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Abstract—Solutions to optimal power flow (OPF) problems
provide operating points for electric power systems that minimize
operational costs while satisfying both engineering limits and the
power flow equations. OPF problems are non-convex and may
have multiple local optima. To search for global optima, recent re-
search has developed a variety of convex relaxations to bound the
optimal objective values of OPF problems. Certain relaxations,
such as the quadratic convex (QC) relaxation, are derived from
OPF representations that contain trilinear monomials. Previous
work has considered three techniques for relaxing these trilinear
monomials: recursive McCormick (RMC) envelopes, Meyer and
Floudas (MF) envelopes, and extreme-point (EP) envelopes. This
paper compares the tightness and computational speed of relax-
ations that employ each of these techniques. Forming the convex
hull of a single trilinear monomial, MF and EP envelopes are
equivalently tight. Empirical results show that QC formulations
using MF and EP envelopes give tighter bounds than those
using RMC envelopes. Empirical results also indicate that the
EP envelopes have advantages over MF envelopes with respect
to computational speed and numerical stability when used with
state-of-the-art second-order cone programming solvers.

I. INTRODUCTION

Optimal power flow (OPF) is a fundamental problem in
power system operation and control. OPF problems seek
operating points that optimize a specified objective function
(often generation cost minimization) subject to engineering
limits and power flow constraints that model the network
physics [1]. OPF problems are non-convex, may have multiple
local solutions [2], and are generally NP-hard [3], [4]. Since
being introduced by Carpentier in 1962 [5], many solution
techniques have been developed for OPF problems [6], [7].

Recently, a plethora of convex relaxation techniques have
been applied to OPF problems in order to compute bounds on
the objective values and, in some cases, obtain the globally
optimal decision variables. Convex relaxations can also certify
the infeasibility of OPF problems and provide initializations
for local solution algorithms [8]. Convex relaxations have been
formulated as semidefinite programs [9]–[11], second-order
cone programs (SOCP) [12]–[18], and linear programs [19]–
[21]. A detailed survey is provided in [22].

Some relaxations, such as the quadratic convex (QC) re-
laxation, are derived using polar representations of the com-
plex voltage phasors. Polar representations result in trilinear
products consisting of the voltage magnitudes and trigono-
metric functions of voltage angle differences for each pair
of connected buses. The corresponding non-convex trilinear
monomials are relaxed using convex envelope enclosures. The
tightness of these envelopes and their particular mathematical
formulations significantly impact a relaxation’s solution qual-
ity and computational tractability.
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Three formulations for these envelopes have been proposed
in previous OPF relaxation literature: recursively applied Mc-
Cormick (RMC) envelopes [15], Meyer and Floudas (MF)
envelopes [23], and extreme-point (EP) envelopes [24]. RMC
envelopes first form lifted variables representing voltage mag-
nitude products using the McCormick envelope for bilinear
monomials [25], and then use another McCormick envelope
to represent the products of these lifted variables with variables
corresponding to the trigonometic functions. Even though
the McCormick envelopes yield the convex hulls of bilinear
monomials, recursive application of these envelopes does not
necessarily yield the convex hulls of trilinear monomials.

Meyer and Floudas derived envelopes constructed via sets
of hyperplanes which form the convex hulls of trilinear mono-
mials [26], [27]. The convex hulls of trilinear envelopes can
also be formulated via an EP characterization [28]–[30]. MF
and EP envelopes are applied to the QC relaxation in [23]
and [24], respectively. Both the MF and the EP envelopes form
the convex hulls of the trilinear monomials and therefore result
in equivalently tight relaxations. However, their mathematical
representations are quite different, which can result in differing
numerical performance.

To characterize the performance of various envelopes,
this paper compares the solution quality and computational
tractability resulting from each of these three approaches
for handling trilinear monomials in QC relaxations of OPF
problems. Applying each approach to a wide variety of test
cases using various solvers indicates that QC relaxations with
MF and EP envelopes provide tighter objective value bounds
compared to RMC envelopes. Application of multiple solvers
indicates that EP and RMC envelopes are numerically stable
on all the test cases with comparable computational speeds.
MF envelopes yield numerical issues for some solvers.

This paper is organized as follows. Section II overviews the
OPF problem. Section III reviews the QC relaxation of the
OPF problem and presents different approaches for handling
trilinear monomials. Section IV empirically compares each
approach for various test cases. Section V concludes the paper.

II. OPTIMAL POWER FLOW OVERVIEW

This section reviews an OPF formulation using a polar rep-
resentation of the voltage phasors. The power system network
is modeled by a graph pN , Lq with N and L representing
the sets of buses and branches, respectively. Let “ref” denote
the reference bus. Let P d

i ` jQd
i and P g

i ` jQg
i represent the

complex power demand and generation at bus i P N , where
j “

?
´1. Let gsh,i ` jbsh,i denote the shunt admittance at

bus i P N . Let Vi and θi represent the voltage magnitude
and angle at bus i P N . For each generator i P N , define a
quadratic generation cost function with coefficients c2,i ě 0,



c1,i, and c0,i. Denote θlm “ θl ´ θm. Specified upper and
lower limits are denoted by p ¨ q and p ¨ q, respectively. Buses
without generators have generation limits set to zero.

Each line pl,mq P L is modeled as a Π circuit with mutual
admittance glm ` jblm and shunt susceptance jbc,lm. Denote
the complex power flow on the line pl,mq P L as Plm`jQlm.

Using these definitions, the OPF problem is

min
ÿ

iPN
c2,i pP

g
i q

2
` c1,i P

g
i ` c0,i (1a)

subject to p@i P N , @ pl,mq P Lq
P g
i ´ P

d
i “ gsh,i V

2
i `

ÿ

pl,mqPL
s.t. l“i

Plm `
ÿ

pl,mqPL
s.t. m“i

Pml, (1b)

Qg
i ´Q

d
i “ ´bsh,i V

2
i `

ÿ

pl,mqPL
s.t. l“i

Qlm `
ÿ

pl,mqPL
s.t. m“i

Qml, (1c)

θref “ 0, (1d)

P g
i ď P g

i ď P
g
i , Qg

i
ď Qg

i ď Q
g

i , (1e)

V i ď Vi ď V i, θlm ď θlm ď θlm, (1f)

Plm “ glmV
2
l ´ glmVlVm cos pθlmq ´ blmVlVm sin pθlmq , (1g)

Qlm “ ´pblm ` bc,lm{2qV
2
l ` blmVlVm cos pθlmq

´ glmVlVm sin pθlmq , (1h)

P 2
lm `Q

2
lm ď

`

Slm

˘2
, P 2

ml `Q
2
ml ď

`

Slm

˘2
. (1i)

The quadratic objective (1a) minimizes the total generation
cost. Constraints (1b) and (1c) enforce power balance at each
bus. Constraint (1d) sets the angle reference. Constraints (1e)–
(1f) limit the active and reactive power generation, voltage
magnitudes, and angle differences between connected buses.
Constraints (1g)–(1h) model the power flows on each line, and
(1i) limits the apparent power flows into each line terminal.
Note that (1) can be extended to more detailed transformer
models, such as off-nominal tap ratios and non-zero phase
shifts, which are used in computing our numerical results.

III. THE QC RELAXATION

The relevant nonlinear expressions in (1) are V 2
i , @i P N ,

Vl Vm cospθlmq, and Vl Vm sinpθlmq, @pl,mq P L.1 The QC
relaxation encloses these expressions in convex envelopes.

A. Squared voltage magnitude and trigonometric envelopes
The envelope xx2yT is the convex hull of the squared

function:

xx2yT “

!

qx :
!

qx ě x2, qx ď px` xqx´ xx.
)

, (2)

where qx is a “lifted” variable representing the set. Squared
voltage magnitudes are relaxed as wii P xV

2
i y

T .
Envelopes for the sine and cosine functions are

xsinpxqy
S
“

#

qS :

#

qS ď cos
`

xm

2

˘ `

x´ xm

2

˘

` sin
`

xm

2

˘

,
qS ě cos

`

xm

2

˘ `

x` xm

2

˘

´ sin
`

xm

2

˘

.

+

, (3a)

xcospxqy
C
“

#

qC :

#

qC ď 1´ 1´cospxm
q

pxmq2
x2,

qC ě cospxq´cospxq
x´x px´ xq ` cos pxq .

+

, (3b)

1The objective (1d) and constraint (1i) are representable as SOCPs.

where xm “ maxp|x| , |x|q and the lifted variables Š and Č
represent the corresponding set. For each line pl,mq P L, the
QC relaxation is strengthened via constraints proposed in [31]
that relate the squared magnitudes of current flows, `lm, the
squared voltage magnitudes, and the power flows on the lines:

Plm ` Pml “
glm

g2lm ` b
2
lm

˜

`lm `
b2c,lm
4

V 2
l ` bc,lmQlm

¸

, (4a)

Qlm `Qml “
´blm

g2lm ` b
2
lm

˜

`lm `
b2c,lm
4

V 2
l ` bc,lmQlm

¸

´ pbc,lm{2q
`

V 2
l ` V

2
m

˘

, (4b)

P 2
lm `Q

2
lm ď V 2

l `lm. (4c)

Relaxing sinpθlmq and cospθlmq via slm P xsinpθlmqy
S and

clm P xcospθlmqy
C yields the trilinear monomials Vl Vm slm

and Vl Vm clm, @pl,mq P L. This section next presents various
relaxations of these monomials.

B. Recursive McCormick envelopes for trilinear monomials
The McCormick envelope xx yyM forms the convex hull

of the bilinear monomial xy. A McCormick envelope is
formulated using four linear inequality constraints:

xx yyM “

"

|xy :

"

|xy ě xy ` yx´ xy, |xy ě xy ` yx´ xy,

|xy ď xy ` yx´ xy, |xy ď xy ` yx´ xy.

*

,

(5)

where |xy is a lifted variable. To address trilinear monomials,
the QC relaxation in [15] recursively applies McCormick
envelopes by first constructing a lifted variable wlm that
relaxes the product of the voltage magnitudes, Vl Vm, i.e.,
wlm P xVl Vmy

M for all pl,mq P L. McCormick envelopes
are then again applied to represent the trilinear monomials
Vl Vm slm and Vl Vm clm as ws,lm P xwlm slmy

M and wc,lm P

xwlm clmy
M , respectively, for all pl,mq P L.

Recursive McCormick envelopes do not generally yield the
convex hull of a given trilinear monomial [30], [32]. The
following sections describe two alternative envelopes that yield
the convex hull of a trilinear monomial.

C. Meyer and Floudas envelopes for trilinear monomials
MF envelopes [26], [27] are hyperplane representations of

the convex hull of a trilinear monomial. MF envelopes are
formed using linear inequalities that are applied based on
the signs of the bounds on the variables that make up the
trilinear monomial. We denote the envelopes for Vl Vm slm
and Vl Vm clm as ws,lm P xVl Vm slmy

MF and wc,lm P

xVl Vm clmy
MF , respectively, @pl,mq P L.

The cases that are relevant to the monomials Vl Vm slm,
@pl,mq P L, are presented in the boxes denoted “Cases I–VII”,
where the subscripts on the slm variable bounds are dropped
for notational brevity. The upper portion of each box gives
the conditions which must all be satisfied for the constraints
in the lower portion to apply. Note that multiple cases apply
simultaneously (e.g., Case IV implies Case I).

The same procedure is applied for the monomials Vl Vm clm,
@pl,mq P L, with clm replacing slm. Since the cosine function
is non-negative in the first and fourth quadrants, only Cases II
and III are applicable for these monomials.



Case I: s ď 0.
qslm ě V msVl ` V lsVm ` V lV m

qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms.

Case II: s ě 0.
qslm ď V msVl ` V lsVm ` V lV m

qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms.

Case III: s ě 0. Map tVl, Vm, su to tx, y, zu such that
xyz ` xyz ď xyz ` xyz and xyz ` xyz ď xyz ` xyz.

qslm ě yzx` xzy ` xyz ´ 2xyz,

qslm ě yzx` xzy ` xyz ´ 2xyz,

qslm ě yzx` xzy ` xyz ´ xyz ´ xyz,

qslm ě yzx` xzy ` xyz ´ xyz ´ xyz,

qslm ě
Λ3

x´ x
x` xzy ` xyz ´

Λ3x

x´ x
´ xyz ´ xyz ` xyz,

where Λ3 “ xyz ´ xyz ´ xyz ` xyz,

qslm ě
Γ3

x´ x
x` xzy ` xyz ´

Γ3x

x´ x
´ xyz ´ xyz ` xyz,

where Γ3 “ xyz ´ xyz ´ xyz ` xyz.

D. Extreme point envelopes for trilinear monomials
EP envelopes capture the convex hull of a trilinear mono-

mial, or a multilinear monomial in general, in a vertex repre-
sentation [28]. Given a set X , a point p P X is extreme if it
cannot be expressed as a convex combination of two distinct
points from X , i.e., there do not exist two other distinct points
p1, p2 P X and a non-negative multiplier λ P p0, 1q such that
p “ λp1 ` p1´ λqp2. Based on this definition of an extreme
point, we now describe the convex envelope.

Let φpx, y, zq “ xyz be any trilinear term with respective
variable bounds rx, xs, ry, ys, rz, zs. The extreme points of φp¨q
are given by the Cartesian product px, xq ˆ py, yq ˆ pz, zq “
xξ1, ξ2, . . . , ξ8y [28], [32]. We use ξik to denote the coordinate
of xi in ξk. The convex hull of the extreme points of φp¨q is

qx “
ÿ

k“1,...,8

λk φpξkq, xi “
ÿ

k“1,...,8

λk ξ
i
k, (6a)

ÿ

k“1,...,8

λk “ 1, λk ě 0, k “ 1, . . . , 8. (6b)

Given a lifted variable qx, the notation qx P xxyzyEP represents
the λ-based convex hull envelope of a trilinear term as in (6).

E. Formulation of the QC relaxation
Using the envelopes described above, the QC relaxation

replaces the relevant nonlinearities in the OPF problem (1)
to construct an SOCP:

min
ÿ

iPG
c2i pP

g
i q

2
` c1i P

g
i ` c0i (7a)

subject to p@i P N , @ pl,mq P Lq

Case IV: s ď 0,
V lV ms` V lV ms ě V lV ms` V lV ms,

V lV ms` V lV ms ě V lV ms` V lV ms.

qslm ď V msVl ` V lsVm ` V lV m
qS ´ 2V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ 2V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm `
Λ4

s´ s
qS ´

Λ4s

s´ s
´ V lV ms

´ V lV ms` V lV ms,

where Λ4 “ V lV ms´ V lV ms´ V lV ms` V lV ms,

qslm ď V msVl ` V lsVm ´
Γ4

s´ s
qS ´

Γ4s

s´ s
´ V lV ms

´ V lV ms` V lV ms,

where Γ4 “ V lV ms´ V lV ms´ V lV ms` V lV ms.

Case V: s ď 0,
V lV ms` V lV ms ě V lV ms` V lV ms,

V lV ms` V lV ms ă V lV ms` V lV ms,

V lV ms` V lV ms ă V lV ms` V lV ms.

qslm ď V msVl ` V lsVm ` V lV m
qS ´ 2V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ 2V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl `
Λ5

V m ´ V m

Vm ` V lV m
qS ´

Λ5V m

V m ´ V m

´ V lV ms´ V lV ms` V lV ms,

where Λ5 “ V lV ms´ V lV ms´ V lV ms` V lV ms,

qslm ď V msVl `
Γ5

V m ´ V m

Vm ` V lV m
qS ´

Γ5V m

V m ´ V m

´ V lV ms´ V lV ms` V lV ms,

where Γ5 “ V lV ms´ V lV ms´ V lV ms` V lV ms.

Case VI: s ď 0, s ě 0.
qslm ě V msVl ` V lsVm ` V lV m

qS ´ 2V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ě V msVl ` V lsVm `
Λ6

s´ s
qS ´

Λ6s

s´ s
´ V lV ms

´ V lV ms` V lV ms,

where Λ6 “ V lV ms´ V lV ms´ V lV ms` V lV ms.

Case VII: s ď 0, s ě 0.
qslm ď V msVl ` V lsVm ` V lV m

qS ´ 2V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm ` V lV m
qS ´ V lV ms´ V lV ms,

qslm ď V msVl ` V lsVm `
Λ7

s´ s
qS ´

Λ7s

s´ s
´ V lV ms

´ V lV ms` V lV ms,

where Λ7 “ V lV ms´ V lV ms´ V lV ms` V lV ms.

Equations (1b), (1c), (1g), (1h), (4) with substitutions V 2
i Ñ wii,

Vl Vm sinpθlmq Ñ ws,lm, Vl Vm cospθlmq Ñ wc,lm, (7b)
Equations (1d)–(1f), (1i) (7c)

wlm P xVl Vmy
M , ws,lm P xwlm slmy

M , wc,lm P xwlm clmy
M , or

ws,lm P xVl Vm slmy
MF_EP , wc,lm P xVl Vm clmy

MF_EP . (7d)



IV. COMPARISON OF THE TRILINEAR ENVELOPES

There are trade-offs inherent to the choices of trilinear
envelopes in the QC relaxation (7d). The MF and EP envelopes
both yield the convex hull of an individual trilinear monomial
and therefore are equivalently tight. When applied to the
summation of trilinears in constraints (1g)–(1h), these en-
velopes do not explicitly enforce consistency among the shared
voltage products Vl Vm in the summation, which is enforced in
the recursive McCormick formulation via the common lifted
variable wlm. However, for the test cases considered in this
paper, we numerically observe that QC formulations using
MF and EP envelopes give tighter objective value bounds
compared to those using recursive McCormick envelopes.

The number of variables and constraints necessary to de-
scribe the trilinear envelopes for a given trilinear monomial is
tabulated in Table I, where p¨qď and p¨q“ represent the number
of inequality and equality constraints, respectively.

Table I
VARIABLES AND CONSTRAINTS PER TRILINEAR MONOMIAL ENVELOPE.

Convex envelope No. of Variables No. of Constraints

RMC 3 (original) + 2 (lifted) 8ď
EP 3 (original) + 9 (lifted) 5“
MF 3 (original) + 1 (lifted) 12ď

Using the algebraic modeling language JuMP [33] in Julia,
we formulate each version of the QC relaxation (7) by modi-
fying the relaxation implementations in PowerModels.jl [34].
For each version of the QC relaxation, we apply the solvers
CPLEX 12.8, GUROBI 8.0, and IPOPT 3.12.9 (with “ma27”
HSL solver [35]) to each OPF problem in the NESTA v0.7
archive [36]. Optimality gaps for the QC relaxation are given
by UB´LB

UB ¨ 100, where UB is the local feasible solution
obtained from solving (1) with IPOPT and LB is the lower
bound obtained by applying the QC relaxation.

The results in Table II for a selected set of instances
show that replacing RMC envelopes with MF or EP en-
velopes tighten the QC relaxation and can reduce the opti-
mality gaps substantially. For instance, the optimality gap for
case24_ieee_rts__api is reduced by 3.10%. We expect further
gap reductions when the convex hull envelopes are used in
combination with bound tightening procedures [16]–[18], [37].

The box-and-whisker plot shown in Figure 1 compares the
run times of various SOCP solvers. The lower and upper ends
of the boxes in Figure 1 reflect the first and third quartiles, the
lines inside the boxes denote the median, and the plus marks
are outliers. “Medium” and “Large” categories correspond to
instances including “TYP”, “API”, and “SAD” with numbers
of buses 1354 ď |N | ď 3375 and |N | ě 6468, respectively.

For each solver, the RMC envelopes yield the fastest or
nearly the fastest results, but have larger optimality gaps than
the MF and EP envelopes, particularly for the small problems
in Table II. GUROBI and CPLEX are faster than IPOPT
for the RMC and EP envelopes. While slightly faster than
the EP envelopes when using IPOPT, the MF envelopes are
substantially slower than the RMC and EP envelopes when
using GUROBI and CPLEX. Moreover, the solvers CPLEX and
GUROBI encounter numerical issues for approximately 19.5%

Table II
QC RELAXATION GAPS USING RECURSIVE MCCORMICK (RMC) VS.

CONVEX-HULL ENVELOPES (MF, EP).

Instances RMC (%) MF, EP (%) Improvement (%)

case3_lmbd 1.21 0.96 0.25
case30_ieee 15.64 15.20 0.44
case2224_edin 6.03 6.01 0.02

case3_lmbd__api 1.79 1.59 0.20
case24_ieee_rts__api 11.88 8.78 3.10
case73_ieee_rts__api 10.97 9.64 1.33

case3_lmbd__sad 1.42 1.37 0.05
case4_gs__sad 1.53 0.96 0.57
case5_pjm__sad 0.99 0.77 0.22
case24_ieee_rts__sad 2.93 2.77 0.16
case73_ieee_rts__sad 2.53 2.38 0.15
case118_ieee__sad 4.61 4.14 0.47

Medium
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IPOPT
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Large
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Figure 1. Run time comparisons of various formulations using three solvers.

of the instances when using the MF envelopes and hence do
not converge to optimal values. We speculate that the MF
envelopes yield dense columns, which is a known issue for the
convergence of barrier-based algorithms for solving SOCPs. In
summary, IPOPT is numerically stable on all the formulations
and instances but is slower than GUROBI and CPLEX. Though
equivalently tight, the EP envelopes are significantly faster
than the MF envelopes when using CPLEX and GUROBI.

V. CONCLUSIONS

Convex relaxations of OPF problems derived using polar
voltage coordinates give rise to trilinear monomials. Using
extensive empirical tests, this paper has compared three previ-
ously proposed techniques for addressing the trilinear mono-
mials: recursive McCormick envelopes, Meyer and Floudas en-
velopes, and extreme point envelopes. The latter two envelopes
yield the convex hull of a single trilinear monomial. Empirical
results show that MF and EP envelopes improve the QC relax-
ation gaps, particularly on instances with less than 300 buses.
Despite being equivalently tight, the differing mathematical
formulations of the MF and EP envelopes yield differing
computational performance with various solvers. Given its
advantages in ease of implementation and numerical stability
with state-of-the-art solvers like CPLEX and GUROBI, we
recommend using EP envelopes for OPF relaxations.
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