAXATION

This section brings together each improvement from this
paper (multiple angle rotations associated with each bus in
Section IV, new envelopes for the product terms in Section V,
and tighter trigonometric envelopes in Section VI) to formulate
our proposed QC relaxation in (14) below. We subsequently
call this formulation the “Linear Rotated QC” (LRQC) relax-
ation since the polytopes for the convex envelopes are con-
structed with linear inequalities and the power flow equations
are rotated versions of the original expressions.

min (10a) (14a)
subject to p@i P N ,@ pl,mq P Lq

Equations (10b)–(10i), (14b)

P̃lm“pYlm cospδlm`ψlq ´ bc,lm{2 sinpψlqqwll

´ Ylmc̃
1
lm, (14c)

Q̃lm“´ pYlm sinpδlm`ψlq ` bc,lm{2 cospψlqqwll

´ Ylms̃
1
lm, (14d)

P̃ml“´Ylmc̃
1
lm`pYlm cospδlm`ψlq ´ bc,lm{2 sinpψlqqwmm,

(14e)
Q̃ml“Ylms̃

1
lm ´ pYlm sinpδlm`ψlq ` bc,lm{2 cospψlqqwmm,

(14f)

P̃ 2
lm ` Q̃2

lm ď wll ℓ̃
1
lm, (14g)

ℓ̃1
lm “

ˆ

b2c,lm{4 ` Y 2
lm ´ Ylmbc,lm cospδlm ` ψlq sinpψlq

` Ylmbc,lm sinpδlm ` ψlq cospψlq

˙

V 2
l ` Y 2

lmV
2
m

`
`

´2Y 2
lm cospδlm ` ψlq ` Ylmbc,lm sinpψlq

˘

c̃1
lm

`
`

2Y 2
lm sinpδlm ` ψlq ` Ylmbc,lm cospψlq

˘

s̃1
lm,

(14h)

c̃1
lm “

ÿ

k“1,...,4Nseg

λlm,k ξ
pkq

lm,1ξ
pkq

lm,2ξ
pkq

lm,4, Vl “
ÿ

k“1,...,4Nseg

λlm,kξ
pkq

lm,1,

s̃1
lm “

ÿ

k“1,...,4Nseg

λlm,k ξ
pkq

lm,1ξ
pkq

lm,2ξ
pkq

lm,5,

θlm “
ÿ

k“1,...,Nseg

λlm,kη
pkq

lm,3, Vm “
ÿ

k“1,...,4Nseg

λlm,kξ
pkq

lm,2,

S̃1
lm “

ÿ

k“1,...,4Nseg

λlm,kξ
pkq

lm,5, C̃ 1
lm “

ÿ

k“1,...,4Nseg

λlm,kξ
pkq

lm,4,

ÿ

k“1,...,4Nseg

λlm,k “ 1, λlm,k ě 0, k “ 1, . . . , 4Nseg,

C̃ 1
lm P xcospθlm´δlm´ψlqy

C1

, S̃1
lm P xsinpθlm´δlm´ψlqy

S1

.
(14i)

The lifted variables c̃1
lm and s̃1

lm represent relaxations of the
product terms VlVm cospθlm ´ δlm ´ψlq and VlVm sinpθlm ´

δlm ´ ψlq, respectively, with (14i) formulating an “extreme
point” representation of the convex hulls for the product terms
VlVm qC 1

lm
qS1
lm. The extreme points of VlVm qC 1

lm
qS1
lm are ξpkq P

rVl, Vls ˆ rVm, Vms ˆTlm, k “ 1, . . . , 4Nseg . Tlm denotes the
coordinates of the extreme points (red squares) in Fig. 3

To illustrate the tightness of the envelopes in the LRQC
relaxation, Figs. 6a–6e show a projection of the function
VlVm sinpθlm ´ δlm ´ ψlq cospθlm ´ δlm ´ ψlq along with
the convex envelopes from both the approach in [48] and our
proposed method. The orange region common to each figure
corresponds to different views of the function itself and the
light green polytopes are the convex envelopes. Figs. 6a–6b
show envelopes from the original QC relaxation and Figs. 6c–
6d show our proposed envelopes. Observe that our proposed
envelopes can be significantly tighter than those in the original
QC relaxation. Fig. 6e shows these same envelopes with the
full function VlVm sinpθlm ´ δlm ´ ψlq cospθlm ´ δlm ´ ψlq
where regions outside of the voltage magnitude and angle
difference bounds are transparent rather than orange.

VIII. CHOOSING THE ROTATION ANGLES

The rotation angles ψl play an important role in the perfor-
mance of the proposed LRQC relaxation (14). Since the ad-
mittance angles δlm vary between branches, different rotation
angles ψl may yield tighter envelopes for the trigonometric
terms cospθlm´δlm´ψlq and sinpθlm´δlm´ψlq. To illustrate
the impact of the rotation angle ψl on the convex envelopes,
Fig. 7 shows two envelopes associated with different choices
of ψl. This section proposes and analyzes a heuristic approach
for choosing the rotation angle ψl for each bus. This heuristic
is based on minimizing the convex envelopes’ volumes using
the intuition that smaller volumes correspond to tighter en-
velopes. The results in Section X show this heuristic’s merits
via improved optimality gaps for various test cases.

For each bus, we determine the best ψl by calculating the
summation of volumes associated with the convex envelopes
that enclose VlVm cospθlm´δlm´ψlq sinpθlm´δlm´ψlq terms
for all the lines connected to bus l. To this end, we begin by
sweeping the value of ψl from ´90˝ to 90˝ in 1˝ increments.
We then compute the volume of the polytope depicted in Fig. 7
for all lines connected to bus l. Finally, we choose the rotation
angle for each bus based on the minimum sum of the volumes.

Finding the volume-minimizing rotation angle for each bus
is a time consuming process especially for larger test systems
due to the need to perform many volume computations. Since
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(b) Envelope from the original QC relaxation in [48] (alter-
nate view).
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(c) Envelope from the proposed LRQC relaxation (14).
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(d) Envelope from the proposed LRQC relaxation (14) (al-
ternate view).
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(e) Envelope from the proposed LRQC relaxation (14). The black and white region shows the entire function VlVm cospxq sinpxq while the orange
region is the portion of this function within the voltage magnitude and phase angle difference bounds as in Figs. 6a–6d.

Figure 6: Projections of the function VlVm cospxq sinpxq in terms of VlVm cospxq and VlVm sinpxq. The argument x indicates
the angle difference θlm for the original QC relaxation in Figs. 6a and 6b and the rotated argument from the polar admittance
representation, θlm ´ δlm ´ψl, for the LRQC relaxation from (14) in Figs. 6c–6e. The orange region common to Figs. 6a–6e
is the function VlVm cospxq sinpxq that we seek to enclose in a convex envelope. The light green regions correspond to the
surfaces of the convex envelopes proposed in the original QC relaxation [38] for Figs. 6a and 6b and the proposed LRQC
relaxation (14) from Section VII for Figs. 6c–6e. Note that Figs. 6b and 6d on the right side show rotated views of the same
projections as Figs. 6a and 6c, respectively, on the left side.
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ψl “ ´67.8˝

δlm “ 83˝

ψl “ ´174˝

δlm “ 83˝

Figure 7: Projection of VlVm cospxq sinpxq (orange regions),
where x indicates the θlm ´ δlm ´ ψl, for different values of
ψl. The associated envelopes in light orange and light green
show how choosing ψl affects the convex envelopes.

this volume-minimization heuristic only requires knowledge
of the line admittances connected to each bus, the volume
computations can be performed once offline and can be reused
for multiple OPF problems with the same system so long as
the topology remains unchanged. Furthermore, the evaluation
of this heuristic can be performed in parallel for each line.
If the topology does change, only the values of ψl associated
with buses l that are directly associated with the modified
topology need to be updated. Thus, while potentially time
consuming in its first evaluation, we anticipate this heuristic
would nevertheless be practically relevant. However, if one
wishes to avoid time-consuming offline computations, we
observed that most of the resulting rotation angles ψl for the
PGLib-OPF test cases are in the intervals r´90˝,´85˝s and
r85˝, 90˝s. The numerical results indicate that selecting a value
of ψ:

l “ ´85˝ for all buses l yields small optimality gaps
for most test cases, suggesting that this value could be used
directly with limited impacts on the relaxation’s tightness.

IX. CHOOSING THE NUMBER OF EXTREME POINTS
FOR THE sinpxq cospxq ENVELOPES

Since our convex envelopes are polytopes, the associated
constraints in the LRQC formulation are linear. This contrasts
with prior QC relaxations, where more computationally com-
plex convex quadratic constraints are commonly used. Our
formulation also enables tailoring the tightness of these en-
velopes by adjusting the number of segments in the polytopes
to balance tractability and tightness. This section presents an
analytical assessment regarding this trade-off. An empirical
assessment is provided by the numeric results in Section X-D.

We next analytically characterize the tightness of the pro-
posed envelopes for the product terms VlVm sinpxq cospxq as
the number of extreme points varies. We specifically compare
the volume associated with a projection of the envelope for
the VlVm sinpxq cospxq terms with respect to the expression
sinpxq cospxq. The normalized volume associated with the
envelopes for the sinpxq cospxq expression using the formu-
lation in the original QC relaxation, as shown in Fig. 8, is
0.134. The normalized volume of the relevant envelopes in the
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Figure 8: Envelope for the function cospxq sinpxq in terms
of cospxq and sinpxq. The argument x indicates θlm for
the original QC relaxations. The black curve is the function
cospxq sinpxq that is enclosed in a convex envelope shown by
the red lines.

proposed LRQC relaxation depends on the number of extreme
points, which is itself determined by the Nseg parameter in
Algorithm 1. Figs. 9a-9d show the sinpxq cospxq function and
its convex envelopes for Nseg “ 3, Nseg “ 6, Nseg “ 12, and
Nseg “ 22, respectively. The normalized volumes enclosed
by the convex envelope in these figures are 0.144, 0.093,
0.0911, and 0.0907. This indicates that increasing the number
of segments from 3 to 6 significantly decreases this volume,
whereas increases from 6 to 12 has a much smaller impact,
suggesting diminishing returns to increasing this parameter.
This is consistent with the numerical results in Section X-D.

As we will show empirically in Table V and discuss in
Section X-D, increasing the number of the segments from
6 to 12 can significantly increase computational times. We
therefore recommend selecting Nseg “ 5.

X. NUMERICAL RESULTS

This section demonstrates the proposed improvements using
selected test cases from the PGLib-OPF v18.08 benchmark
library [56]. With large optimality gaps between the objective
values from the best known local optima and the lower
bounds from various relaxations, these test cases challenge
a variety of solution algorithms and are therefore suitable
for our purposes. Our implementations use Julia 0.6.4, JuMP
v0.18 [57], PowerModels.jl [58], and Gurobi 8.0 as modeling
tools and the solver. For comparison purposes, we also use the
second-order cone programming (SOCP) relaxation from [59]
as implemented in PowerModels.jl [58] as well as a Matlab
implementation of the semidefinite programming (SDP) re-
laxation from [60] solved with Mosek 10.1. The results are
computed using a laptop with an Intel i7 1.80 GHz processor
and 16 GB of RAM.

A. Optimality Gaps and Solution Times
Table I summarizes the results from applying the QC (5),

RQC (10), SOCP [59], SDP [60], and the proposed LRQC (14)
relaxations to selected test cases. To get illustrative results for
the LRQC relaxation, we set Nseg “ 5. The first column lists
the test cases. The next group of columns represents optimality
gaps as defined in (15). The optimality gaps are computed
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Figure 9: Various envelopes for the function cospxq sinpxq in
terms of cospxq and sinpxq. The argument x indicates the
rotated argument from the polar admittance representation,
θlm ´ δlm ´ ψl, for the rotated QC relaxations in Figs. 9a-
9d. The black curve common to Figs. 9a-9d is the function
cospxq sinpxq that we enclose in a convex envelope. The red
envelopes in these figures are the convex envelopes in our
proposed formulation in Algorithm 1 for (a): Nseg “ 3,
(b): Nseg “ 6, (c): Nseg “ 12, and (d): Nseg “ 22.

using the local solutions to the non-convex problem (1) from
PowerModels.jl:

Optimality Gap “

ˆ

Local Solution ´ QC Bound
Local Solution

˙

. (15)

Upon comparing the fifth and sixth columns of Table I,
it is evident that the RQC relaxation from our previous work
in [46] outperforms the original QC relaxation for all test cases
by converging to tighter lower bounds. The best rotation angle
ψ˚ for the RQC relaxation in the seventh column of Table I
is obtained by sweeping ψ from ´90˝ to 90˝ in steps of 0.5˝.
The RQC relaxation in [46] with ψ˚ (the best value of ψ for
each case) provides optimality gaps that are at least as good
as those obtained by the original QC relaxation (5) for all
test cases, resulting in an improvement of 1.36% on average
compared to the original QC relaxation.

By comparing the sixth and ninth columns of Table I, it
can be seen that the proposed LRQC relaxation is superior to
the RQC relaxation as it converges to tighter lower bounds for
all test cases. The eighth column in Table I lists the results
for the LRQC relaxation with rotation angles computed by
minimizing the volume of the envelope enclosing the function
VlVm cospθlm´δlm´ψlq sinpθlm´δlm´ψlq. Comparing the
eighth column with the third, fifth, and sixth columns demon-
strates that the LRQC relaxation improves the optimality gaps
for all the test cases in Table I compared to the SOCP, QC
and RQC relaxations, with some cases exhibiting substantial
improvements. For instance, the RQC and LRQC relaxations
have 0.63% and 0.27% optimality gaps for “case3 lmbd” test
case, respectively.

Moreover, the proposed LRQC relaxation finds better lower
bounds for some test cases compared to the SDP relaxation.
For instance, the SDP relaxation has 0.38%, 4.99%, and 2.54%
optimality gaps for the “case3 lmbd”, “case3 lmbd api”,
and “case24 ieee rts sad” test cases, respectively, while
the proposed LRQC relaxation’s optimality gaps are 0.26%,
3.65%, and 1.82%. This indicates that the proposed LRQC
relaxation can find better lower bounds for some problems
while also being much faster than the SDP relaxation, as
shown in Table II.

We also observe that the proposed LRQC relaxation im-
proves the optimality gaps for both small and large systems.
For instance, the LRQC relaxation closes the optimality gap
for the “case2868 rte api” test case, where the previous
RQC relaxation had an optimality gap of 0.16%. Moreover,
the LRQCs relaxation with both the volume-minimizing ψl
and suggested ψ:

l “ 85˝ outperform the QC and RQC
relaxations for all test cases. As expected from the analysis
in Section VIII, applying the suggested ψ:

l “ 85˝ results in
good performance across a variety of test cases.

To provide further context for these results, we con-
ducted a comparison between the optimality gap improvements
achieved by the strongest previously known QC relaxation
over the proceeding SOCP relaxation from [59]. For the
PGLib-OPF test cases in Table I, this comparison shows
optimality gap reductions from 0.0% to 6.84%, with an
average across these test cases of 1.20%. We note that these
improvements were achieved via a number of advancements
detailed in a series of papers including [38]–[40]. In compar-
ison, the LRQC relaxation’s improvements over the previous
state-of-the-art QC relaxation range from 0.0% to 9.58%, with
an average of 1.31% across the PGLib-OPF test cases in
Table I. Thus, the tighter optimality gaps here are comparable
in size to prior advances in QC relaxation formulations. We
also note that optimality gap improvements of this size are
meaningful given the large-scale nature of power systems.
As an analogy, one might compare the considerable effort
expended to close optimality gaps for mixed-integer linear
programming solvers to within 0.5% or 0.1% in a variety of
power systems applications like unit commitment.

We also assess the LRQC relaxation relative to the SOCP
relaxation from [59]. Since they include the constraints from
this SOCP relaxation, both the original QC relaxation and
our proposed LRQC relaxation are generally tighter. Compar-
ing the optimality gaps in Table I for the SOCP relaxation
from [59] and the proposed LRQC relaxation demonstrates
that the proposed LRQC relaxation significantly improves the
optimality gap over SOCP relaxation, achieving an average
improvement of 29% (i.e., the average optimality gap from
the LRQC relaxation is 29% smaller relative to the optimality
gap from the SOCP relaxation). Notably, this improvement
exceeds 60% in eight test cases and surpasses 75% in five
test cases, highlighting the superior performance of LRQC
relaxation. Note that this improvement in the optimality gap is
accompanied by an increase in computational time for some
test cases. The percentage increase in computational time for
the LRQC relaxation compared to the SOCP relaxation varies
across test cases, with some instances showing substantial
increases. For example, the computational time increased by
over 50% in several cases and up to 82.3% in the most
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Table I: Results from Applying Various Relaxations to Selected PGLib Test Cases

Test Case AC SOCP Gap SDP Gap QC Gap RQC pψ˚q LRQC LRQC Gap (%)
pψ:

l “ 85˝q($/hr) Gap (%) Gap (%) Gap (%) Gap (%) ψ˚ Gap (%)

case3 lmbd 5812.64 1.32 0.39 0.97 0.63 11 0.26 0.27
case14 ieee 2178.08 0.11 0.00 0.11 0.10 -23 0.09 0.10
case30 ieee 8208.52 18.84 0.00 18.67 11.82 -25 9.08 12.06
case39 epri 138415.56 0.55 0.01 0.54 0.51 0 0.50 0.51

case89 pegase 107285.67 0.75 0.30 0.75 0.74 77 0.73 0.74
case118 ieee 97213.61 0.90 0.07 0.77 0.62 70 0.55 0.56

case240 pserc 3329670.06 2.77 1.43 2.72 2.54 8 2.39 2.41
case300 ieee 565219.97 2.62 0.12 2.56 2.24 -13 2.18 2.16
case1951 rte 2085581.84 0.13 0.01 0.13 0.11 -10 0.11 0.11

case2316 sdet 1775325.55 1.79 0.66 1.79 1.78 -9 1.76 1.77
case2848 rte 1286608.19 0.12 0.05 0.12 0.12 -48 0.11 0.11

case2869 pegase 2462790.43 1.01 0.08 1.00 0.98 -10 0.98 0.98
case6515 rte 2825499.64 6.40 5.57 6.39 6.38 82 6.37 6.37

case9241 pegase 6243090.38 2.54 2.10 1.71 1.69 -10 1.66 1.67
case3 lmbd api 11242.12 9.32 7.34 4.57 3.93 -71 3.65 3.68
case14 ieee api 5999.36 5.13 0.00 5.13 5.13 63 5.13 5.13

case24 ieee rts api 134948.17 17.87 2.06 11.02 6.98 -11 4.47 6.15
case30 fsr api 701.15 2.76 0.28 2.75 2.69 78 2.58 2.63

case30 ieee api 18043.92 5.45 0.00 5.45 5.29 -23 4.50 5.25
case73 ieee rts api 422726.14 12.88 2.91 9.54 7.24 -10 6.21 6.92

case118 ieee api 242054.0 28.81 11.16 28.67 26.38 -8 24.17 26.00
case162 ieee dtc api 120996.12 4.36 1.42 4.32 4.27 -9 4.24 4.26

case179 goc api 1932120.33 9.88 0.55 5.86 4.06 -78 3.16 3.16
case300 ieee api 650147.21 0.89 0.08 0.83 0.70 -15 0.64 0.64
case2848 rte api 1496368.95 0.22 0.06 0.22 0.21 79 0.18 0.20

case2869 pegase api 2934160.71 1.33 0.45 1.32 1.30 -10 1.11 1.29
case6515 rte api 3162434.34 1.95 1.18 1.91 1.91 -8 1.90 1.91
case3 lmbd sad 5959.33 3.74 1.86 1.38 1.02 68 0.92 0.92
case14 ieee sad 2777.35 21.54 0.09 19.16 15.39 -12 12.70 14.20

case24 ieee rts sad 76943.24 9.55 4.36 2.74 2.12 -12 1.82 1.84
case30 ieee sad 8208.52 9.69 0.00 5.66 4.45 66 3.94 4.11
case39 epri sad 148354.41 0.66 0.02 0.20 0.17 82 0.16 0.16
case57 ieee sad 38663.88 0.70 0.05 0.32 0.31 84 0.29 0.29

case73 ieee rts sad 227745.73 6.74 2.75 2.37 1.82 78 1.55 1.56
case118 ieee sad 103292.3082 8.21 1.43 6.67 5.07 69 4.00 4.48

case162 ieee dtc sad 108695.95 6.48 2.08 6.22 5.54 76 4.51 5.02
case300 ieee sad 565712.83 2.60 0.14 2.34 1.59 83 1.32 1.37
case1951 rte sad 2092788.97 0.48 0.30 0.43 0.42 -10 0.40 0.40

case2746wop k sad 1234338.04 2.36 0.71 1.99 1.84 80 1.77 1.76
case6515 rte sad 2882577.97 8.26 6.21 8.22 8.21 75 8.15 8.17

case9241 pegase sad 6319549.55 2.48 2.77 2.42 2.40 82 2.39 2.39
QC Gap: Optimality gap for the QC relaxation from (5), RQC Gap: Optimality gap for the relaxation from [46, Eq. (16)], SOCP Gap: Optimality gap for
the SOCP relaxation from [59], SDP Gap: Optimality gap for the SDP relaxation from [60], LRQC Gap: Optimality gap for the relaxation from (14),
ψ˚: Use of the volume-minimizing ψl for this case.

extreme case. Conversely, there are also cases where LRQC
relaxation is faster, with the most significant example taking
only one-fifth of the SOCP relaxation’s computation time.
These findings suggest that LRQC relaxation offers better
optimality gaps, but may require more computational time.

As shown in Table II, the LRQC relaxation’s improved
tightness comes at the cost of slower (but still tractable)
computational times for some test cases. When analyzing the
last two columns of Table II, it becomes evident that the
impact of adding the proposed envelopes on execution time
is quite diverse. For instance, in cases like “case300 ieee,”
implementing these envelopes leads to a reduction in execution
time by over 57.7%. On the contrary, for other test cases,
there is a considerable increase in execution time, reaching up
to 200% in some instances. However, on average across all
the test cases, enforcing the proposed envelopes results in a
moderate increase of less than 38% in the time required to
solve the RQC relaxation from [46].

B. Assessing Decision Variable Quality

The optimality gap is a key measure of relaxation tight-
ness that is both most commonly used to benchmark the
performance of various relaxations and, as discussed in the
introduction, is highly relevant for many applications. For
other applications, one may also be interested in the quality
of the decision variable values for voltage phasors, line flows,
generator outputs, etc. in a relaxation’s solution. To assess
this, reference [61] proposes two metrics for gauging the
proximity to local optimality and to AC feasibility. A main
finding of [61] is that many power flow relaxations have a
nonlinear relationship between the optimality gap and these
metrics. Small optimality gaps typically correspond to small
values of these metrics, but moderate to large optimality gaps
may have either small or large values of these metrics. Our
proposed LRQC relaxation exhibits similar behavior.

For the proximity to local optimality metric (“Average
Normalized Distance to a Local Solution”) in [61], we note
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Table II: Execution Time from Applying Various Relaxations to Selected PGLib Test Cases

Test Cases AC Time SOCP Time SDP Time QC Time RQC Time LRQC Time
case3 lmbd 0.72 0.09 0.06 0.26 0.01 0.02
case14 ieee 0.01 0.04 0.06 0.37 0.02 0.05
case30 ieee 0.03 0.12 0.13 0.33 0.03 0.12
case39 epri 0.05 0.16 0.14 0.38 0.06 0.12

case89 pegase 0.23 0.45 1.09 0.87 0.44 1.10
case118 ieee 0.16 0.32 0.59 0.55 0.23 0.37
case240 pserc 4.37 1.06 1.07 1.13 0.92 1.42
case300 ieee 1.22 0.94 1.57 1.54 3.15 1.33
case1951 rte 8.07 6.56 17.84 7.70 8.97 12.65

case2316 sdet 5.2 5.68 59.21 6.11 7.37 7.36
case2848 rte 11.77 8.04 32.26 10.56 10.63 18.04

case2869 pegase 11.29 9.16 34.96 15.54 13.17 19.88
case6515 rte 71.92 23.72 224.47 41.13 17.62 49.74

case9241 pegase 82.83 34.82 394.62 101.47 120.31 138.52
case3 lmbd api 0.02 0.09 0.01 0.51 0.01 0.02
case14 ieee api 0.02 0.04 0.06 0.37 0.03 0.05

case24 ieee rts api 0.11 0.19 0.14 0.71 0.04 0.04
case30 ieee api 0.03 0.12 0.14 0.31 0.06 0.08
case30 fsr api 0.04 0.08 0.14 0.37 0.14 0.12

case73 ieee rts api 0.24 0.28 0.44 1.00 0.37 0.43
case118 ieee api 0.24 0.34 0.79 0.53 0.97 0.41

pcase162 ieee dtc api 0.28 0.46 2.42 0.68 0.44 0.83
pcase179 goc api 1.08 1.53 0.83 0.82 0.64 1.51
case300 ieee api 0.90 0.91 2.24 1.22 2.36 1.56
case2848 rte api 22.61 7.51 32.84 12.60 12.56 18.52

case2869 pegase api 11.48 8.56 39.98 10.72 11.00 17.26
case6515 rte api 81.42 22.49 254.93 45.08 43.36 6.72
case3 lmbd sad 0.01 0.12 0.01 0.44 0.01 0.02
case14 ieee sad 0.02 0.04 0.04 0.35 0.03 0.05

case24 ieee rts sad 0.12 0.09 0.11 0.40 0.06 0.06
case30 ieee sad 0.03 0.07 0.08 0.32 0.06 0.13
case39 epri sad 0.04 0.14 0.12 0.36 0.11 0.12
case57 ieee sad 0.06 0.14 0.21 0.38 0.11 0.16

case73 ieee rts sad 0.13 0.21 0.38 0.41 0.41 0.44
case118 ieee sad 0.18 0.28 0.62 0.58 0.39 0.68

case162 ieee dtc sad 0.43 0.46 2.09 0.86 0.84 0.91
case300 ieee sad 0.52 1.16 1.55 1.94 2.06 1.94
case1951 rte sad 7.74 6.03 20.58 7.89 8.45 17.25

case2746wop k sad 5.98 4.38 67.03 6.90 7.91 10.47
case6515 rte sad 71.38 22.79 233.99 46.16 52.88 103.51

case9241 pegase sad 129.78 34.82 478.62 89.37 85.27 196.28

that our proposed LRQC method outperforms the QC re-
laxation in 67% of PGLib-OPF test cases with an average
improvement of 12%. Similarly, for the AC feasibility metric
(“Cumulative Normalized Constraint Violation”) in [61], the
LRQC relaxation outperforms the QC relaxation in 58% of
PGLib-OPF test cases with an average improvement of 7%.
Thus, our proposed LRQC relaxation often outperforms the
original QC relaxation on both metrics in [61].

We also note that recent work in [37] proposes a new
solution restoration method that significantly improves upon
the simplistic AC power flow method used in [61], often
resulting in several orders-of-magnitude improvements in the
accuracy of the restored AC power flow feasible solutions. We
therefore focus on the optimality gaps as our primary metric
for comparing relaxations.

C. Impacts of Bound Tightening on Optimality Gaps

As key parameters in forming the convex envelopes for
the trigonometric functions, the accuracy of QC relaxations
strongly depend on the tightness of the bounds on voltage
magnitudes and phase angle differences. To characterize this,
we applied the bound tightening method described in [62] to

several selected test cases and then executed both the original
QC and the proposed LRQC relaxations on the tightened test
cases. As expected, the results indicate that bound tightening
has a substantial impact on the optimality gaps for both
relaxations. Comparing the optimality gaps for both QC and
LRQC relaxations in Table III with their corresponding values
in Table I reveals that applying bound tightening reduces the
optimality gaps. For instance, applying the bound tightening
approach reduces the gaps for the “case39 epri” and “case118
ieee api” cases by 0.31% and 11.53%, respectively. We
emphasize that the proposed LRQC relaxation still finds better
lower bounds for the bound-tightened test cases compared to
the original QC relaxation, again demonstrating its superiority
over the original QC relaxation.

D. Balancing Execution time and LRQC Relaxation Tightness

The parameter Nseg plays an important role in determining
the tightness of the proposed LRQC relaxation. To demonstrate
its impacts on both solution time and tightness, we applied
the LRQC relaxation with various Nseg values to selected test
cases. This parameter’s influences on the optimality gap and
execution time of the LRQC relaxation are presented in Ta-
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Table III: Optimality Gaps (%) of the QC and LRQC
Relaxations for Selected Tightened PGLib Test Cases

Test Cases AC ($/hr) QC LRQC
case3 lmbd 5812.64 0.8 0.26
case39 epri 138415.5627 0.3 0.20

case118 ieee 97213.61 0.4 0.37
case240 pserc 3329670.06 2.5 2.13
case300 ieee 565219.97 1.5 1.15

case3 lmbd api 11242.12 3.9 3.32
case30 fsr api 701.15 2.5 2.40

case73 ieee rts api 422726.14 5.5 4.14
case118 ieee api 242054.01 20.8 14.47

case162 ieee dtc api 120996.09 4.1 3.66
case300 ieee api 650147.21 0.6 0.42
case3 lmbd sad 5959.33 1.4 0.94

case24 ieee rts sad 76943.24 1.4 1.12
case39 epri sad 148354.41 0.1 0.12
case57 ieee sad 38663.88 0.3 0.25

case73 ieee rts sad 227745.73 1.7 1.25
case118 ieee sad 105216.67 5.9 3.70

case162 ieee dtc sad 108695.95 5.4 3.94
case300 ieee sad 565712.83 1.4 1.14

Table IV: Optimality Gaps (%) of the LRQC Relaxation for
Selected PGLib Test Cases for Differing Numbers of Segments

Test Cases Number of segments (Nseg)
Nseg “ 3 Nseg “ 5 Nseg “ 10 Nseg “ 20

case3 lmbd 0.40 0.27 0.23 0.21
case14 ieee 0.10 0.10 0.10 0.07

case24 ieee rts 0.01 0.01 0.01 0.01
case30 ieee 16.48 12.06 8.46 7.89
case118 ieee 0.62 0.56 0.48 0.45
case300 ieee 2.22 2.16 1.67 1.60

case3 lmbd api 3.64 3.68 3.59 3.58
case14 ieee api 5.13 5.13 5.13 5.11

case24 ieee rts api 9.25 6.15 5.48 5.07
case30 ieee api 5.45 5.25 4.26 3.87
case118 ieee api 27.28 26.00 23.64 22.99
case300 ieee api 0.69 0.64 0.52 0.49
case3 lmbd sad 0.91 0.92 0.91 0.91
case14 ieee sad 15.13 14.20 13.66 13.57

case24 ieee rts sad 1.91 1.84 1.83 1.82
case30 ieee sad 4.36 4.11 4.11 4.09
case118 ieee sad 4.80 4.48 4.27 4.23
case300 ieee sad 1.40 1.37 1.21 1.19

bles IV and V, respectively. The results in these tables indicate
that increasing Nseg beyond five typically has limited impacts
on the optimality gaps but can cause significant increases to
the solution times. Supporting the analytical assessment in
Section IX, these empirical results suggest that Nseg “ 5
provides a good balance between tightness and tractability of
the LRQC relaxation. Note that with Nseg “ 5, the proposed
LRQC relaxation finds tighter lower bounds for all test cases
compared to the original QC, RQC, and SOCP relaxations.

XI. CONCLUSION

This paper has proposed tighter envelopes for the prod-
uct and trigonometric terms in the power flow equations to
improve the tightness of the QC relaxation. These envelopes
are developed by considering a particular nonlinear function
whose projections are the expressions appearing in the power
flow equations. Additionally, we exploit characteristics of the
sine and cosine expressions along with the changes in their
curvature to tighten convex envelopes associated with the
trigonometric terms. Comparison to a state-of-the-art RQC
relaxation implementation demonstrates the value of these

Table V: Execution Times of the LRQC Relaxation for Se-
lected PGLib Test Cases for Differing Numbers of Segments

Test Cases Number of segments Nseg

Nseg “ 3 Nseg “ 5 Nseg “ 10 Nseg “ 20
case3 lmbd 0.02 0.02 0.05 0.06
case14 ieee 0.05 0.05 0.27 0.60

case24 ieee rts 0.12 0.14 0.35 0.72
case30 ieee 0.12 0.12 0.65 1.62

case118 ieee 0.32 0.37 1.65 3.09
case300 ieee 1.26 1.33 13.48 24.43

case3 lmbd api 0.02 0.02 0.07 0.13
case14 ieee api 0.05 0.05 0.18 0.53

case24 ieee rts api 0.04 0.04 0.43 1.63
case30 ieee api 0.07 0.08 0.43 0.84
case118 ieee api 0.37 0.41 2.36 4.30
case300 ieee api 1.50 1.56 17.77 44.40
case3 lmbd sad 0.02 0.02 0.03 0.08
case14 ieee sad 0.05 0.05 0.20 1.02

case24 ieee rts sad 0.05 0.06 0.32 0.61
case30 ieee sad 0.12 0.13 0.47 1.09

case118 ieee sad 0.60 0.68 7.28 3.52
case300 ieee sad 1.90 1.94 7.18 17.79
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Figure 10: The figures in the left column show visualizations
of the function cospθlm ´ δlm ´ ψlq (black curve) and the
line connecting the endpoints of this function at θlm and θlm
(dashed magenta line) for different values of δlm, θlm, and
θlm. The figures in the right column show the corresponding
function F pθlmq and its roots between θlm ´ δlm ´ ψl and
θlm ´ δlm ´ ψl.

improvements via reduced optimality gaps on challenging test
cases while maintaining computational tractability.

APPENDIX

This appendix details the process of selecting appropriate
tangent lines to the sine and cosine functions for arguments
that take a general range of values in order to construct valid
convex envelopes. While finding tangent lines for sine and
cosine functions at any point is relatively straightforward —
one can simply take the derivative to obtain the slope and align
the line with the tangent point — the real challenge lies in
identifying tangent lines that do not intersect the sine or cosine
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function at any other points. This occurs due to the possible
variation in curvature of the sine and cosine functions for
arguments within a general range of values. If the curvature’s
sign does not change, tangent lines will not intersect the sine
and cosine function at any other points.

The case that poses a challenge is when the curvature’s sign
changes, leading to the possibility of a tangent line intersecting
the function at another point. Hence, the initial step in selecting
appropriate tangent lines is to examine whether the curvature’s
sign changes within the specified range for the trigonometric
function’s argument. To tackle this issue, we introduce an
auxiliary function, denoted as F pθlmq in (16), which helps us
ascertain whether the curvature of the trigonometric function
changes within the range rθlm ´ δlm ´ ψl, θlm ´ δlm ´ ψls.
The function F pθlmq captures the difference between the
trigonometric function cospθlm ´ δlm ´ ψlq and the straight
line connecting its endpoints at θlm and θlm:

F pθlmq “ cospθlm ´ δlm ´ ψlq ´ cospθlm ´ δlm ´ ψlq

´
cospθlm ´ δlm ´ ψlq ´ cospθlm ´ δlm ´ ψlq

θlm ´ θlm
ˆ

`

θlm ´ θlm ´ ψl
˘

. (16)

The set of zeros of the derivative of F pθlmq, i.e., the set of
solutions to dF pθlmq

dθlm
“ 0, is a key quantity when determining

if the curvature of cospθlm ´ δlm ´ ψlq changes between
θlm ´ δlm ´ ψl and θlm ´ δlm ´ ψl. In Fig. 10, on the
left side, we present illustrative examples of the function
cospθlm ´ δlm ´ψlq (depicted by the black curve) along with
the dashed magenta line representing the connection between
its endpoints at θlm ´ δlm ´ ψl and θlm ´ δlm ´ ψl. The
right side visualizes the function F pθlmq itself, with its roots
indicated by yellow circles.

The derivative of F pθlmq is

dF pθlmq

dθlm
“ ´ sinpθlm ´ δlm ´ ψlq

´
cospθlm ´ δlm ´ ψlq ´ cospθlm ´ δlm ´ ψlq

θlm ´ θlm
. (17)

We denote the set of zeroes for dF pθlmq

dθlm
“ 0 by

Zθlm,θlm,δlm,ψl
, where the subscripts indicate that the set is

parameterized by θlm, θlm, δlm, and ψl:

Zθlm,θlm,δlm,ψl
“

!

p´1qκ arcsin

˜

cospθlm ´ δlmq ´ cospθlm ´ δlmq
`

θlm ´ θlm
˘

¸

` πκ,

κ “ . . . ,´3,´2,´1, 0, 1, 2, 3, . . .
)

. (18)

Let | ¨ | denote the cardinality of a set. The cardinality
of Zθlm,θlm,δlm,ψl

determines whether the tangent lines
to the trigonometric function at different points within
θlm´δlm´ψl and θlm´δlm´ψl have multiple intersections
with the trigonometric function. If Zθlm,θlm,δlm,ψl

is empty,
it indicates that the curvature of the trigonometric function
does not change. Thus, no tangent lines will have another
intersection with the function. In this case, the slopes of
the kth tangent line (referred to as mk) at an arbitrary
point within the interval, pϕlm, cospϕlm ´ δlm ´ ψlq, is

the derivative of the trigonometric function at this point
´

mk “
dpcospθlm´δlm´ψlqq

dθlm
|ϕlm

“ ´ sinpϕlm ´ δlm ´ ψlq
¯

.
The coordinate of the point itself gives us the offset,
represented as bint, of the tangent line which is equal to
cospϕlm ´ δlm ´ ψlq.

Conversely, when
ˇ

ˇ

ˇ
Zθlm,θlm,δlm,ψl

ˇ

ˇ

ˇ
ě 1, the tangent line

to the cosine function at some point may intersect the cosine
function again at a different point. To address this concern, we
identify points, denoted as Rlm and Rlm, at the boundaries
of ranges for which tangent lines do not intersect the cosine
function. Rlm and Rlm are shown by red and yellow stars,
respectively, in Fig. 5. Note that the voltage angle difference
restriction, i.e., ´90˝ ď θlm ď 90˝, guarantees that the
sine and cosine functions experience at most one curvature
sign change. Consequently, selecting tangent lines to the
cosine function in the ranges rθlm ´ δlm ´ ψl,Rlms and
rRlm, θlm ´ δlm ´ ψl] is a straightforward process since the
curvature of the cosine function remains consistent, with the
same sign, within these ranges. This method yields linear
envelopes that provide a close outer approximation to the
cosine function. The technique is applicable to any angle
difference range, irrespective of the trigonometric function’s
curvature. Next, we will elaborate on the computation process
for Rlm and Rlm.

To determine Rlm and Rlm for the cosine function, we start
by formulating the tangent lines to the cosine function that pass
through the endpoints θlm ´ δlm ´ ψl and θlm ´ δlm ´ ψl,
respectively. The tangent line to the cosine function that pass
through the point θlm ´ δlm ´ ψl is given by F tangpθlmq:

F tangpθlmq “ ´ sinpθlm ´ δlm ´ ψlqpθlm ´ θlmq

` cospθlm ´ δlm ´ ψlq. (19)

We subsequently define an auxiliary function, denoted as
Gpθlmq, which represents the difference between F tangpθlmq

and cospθlm ´ δlm ´ ψlq:

Gpθlmq “ sinpθlm ´ δlm ´ ψlqpθlm ´ θlmq

´ cospθlm ´ δlm ´ ψlq ` cospθlm ´ δlm ´ ψlq. (20)

The root of the derivative of Gpθlmq, i.e., the solution to
dGpθlmq

dθlm
“ 0, within the interval between θlm ´ δlm ´ ψl

and θlm ´ δlm ´ ψl corresponds to the value of Rlm.
Similarly, to find Rlm, we first formulate the tangent line to

the cosine function that pass through the point θlm´δlm´ψl:

F tangpθlmq “ ´ sinpθlm ´ δlm ´ ψlqpθlm ´ θlmq

` cospθlm ´ δlm ´ ψlq. (21)

Next, we define an auxiliary function, denoted as Gpθlmq,
which represents the difference between F tangpθlmq and
cospθlm ´ δlm ´ ψlq:

Gpθlmq “ sinpθlm ´ δlm ´ ψlqpθlm ´ θlmq

´ cospθlm ´ δlm ´ ψlq ` cospθlm ´ δlm ´ ψlq. (22)

Analogously to the discussion above, the root of the derivative
of Gpθlmq, i.e., the solution to dGpθlmq

dθlm
“ 0, within the interval

between θlm ´ δlm ´ ψl and θlm ´ δlm ´ ψl, corresponds to
the value of Rlm.
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Algorithm 2: Finding tangent lines

1 function Find_Tangent(θlm,θlm,δlm,ψl,Ntan)
2 U Ð θlm ´ δlm ´ ψl, L Ð θlm ´ δlm ´ ψl.
3 Define F pθlmq and dF pθlmq

dθlm
.

4 Zθlm,θlm,δlm,ψl
Ð Find the roots of dF pθlmq

dθlm
within

rL,U s.
5 if

ˇ

ˇ

ˇ
Zθlm,θlm,δlm,ψl

ˇ

ˇ

ˇ
ă 1 then

6 At Ntan equally spaced points within rL,U s:
7 for i “ 1 : Ntan do
8 mk,i “ ´ sinpϕlm,i ´ δlm ´ ψlq

bint,i “ cospϕlm,i ´ δlm ´ ψlq
9 end

10 else if
ˇ

ˇ

ˇ
Zθlm,θlm,δlm,ψl

ˇ

ˇ

ˇ
ě 1 then

11 Rlm Ð
dGpθlm,Uq

dθlm
“ 0

12 Rlm Ð
dGpθlm,Lq

dθlm
“ 0

13 Find the tangent lines to cospθlm ´ δlm ´ ψlq at
Rlm and Rlm:

14 mk,Rlm
“ ´ sinpϕlm,Rlm

´ δlm ´ ψlq
15 bint,Rlm

“ cospϕlm,Rlm
´ δlm ´ ψlq

16 mk,Rlm
“ ´ sinpϕlm,Rlm

´ δlm ´ ψlq
17 bint,Rlm

“ cospϕlm,Rlm
´ δlm ´ ψlq

18 Equally divide the ranges rRlm, U s and rL,Rlms

into Ntan segments
19 for i “ 1 : Ntan do
20 mk,i “ ´ sinpϕlm,i ´ δlm ´ ψlq

bint,i “ cospϕlm,i ´ δlm ´ ψlq
21 end
22 end
23 return mk and bint

To locate the roots dGpθlmq

dθlm
“ 0 and dGpθlmq

dθlm
“ 0 within

the interval
“

θlm ´ δlm ´ ψl, θlm ´ δlm ´ ψl
‰

, we start by
applying a bisection method to obtain a close initialization for
a locally convergent Newton method to determine the precise
values of the roots. The reason for employing the bisection
method initially is that the Newton method may converge to
solutions beyond the interval of interest for periodic functions
like dGpθlmq

dθlm
and dGpθlmq

dθlm
. The bisection method finds approx-

imate solutions within the interval of interest that are refined
with a Newton method. The slope of tangent line to the cosine
function at Rlm (referred to as mk,Rlm

), is the derivative of
the cosine functions at the corresponding argument for Rlm,
i.e.,

`

mk,Rlm
“ ´ sinpϕlm,Rlm

´ δlm ´ ψlq
˘

. The coordinate
of the point itself gives us the offset, represented as bint,Rlm

,
of the tangent line which is equal to cospϕlm,Rlm

´δlm´ψlq.
The slope and offset for Rlm is computed similarly.

After computing Rlm and Rlm, we select equally spaced
tangent lines to the cosine function within the intervals
rθlm ´ δlm ´ ψl,Rlms and

“

Rlm, θlm ´ δlm ´ ψl
‰

.
Algorithm 2 outlines the procedure for computing these

convex envelopes using carefully selected tangent lines. For
notational convenience, define L “ θlm ´ δlm ´ ψl and
U “ θlm´δlm´ψl. Equations (23) and (24) define the tangent
lines which form the lower and upper bounds, respectively, of
the cosine envelope:

If curvature changes within rL,U s from positive to negative:

Lcos,i“

"

mk,ipx´x0,iq ` bint,i, i “ 1, . . . , Ntan, if x P rL,Rlms

mk,Rlm
px´ x0,Rlm

q ` bint,Rlm
if x P rRlm, U s

(23a)
If curvature changes within rL,U s from negative to positive:

Lcos,i“

"

mk,ipx´x0,iq ` bint,i, i “ 1, . . . , Ntan, if x P rRlm, U s

mk,Rlm
px´ x0,Rlm

q ` bint,Rlm
if x P rL,Rlms

(23b)
If curvature does not change within rL,U s and it is negative:

Lcos,i“

!

cospUq´cospLq

U´L
px´ Lq ` cospLq @x P rL,U s, (23c)

If curvature does not change within rL,U s and is positive:

Lcos,i“

!

cospUq´cospLq

U´L
px´ Lq ` cospLq @x P rL,U s (23d)

Similarly, the upper bound for the cosine envelope is:

If curvature changes within rL,U s from positive to negative:

Lcos,i“

"

mk,ipx´x0,iq ` bint,i, i“1, . . . , Ntan, if x P rRlm, U s

mk,Rlm
px´ x0,Rlm

q ` bint,Rlm
if x P rL,Rlms

(24a)
If curvature changes within rL,U s from negative to positive:

Lcos,i“

"

mk,ipx´x0,iq ` bint,i, i“1, . . . , Ntan, if x P rL,Rlms

mk,Rlm
px´ x0,Rlm

q ` bint,Rlm
if x P rRlm, U s

(24b)
If curvature does not change within rL,U s and is negative:

Lcos,i“

!

cospUq´cospLq

U´L
px´ Lq ` cospLq @x P rL,U s (24c)

If curvature does not change within rL,U s and is positive:

Lcos,i“

!

cospUq´cospLq

U´L
px´ Lq ` cospLq @x P rL,U s (24d)

where Lcos,i and Lcos,i are the ith tangent lines which upper
and lower bound, respectively, the cosine function; x equals
θlm ´ δlm ´ ψl; x0,i, x0,Rlm

, and x0,Rlm
represent the

horizontal coordinates of the corresponding points within their
respective intervals; bint,i, bint,Rlm

, and bint,Rlm
denote the

vertical coordinates of these same points, which determines the
offset for the tangent lines; and mk,i, mk,Rlm

, and mk,Rlm

signify the slopes of the tangent lines at these points. Note
that when the curvature of the trigonometric function does
not change within an interval, either the lower or upper
envelope can be defined as a line connecting both ends of
the trigonometric function. For instance, consider a specific
angle pϕlm ´ δlm ´ ψlq within the interval rL,Rlms. In this
case, mk,i is equal to ´ sin pϕlm ´ δlm ´ ψlq, which repre-
sents the first derivative of the cosine function at x0,i “

ϕlm ´ δlm ´ ψl. The corresponding offset for this point is
bint,i “ cos pϕlm ´ δlm ´ ψlq. Tangent lines for the lower and
upper bounds of the sine function are formulated similarly.

Equation (13) formulates the cosine function. To complete
the full exposition, we similarly formulate the lower and upper
envelopes for the sine function by defining a function Hpθlmq.
Here, the function Hpθlmq represents the difference between
the trigonometric function sinpθlm ´ δlm ´ ψlq itself and the
line which connects the endpoints of sinpθlm ´ δlm ´ ψlq at
θlm and θlm:

Hpθlmq “ sinpθlm ´ δlm ´ ψlq ´ sinpθlm ´ δlm ´ ψlq

´
sinpθlm ´ δlm ´ ψlq ´ sinpθlm ´ δlm ´ ψlq

θlm ´ θlm
ˆ

`

θlm ´ θlm ´ ψl
˘

. (25)

The number of zeros of the first derivative of Hpθlmq, i.e.,
the number of solutions for dHpθlmq

dθlm
“ 0, is a key quan-

tity to determine if the curvature of sinpθlm ´ δlm ´ ψlq
changes between θlm ´ δlm ´ ψl and θlm ´ δlm ´ ψl. If
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dHpθlmq

dθlm
“ 0 has no solutions, then the curvature of the

sinpθlm ´ δlm ´ψlq does not change between θlm ´ δlm ´ψl
and θlm´δlm´ψl. Our proposed QC relaxation uses envelopes
xsinpθlm ´ δlm ´ ψlqy

S1

formed by combining the tangent
lines. Depending upon the sign of the sine function’s curvature
and the number of solutions to dHpθlmq

dθlm
“ 0, there are different

upper and lower bounds on the sine function’s envelopes:

If
dHpθlmq

dθlm
“ 0 has one or more solutions:

xsinpθlm ´ δlm ´ ψlqy
S1

“

#

qS1 :

#

qS1
ď Lsin,i, i “ 1, . . . , Ntan

qS1
ě Lsin,i, i “ 1, . . . , Ntan

(26a)

If
dHpθlmq

dθlm
“ 0 has no solutions & curvature sign is negative:

xsinpθlm ´ δlm ´ ψlqy
S1

“

#

qS1 :

#

qS1
ď Lsin,i, i “ 1, . . . , Ntan

qS1
ě Lsin,i, i “ 1

(26b)

If
dHpθlmq

dθlm
“ 0 has no solutions & curvature sign is positive:

xsinpθlm ´ δlm ´ ψlqy
S1

“

#

qS1 :

#

qS1
ď Lsin,i, i “ 1

qS1
ě Lsin,i, i “ 1, . . . , Ntan

(26c)

where Lsin,i and Lsin,i are the ith tangent lines which upper
and lower bound, respectively, the sine function.

Equations (27) and (28) mathematically represent the tan-
gent lines for the lower and upper bounds of the sine function,
respectively:

If curvature changes within rL,U s from positive to negative:

Lsin,i“

"

mk,ipx´x0,iq ` bint,i, i “ 1, . . . , Ntan, if x P rL,Rlms

mk,Rlm
px´ x0,Rlm

q ` bint,Rlm
if x P rRlm, U s

(27a)
If curvature changes within rL,U s from negative to positive:

Lsin,i“

"

mk,ipx´x0,iq ` bint,i, i “ 1, . . . , Ntan, if x P rRlm, U s

mk,Rlm
px´ x0,Rlm

q ` bint,Rlm
if x P rL,Rlms

(27b)
If curvature does not change within rL,U s and is negative:

Lsin,i“

!

sinpUq´sinpLq

U´L
px´ Lq ` sinpLq @x P rL,U s, (27c)

If curvature does not change within rL,U s and is positive:

Lsin,i“

!

sinpUq´sinpLq

U´L
px´ Lq ` sinpLq @x P rL,U s (27d)

Similarly, the upper bound for the sine function can be
represented as follows:

If curvature changes within rL,U s from positive to negative:

Lsin,i“

"

mk,ipx´x0,iq ` bint,i, i “ 1, . . . , Ntan, if x P rRlm, U s

mk,Rlm
px´ x0,Rlm

q ` bint,Rlm
if x P rL,Rlms

(28a)
If curvature changes within rL,U s from negative to positive:

Lsin,i“

"

mk,ipx´x0,iq ` bint,i, i “ 1, . . . , Ntan, if x P rL,Rlms

mk,Rlm
px´ x0,Rlm

q ` bint,Rlm
if x P rRlm, U s

(28b)
If curvature does not change within rL,U s and is negative:

Lsin,i“

!

sinpUq´sinpLq

U´L
px´ Lq ` sinpLq @x P rL,U s (28c)

If curvature does not change within rL,U s and is positive:

Lsin,i“

!

sinpUq´sinpLq

U´L
px´ Lq ` sinpLq @x P rL,U s (28d)

where x equals θlm ´ δlm ´ψl; x0,i, x0,Rlm
, and x0,Rlm

rep-
resent the horizontal coordinates of the corresponding points
within their respective intervals; bint,i, bint,Rlm

, and bint,Rlm

denote the vertical coordinates of these points within their
corresponding intervals, determining the offset for the tangent
lines; and mk,i, mk,Rlm

, and mk,Rlm
signify the slopes of the

tangent lines at specific points within their respective intervals.
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