
Comparing Machine Learning and Optimization Approaches for the
N − k Interdiction Problem Considering Load Variability

Alejandro D. Owen Aquino
Georgia Institute of Technology

aaquino30@gatech.edu

Alyssa Kody
Argonne National Laboratory

akody@anl.gov

Rachel J. Harris
Georgia Institute of Technology

rharris94@gatech.edu

Daniel K. Molzahn
Georgia Institute of Technology

molzahn@gatech.edu

Abstract

Power grids must be operated, designed, and
maintained such that a small number of line failures
will not result in significant load shedding. To identify
problematic combinations of failures, we consider an
N − k interdiction problem that seeks the set of k failed
lines (out of N total lines) that result in the largest
load shed. This is formulated as a bilevel optimization
problem with an upper level representing the attacker
that selects line failures and a lower level modeling
the defender’s generator redispatch. Compounding the
difficulties inherent to the bilevel nature of interdiction
problems, we consider a nonlinear AC power flow model
that makes this problem intractable with traditional
approaches. Furthermore, since the solutions found
at a particular load condition may not generalize to
other loading conditions, operators may need to quickly
recompute these worst-case failures online to protect
against them during operations. To address these
challenges, we formulate and compare the performance
of three simplified methods for solving the N − k
interdiction problem: a state-of-the-art optimization
approach based on a network-flow relaxation of the
power flow equations and two newly developed machine
learning (ML) algorithms that predict load sheds given
the state of the network.

Keywords: Bilevel Optimization, Interdiction, Neural
Networks, N − k.

1. Introduction

Today, power grids are designed and operated such
that networks are N − 1 secure. However, the threat of
multiple lost lines from natural disasters, cyber-physical
attacks, or aging components is increasing and therefore
operators need to prepare for N − k contingency

scenarios [1]–[3]. Such N − k contingency scenarios
are useful for long-term design and planning. System
operators may also need to identify these worst-case
contingencies quickly during real-time operations. For
example, they must identify components to prioritize
for short-term maintenance and disallow shutdown of
critical devices during repair, or identify the most
important devices on which to deploy additional security
measures during war time scenarios. Overall, there
has been increasing interest in real-time situational
awareness for grid resilience, exemplified by the
US Department of Energy’s North American Energy
Resilience Model (NAERM) program [4]. This paper
explores methods to identify critical sets of line failures
which are computationally tractable and can be solved
online to enable fast corrective and protective actions.

The optimization problem developed to identify
critical sets of line failures is typically formulated
as an adversarial bilevel problem called the N −
k interdiction problem. Modeling the attacker, the
upper level disconnects up to k lines out of the N
lines in the system in order to maximize load shed.
The lower level, representing the defender, optimally
redispatches the system to maximize load delivery given
the disconnected lines.

When using the AC power flow equations to
model the network physics, this problem is a
nonconvex bilevel mixed-integer nonlinear program
(MINLP) that is strongly NP-hard. Nevertheless,
some previous works maintain the nonlinear AC
power flow equations in the lower-level problem and
solve with tailored algorithms [1], [5]–[7] to make
the problem more computationally tractable. While
these methods can provide high-fidelity solutions,
they are not suited for being solved repeatedly in
real-time. Most formulations therefore rely on
linearizing the lower-level problem, which can lead to
“false positives” or “false negatives” when identifying

dangerous contingencies [3], [8]–[11]. In essence,
solving this problem involves a tradeoff between
solution correctness and computational tractability.

Machine learning (ML) approaches are promising in
that they can produce higher-quality solutions compared
to traditional linearized approximations and, after
offline training, can be used to make quick, efficient
predictions during real-time operations. ML has been
used for contingency analysis in works such as [2],
which used Q-learning to identify the worst-impacted
zones of power grids during extreme events. Other
works such as [12]–[14] use neural networks (NNs) to
rank the severity of contingencies based on predicting
performance indices or line flow approximations.

In this paper, we propose and benchmark two new
ML approaches for quickly and accurately identifying
worst-case failures in power systems. In the first
approach, we train a NN to predict load shed for any
given set of line failures and power demands. We
then embed the NN’s mapping of contingency to load
shed inside a mixed-integer linear program (MILP)
and optimize for highest load shed. In the second
approach, we train a NN to predict the impact of
individual line failures on load shed and step through
failures one at a time to estimate a contingency’s total
load shed. Unlike previous work, we directly predict
load shed at a given network state during the process
of ranking contingencies. We also consider a range
of load variation, i.e., the factor by which loads may
randomly vary from nominal values during training
and run-time testing, in both of these approaches to
make the predictions flexible to different load patterns
and/or inclusion of distributed solar. We compare
the performance of these new ML approaches to the
state-of-the-art linearized bilevel optimization approach
in [11]. The results demonstrate that the ML methods
outperform this linearized approach at finding the most
dangerous contingencies on average over several test
cases and contingency sizes.

The rest of the paper is organized as follows.
First, we formulate the N − k interdiction problem
in Section 2. Second, we present the two new
ML approaches proposed in this paper as well as
the state-of-the-art linearized bilevel problem which
provides a baseline for comparison in Section 3. Third,
we report the results of those approaches when applied
to several test cases in Section 4. We conclude the paper
and discuss directions for future research in Section 5.

2. The N − k Interdiction Problem

This section describes the bilevel optimization
formulation of the N − k interdiction problem.
Modeling the attacker, the upper-level problem
maximizes system disruption by choosing lines to
de-energize. Given these line failures, the lower-level

problem mitigates disruption with an AC maximum
load delivery (AC-MLD) redispatch. With a nonconvex
feasible region due to the AC power flow equations,
the lower-level problem itself is NP-Hard [15],
compounding the challenges associated with the bilevel
and discrete nature of the overall problem. Thus,
approximations, relaxations, and/or decompositions are
needed for tractability, as described in Section 3.

We adapt the lower-level formulation and associated
notation from the AC-MLD problem in [16]. Let N be
the set of buses, G the set of generators, and E the set
of lines in the system. Each bus k ∈ N has a complex
voltage phasor Vk, a shunt admittance Y S

k , a complex
power demand SD

k (with non-negative real power), and
at most one generator with a complex power output of
SG
gk

, where gk denotes the generator at bus k. Each
line (i, j) ∈ E has a series admittance Yij and a shunt
admittance Y c

ij as well as a (possibly complex) turns
ratio Tij to permit models of transformers. Each line
also has a maximum apparent power flow limit of Su

ij .

Binary variables xij , zVk , and zGg denote the statuses
of the lines (i, j) ∈ E , the buses k ∈ N , and the
generators g ∈ G, respectively. For each of these binary
variables, a value of 1 indicates that the component is
connected to the system and a value of 0 indicates that
the component is disconnected. For each bus k ∈ N ,
the continuous variables zDk and zSk denote the fractions
of the satisfied load demand and the shunt admittance
connected to the system, respectively, considering a
constant power factor.

We model the load delivery and component status
with a weighted sum of the satisfied demand and the
connection statuses of the buses, generators, and shunts:∑
k∈N

(
ℜ(SD

k)zDk + CSzSk + CV zVk
)
+

∑
g∈G

CGzGk (1)

where CV , CS , and CG are weighting parameters and
ℜ(·) takes the real part of a complex number. We
select weighting parameters as described in [16] so that
maximizing (1) minimizes load shed while attempting to
keep components at their pre-contingency statuses. The
use of the binary variables for generator and bus statuses
and continuous variables for shunt and load statuses
prevents infeasibility from islanding.

The lower-level problem redispatches the system
for maximum load delivery subject to AC power flow
equations and operational limits. Thus the lower-level
objective maximizes (1). The AC power flow equations
ensure power balance at each bus k ∈ N :

SG
gk

− zDk SD
k − zSk

(
Y S
k

)∗ |Vk|2 =
∑

(i,j)∈Ek

xijSij (2)

where Ek is the set of lines connected to bus k and (·)∗

denotes the complex conjugate. Constraints modeling
the power flowing on each line (i, j) ∈ E , Sij , are:

−M(1− xij) ≤ Sij − (Yij − Y c
ij)

∗ |Vi|2

|Tij |2
+ Y ∗

ij

ViV
∗
j

Tij

≤ (1− xij)M (3a)

−M(1− xij) ≤ Sij − (Yij − Y c
ji)

∗|Vj |2 + Y ∗
ij
VjV

∗
i

Tij

≤ (1− xij)M (3b)

where M is a “Big-M” constant used in modeling the
line status and complex inequalities are interpreted as
separate constraints on the real and imaginary parts.
Notice that (3) is non-binding when xij = 0 and is
effectively an equality constraint modeling Ohm’s law
when xij = 1. For each line (i, j) ∈ E , bus k ∈ N ,
and generator g ∈ G, limits on voltage magnitudes,
generator outputs, and line flows are:

|Sij | ≤ Su
ijxij (4a)

zVk vlk ≤ |Vk| ≤ zVk vuk (4b)

zGg SGl
g ≤ SG

g ≤ zGg SGu
g (4c)

where (4a) is enforced for the apparent power flowing
into both terminals of the line, vlk and vuk are lower
and upper bounds on the voltage magnitudes, and SGl

k
and SGu

k are lower and upper bounds on the generator’s
complex power outputs.

The upper-level problem selects line statuses xij to
maximize the disruption to the system by minimizing
the lower-level objective subject to a cardinality
constraint on the number of disconnected lines:∑

(i,j)∈E

xij ≥ N − κ (5)

where the parameter κ indicates the maximum number
of line failures and N is the total number of lines.

The complete N − k interdiction problem is:

min
xij∈E

ζ (6a)

s.t. (∀(i, j) ∈ E)
(5), xij ∈ {1, 0} (6b)
ζ = max

zV
k ,zG

g ,zD
k ,zS

k

(1) (6c)

s.t. (∀k ∈ N , ∀g ∈ G, ∀(i, j) ∈ E)

(2)–(4), zVk , zGg ,∈ {1, 0}, zDk , zSk ∈ (1, 0)

(6d)

The maximizer to this optimization problem yields
a single contingency that leads to the worst-case

load shedding after allowing for redispatching of the
network. However, to make short-term maintenance
decisions and to protect against possible threats across
the entire network, we may want to find many
other failure combinations that lead to significant load
shedding. This would require solving the problem
multiple times and adding “no-good” cuts after each
iteration to avoid repeated solutions. Additionally,
the severity of contingencies is load-profile dependent,
which means that solutions found at one load condition
do not necessarily generalize to the full operating range.

Due to the challenges inherent to this formulation,
many solution approaches simplify the problem to yield
a structure suited for single-level reformulation. The
network flow model used in [11], for example, linearly
relaxes the power flow equations in the lower-level
problem. Conversely, the two new approaches presented
in the next section of this paper train NNs with sampled
solutions to the nonlinear lower-level problem (6c)–(6d)
to preserve some of the nonlinear behavior and
allow for fast online detection of multiple dangerous
contingencies across a range of operation.

3. Solution Approaches

This section presents three approaches for solving
the N − k interdiction problem (6): a state-of-the-art
bilevel programming approach that uses a network flow
relaxation of the power flow equations [11], a new
approach that uses a NN reformulated as a MILP, and
a new multi-step NN regression approach.

3.1. Simplified Bilevel Network Flow
Formulation

As a benchmark, we consider the recently proposed
approach in [11] that solves the N − k interdiction
problem using a network flow relaxation of the power
flow equations [17] in the lower-level problem. While
the upper-level problem is similar to that of model (6),
the lower-level problem is much simpler in that it (i) is
linear, (ii) cannot remove other network components,
and (iii) focuses only on minimizing the load shed. The
formulation in [11] is:

min
xij∈E

ζ (7a)

s.t. (∀(i, j) ∈ E)
(5), xij ∈ {1, 0} (7b)

ζ = max
zD

∑
k∈N

PD
k zDk (7c)

s.t. (∀k ∈ N , ∀g ∈ G, ∀(i, j) ∈ E)

PG
gk

− PD
k zDk =

∑
(i,j)∈Ek

Pij (7d)

0 ≤ PG
g ≤ PGu

g (7e)

− Pu
ijxij ≤ Pij ≤ Pu

ijxij (7f)

zDk ∈ (0, 1) (7g)

The lower-level objective (7c) maximizes the active
power demand PD

k served at each bus k ∈ N where
the continuous variable zDk denotes the fraction of
the satisfied load demand connected to the system.
Equation (7d) enforces power balance at each bus k ∈
N where PG

gk
denotes the active power generated at

that bus and Pij denotes the active power flow in each
line (i, j) ∈ Ek. Operational constraints (7e) and (7f)
enforce limits on generators g ∈ G and thermal limits
on lines (i, j) ∈ E , respectively, where PGu

g is the upper
bound on the generator’s active power output and Pu

ij is
the upper bound on the line’s active power flow. Notice
that there are no line flow equations in this problem, i.e.,
no equivalent of (3a) and (3b), and thus this problem is
a relaxation of model (6) [17].

To solve (7), the lower-level problem is replaced
with its Karush–Kuhn–Tucker (KKT) optimality
conditions [18], which are added as constraints to the
upper-level problem [19]. This yields a single-level
MILP that can be solved with commercial solvers.
The work in [11], specifically, gives an explicit
reformulation of model (7) that will be used for the
rest of this paper for solving the bilevel network flow
approach. Along with other techniques for improving
the tractability of the formulation, the authors of [11]
show that known bounds on the dual variables are key
for achieving a tractable implementation.

Once the bilevel network flow formulation problem
is solved, its maximizer represents the contingency that
produces the maximum load shed. Furthermore, we can
find multiple contingencies that lead to significant load
shedding by solving the problem in a loop and iteratively
adding constraints which prevent the solver from finding
previously identified failure combinations.

3.2. Neural Network Formulated with a
Mixed-Integer Linear Program
(NN-MILP)

We next propose propose a “NN-MILP” approach
for solving the N − k interdiction problem. This
approach uses a NN ω that maps a network state to the
corresponding amount of load shed.

The algorithm first samples τ random failure
combinations. For each failure combination, we solve
the AC-MLD problem (6c)–(6d) multiple times with
different, randomly selected demand profiles within a
load variability range. For example, with 50% load
variability, a nominal load of 100 MW would be
assigned a random value between 50 MW and 150 MW
with a uniform distribution. This information is stored in

a replay buffer Ω and used for the initial training of the
NN. In our numerical experiments, this NN ω consists
of an input layer that takes in a vector X with the load
profile and the status of each line in the system, two
fully connected “hidden” layers with ten neurons and
saturating linear activation functions, and a final layer
with a one node outputting the estimated load shed.

By choosing piecewise linear activation functions
for ω we can perform initial training and then use the
weights and biases of the NN to formulate it as a part
of the MILP shown in model (8). Fig. 1 shows the
components of the NN that are modeled in this MILP.
This method was proposed in [20]–[22] and previously
applied in the context of power systems in [23], [24].
Here, H denotes the total number of hidden layers, and
L[m] denotes the set of neurons in a particular layer
m ∈ (1, . . . ,H + 1). The objective function (8a)
maximizes the output of the single neuron of the last

layer O
[H+2]
1 (i.e., the load shed) which is defined

in (8l). The output of first layer O[1], defined in (8b),
is the same as the state vector X , which consists of the
active and reactive demands Pdk

and Qdk
at each bus

k ∈ N and the binary variables xij that represent the
status of each line (i, j) ∈ E in the system. The input

of each hidden layer neuron I
[m]
l is formulated in (8d)

using a set of weights W [m]
nl and biases b[m]

nl , where the
superscript denotes the layer index m and the subscript
denotes the flow of information from a particular neuron
n in layer m − 1 to a particular neuron l in layer

m. The output of each hidden layer neuron O
[m]
l is

formulated using equations (8e)–(8g). These equations

use the binary variables ϕ
[m]
l1 , ϕ[m]

l2 , and ϕ
[m]
l3 for each

neuron l to formulate the linear saturation functions
that bound the minimum and maximum outputs of the
neurons to be between 0 and 1. Each of these binary

Figure 1. Illustration of a NN with all the
components that are modeled as a MILP in model (8).

variables denotes one section of the piecewise linear
activation function whose logic is given in (8h)–(8j).
Equations (8f) and (8h)–(8i) use “Big-M” constants M1

and M2, respectively, to model the activation functions.

max
X

O
[H+2]
1 (8a)

s.t (∀l ∈ L[m], ∀m ∈ 2, ..,H + 1,∀(i, j) ∈ E)

O[1] = X (8b)
xij ∈ {0, 1} (8c)

I
[m]
l =

L[m−1]∑
n=1

O[m−1]
n W

[m]
nl + b

[m]
nl (8d)

− (1− ϕ
[m]
l1) ≤ O

[m]
l ≤ 1− ϕ

[m]
l1 (8e)

I
[m]
l −M1(1− ϕm

l2) ≤ Om
l ≤ I

[m]
l

+M1(1− ϕm
l2) (8f)

ϕ
[m]
l3 ≤ O

[m]
l ≤ 2− ϕ

[m]
l3 (8g)

− I
[m]
l ≤ M2ϕ

[m]
l1 (8h)

I
[m]
l − 1 ≤ M2ϕ

[m]
l3 (8i)

ϕ
[m]
l1 + ϕ

[m]
l2 + ϕ

[m]
l3 = 1 (8j)

ϕ
[m]
l1 , ϕ

[m]
l2 , ϕ

[m]
l3 ∈ {0, 1} (8k)

O
[H+2]
1 =

L[H+1]∑
n=1

O
[H+1]
1 W

[H+2]
n1 + b

[H+2]
n1 (8l)

As described in Algorithm 1, each maximizer
obtained from solving model (8) gives a new failure
combination that will be stored in Ω and used in a next
round of NN training. This process is repeated in a loop
where ω is retrained with the initial random samples and
the new failure combinations sampled from the MILP
while giving high load shedding samples extra weight
during training. Every time the MILP is built, however,
new constraints are added to prevent the optimization
problem from finding the top 5% contingencies obtained
from previous steps, which helps the NN find and
learn from different high-load-shed combinations. It is
important to note the model (6c)–(6d) does not optimize
over the load. Each time the model is solved the model
is given a random but constant load profile, and the only
decision variable is the vector of binary line statuses. If
this vector of line statuses is not part of any sample in
Ω, it is added to the collection of samples along with the
load profile that was used when finding it. The size and
structure of the NN, the choice of activation functions,
and the number of loop iterations M , J , and C are all

Algorithm 1 NN-MILP training phase
1: Sample τ random failure combinations with

multiple random load profiles each. Add to Ω
2: Calculate the load shed of each sample by solving

AC-MLD (6c)–(6d)
3: for m = 1, 2, . . . ,M do
4: for j = 1, 2, . . . , J do ▷ Train for J epochs
5: Train ω with samples from Ω.
6: end for
7: Build model (8) with a random load profile
8: Exclude top 5% of samples from solution X∗ via

no-good cuts
9: for c = 1, 2, . . . C do ▷ Get new samples

10: Solve model (8). Get the solution X∗

11: Exclude X∗ from being a solution again
12: if X∗ is a new contingency then
13: Add X∗ to Ω with its current load profile
14: Calculate the load shed of X∗ using

AC-MLD (6c)–(6d).
15: end if
16: end for
17: end for
18: Return ω

design choices selected based on empirical experiments.
After training is complete, we can solve model (8)

online using the fully trained NN and any load
profile within the load variability range to obtain the
predicted worst-case contingency from the maximizer.
Furthermore, we can find multiple contingencies that
lead to large load sheds in real-time by solving the
problem in a loop and adding constraints to prevent the
solver from finding repeated solutions.

3.3. Multi-step Neural Network Regression
(MNNR)

Our second ML approach is multi-step neural
network regression (MNNR), in which a NN is trained to
predict, from a given initial state, how much additional
load shed will result from failing each line in the system.
For any given combination of k line failures, the total
load shed can be estimated by making k predictions with
the NN, failing the lines in succession and recording
the predicted load shed. The main differences between
the MNNR and the NN-MILP are that (1) the MNNR
NNs are not limited to ReLU activation functions since
piecewise linearity is not required to formulate an
optimization problem and (2) the MNNR NNs predict
load shed caused by one line failure at a time, while
the NN-MILP predicts load shed for a set of k line
failures. The input to the NN is the current state of
the network, which consists of the active and reactive
power demand at each load and the status of each line.
A line status of 1 represents an in-service line, while a

Algorithm 2 MNNR training phase
1: Initialize NN α, training input X , training output Y
2: Sample τ random failure combinations. Store in C.
3: for i = 1, 2, . . . , τ do
4: Initialize all line statuses to active
5: Randomly perturb loads
6: Initialize current load shed S0 = 0
7: for j = 1, 2, . . . , k do
8: Save line statuses and loads as x
9: for n = 1, 2, . . . , N do

10: Fail line n and calculate the resulting
load shed s with AC-MLD (6c)–(6d).

11: Save the new load shed resulting from
the failure of line n as yn = s− Sj−1.

12: end for
13: Fail line [Ci]j and record the load shed Sj

14: Add x to X and y to Y
15: end for
16: end for
17: Train α on X and Y
18: Return α

line status of 0 represents a de-energized line. The loads
and line statuses are collected into a single vector with
length 2·(number of loads)+(number of lines). The NN
output is a vector where entry i represents the additional
load shed that results from failing line i.

To collect training data, we sample τ random failure
combinations and generate corresponding loading
conditions by perturbing each load by some randomly
sampled multiplier from a specified range. We
generate ten different loading conditions for every
failure combination. For each failure combination, we
begin with all lines in-service and then fail each line in
the combination, one at a time. At each step, we use
the AC-MLD model (6c)–(6d) to calculate how much
additional load shed would result from failing each line
in the network.

The NN contains ten hidden layers, of which the
first eight use rectified linear unit (ReLU) activation
functions and the last two use hyperbolic tangent (tanh)
activation functions. The final output layer is linear.
We selected this network structure after comparing
numerical performance for networks using several
common activation functions, including ReLU, tanh,
exponential linear unit, and sigmoid functions. The
loss function which is minimized during NN training is
the mean-squared-error (MSE) between predicted and
actual load sheds. Algorithm 2 outlines the MNNR
algorithm data generation and training.

After the NN is trained offline, we use it in real time
to find sets of line failures that result in high load shed.
First, we generate the set of all failure combinations
for the network. Next, we use the NN to predict the
load shed resulting from each combination. To do so,

we initialize the NN input vector with the current load
profile and active line statuses. Next, we step through
the failure combination, failing one line at a time and
summing up the predicted load shed. We compare
the predicted load shed for each combination to find
the worst contingencies. In total, this process requires(
N
k

)
· k feedforward passes through the NN.

4. Experiments and Results

This section benchmarks the approaches described
in Section 3 for selected test cases from the PGLib-OPF
archive [25]. Note that case 118 for k = 3 was not
included because finding the true top-100 contingencies
through brute force evaluation was too computationally
intensive. MATLAB R2019b, YALMIP [26], and
MATLAB’s Machine Learning Toolbox were used to
implement the bilevel network flow formulation and the
NN-MILP approaches on a computer with a quad-core
1.8 GHz processor and 16 GB of RAM. Julia v1.6.1 with
PowerModels.jl [27], PowerModelsRestoration.jl [28],
and Flux.jl [29] were used to implement the MNNR
algorithm and the AC-MLD formulation on Georgia
Tech’s PACE cluster, where each node had a quad-core
2.7 GHz processor and 9 GB of RAM. Nonlinear
programs (NLP) were solved using Ipopt [30], while
MILP problems were solved using Gurobi 9.0 with the
default 0.01% relative MIP gap.

To ensure a fair comparison in all experiments, we
give both the MNNR and NN-MILP algorithms a failure
sample size equal to 10% of the total sample space, i.e:

τ = 0.1

(
N !

(k!(N − k)!)

)
(9)

Each contingency sample is also given ten different load
conditions within the specified load variation range.

The following subsections describe the results
of experiments comparing the bilevel network flow
optimization problem, the MNNR, and the NN-MILP
algorithms. We compare the algorithms’ performance
in finding worst-case contingencies in Section 4.1,
computation time in Section 4.2, load shed prediction
accuracy for ML approaches in Section 4.3 and the
relationship between accuracy and load variability for
ML approaches in Section 4.4.

4.1. Identifying the Worst Contingencies

Table 1 shows with an asterisk which approaches
were able to find the actual worst contingencies in a
variety of test cases and with different numbers of failed
components. The load settings for this experiment
were the test cases’ default nominal values. For
k = 2, the bilevel network flow formulation and the

Table 1. Percentage of Correct Predictions in
Top-100 Combinations

k Bilevel NN-MILP MNNR

case14 ieee k=2 60* 52* 61*
k=3 65 56 73*

case24 ieee rts k=2 15* 55 92*
k=3 47 46* 94*

case30 ieee k=2 81* 80* 89*
k=3 88 89 83

case39 epri k=2 52* 60 94*
k=3 70* 94* 96

case57 ieee k=2 11* 86 87*
k=3 82* 86 84

case73 ieee rts k=2 4 23 36
k=3 6 0 6

case118 ieee k=2 47 52 59
Average 48 60 73
Std. Dev. 30 28 26

MNNR performed best, but as we increased k all three
approaches became less accurate, succeeding in two out
of six experiments.

Another way to compare these approaches is by
how many high-quality solutions they identify. Even
if an approach finds the absolute worst contingency, it
will not necessarily find other failure combinations that
result in high load shedding. The opposite is also true:
if an approach does not identify the worst contingency
it might still be able to find several failure combinations
that produce a similar load shedding.

To test this, we obtained the list of the top-100 failure
combinations given by each approach and compared
them to the actual 100 worst contingencies from
model (6) obtained through brute force evaluation of all
possibilities. If a predicted top-100 failure combination
was also found in the list of the actual worst-case
contingencies, we say that that particular combination
was correctly identified, even if the exact rank did
not match. Table 1 summarizes these results. The
numbers in bold correspond to the best-performing
method on each test case. While the bilevel network
flow formulation was one of the best at finding the
very worst contingencies, it did not always find many
other high-quality solutions. Both ML approaches found
more of the top 100 worst contingencies than the bilevel
network flow, and the MNNR method performed best of
all.

One last consideration is that there are some cases
where several different failure combinations produce
nearly the same amount of load shed. Because this
subtlety is not obvious from the top-100 rankings alone,
we also compute compute running sums of the percent
load shed for each top-100 list. The results for two
representative cases are shown in Fig. 2, where the entry
at failure index i represents the cumulative sum of load
shed for contingencies 1 through i. In the figure, the blue
line represents the cumulative sum of the true worst-case
load sheds, which the best-performing algorithms follow

Figure 2. Cumulative sum of the top-100
contingencies’ load sheds in descending order for two
representative cases. The entry at failure index i is

the sum of load shed from contingencies 1 through i.
The best algorithms closely follow the true worst-case
load shed in blue. Although the bilevel network flow
formulation finds the very worst contingencies, it
sometimes fails to find additional high-quality

solutions, as shown in case 24 when it falls behind
after the first few failures.

closely. For many test cases, all three methods
successfully identify the top-100 contingencies, as in
case39 epri at k = 3. However, there are several cases
where the bilevel network flow formulation finds a few
of the worst contingencies but fails to find additional
high-quality solutions. This can be seen in case24 ieee
as the bilevel network flow line quickly drops below
the true worst-case cumulative sum. The two ML
methods track the true worst-case sum better and more
consistently.

4.2. Computation time comparison

Computation time is another important metric for
comparison. Table 2 shows the computation time during

Table 2. Computation times for representative cases
case30 ieee @ k = 2

Training Execution
Bilevel None 34.2 seconds

NN-MILP 1.1 hours 59.6 seconds
MNNR 1.6 hours 1.6 seconds

case118 ieee @ k = 2
Training Execution

Bilevel None 98 seconds
NN-MILP 10 hours 110 seconds

MNNR 15 hours 692 seconds

training and execution for all three methods on case
30 and case 118 for k = 2. Execution time is
defined as the amount of time required to predict the top
100 worst contingencies. Times were recorded for all
three methods on the same computer with a quad-core
1.8 GHz processor and 16 GB of RAM. The bilevel
network flow optimization required no training time,
while the ML methods required hours to train the NNs.

During execution, the MNNR method is fast for
case 30, but takes almost seven times longer than the
bilevel and NN-MILP methods to find the top 100
contingencies for case 118. The MNNR execution
time increases drastically with case size because it
predicts and compares load shed for all possible failure
combinations. This is faster than a brute force
method where AC-MLD model (6c)–(6d) is solved for
each combination, as the MNNR prediction requires
only k feedforward passes through the NN for each
combination. In addition, load shed prediction could
be parallelized, which would reduce computation time.
However, for large-scale networks with thousands of
lines, testing every combination may not be feasible.
Our future work includes developing heuristics that
reduce the number of combinations tested. Similar
heuristics have been developed for transmission-line
switching problems [31]. We could adapt these
strategies, using a line-ranking algorithm to narrow
our search to a smaller set of high-impact lines.
Alternatively, we could stack the NNs such that the
output of one defines the input of the next, and formulate
this stack (with all its non-linearities) as an optimization
problem as in the NN-MILP approach. The validity of
this heuristic would depend on how efficiently the NLP
defined by the NN mapping can be solved.

4.3. Load shed prediction quality

Both ML algorithms predict the amount of load
shed caused by particular states of the network,
which can help operators quantify the true severity of
contingencies. To test prediction accuracy, we sample
100 random load profiles and failures, compute their
actual percent load shed using the AC-MLD model,
and then compare these results to the ones predicted
by the fully trained NNs of the NN-MILP and MNNR
algorithms. Fig. 3 shows this comparison for three
representative cases.

In the figures on the left, the best-algorithms will
closely track the thick yellow line representing the
true load sheds of the 100 samples. MNNR does a
particularly good job with generally smaller deviations
than NN-MILP. In the figures on the right, we show
box-and-whiskers plots in which the vertical axes
represent the absolute load shed prediction errors. While
both algorithms yield small median errors in most
test cases, MNNR again shows a particularly strong

0 20 40 60 80 100

0

50

100

L
o

a
d

 s
h

e
d

 (
%

)

Actual Loadshed

NNMILP Predicted Loadshed

MNNR Predicted Loadshed

0

50

100

A
b

s
o

lu
te

 e
rr

o
r

(%
)

NN-MILP

MNNR

0 20 40 60 80 100

0

10

20

L
o

a
d

 s
h

e
d

 (
%

)

0

10

20

A
b

s
o

lu
te

 e
rr

o
r

(%
)

0 20 40 60 80 100

100 Random failures

0

10

20

L
o

a
d

 s
h

e
d

 (
%

)

Box-and-whiskers plots

0

10

20

A
b

s
o

lu
te

 e
rr

o
r

(%
)

Figure 3. 100 random samples were collected and
their true load sheds computed for three

representative cases. Left column: comparison
between the computed actual load sheds and the load
sheds predicted by the NN-MILP and MMNR’s fully
trained NNs. Right column: Box-and-whisker plots of

the ML algorithms’ load shed absolute prediction
errors as a percent of total system demand. While

both NNs are able to approximate the true load sheds
with small errors, MMNR does so with more

consistency across test cases.

performance with smaller median errors and a smaller
error spreads. These experiments show not only the
ability of both NNs to predict the load shed of a given
network setting, but also how they learn and preserve
some of the nonlinearity of the optimization model (6).

4.4. Sensitivity to load profiles and load
variability

Our ML approaches are flexible under a range of
loading conditions, as they are trained to use both
power demand and line statuses to predict load shed.
In order to test the ML algorithms’ sensitivities to
increasing load variability ranges, we modified the IEEE
30-bus case such that changes in load settings yield
different worst contingencies. Next, we trained NNs
for the MNNR and NN-MILP approaches five separate
times, under 20%, 40%, 60%, 80% and 100% load
variability. We generated test data by creating 100
different loading conditions for each load variability
value and then using model (6) to find the true worst
100 contingencies for each loading condition. We
assess solution quality by computing the percentage
of the true worst 100 contingencies identified by the
ML approaches for each load variability range. Fig. 4
shows the results. The MNNR approach outperforms

NN-MILP, identifying 67% of the worst contingencies
even at 100% load variability. The NN-MILP method
drops in accuracy significantly from 20 to 40% load
variability, but consistently identifies about 50% of the
worst contingencies from 40 to 100% load variability.
These results demonstrate that the ML approaches,
particularly MNNR, can identify most of the worst-case
line failures even when load variability is high.

Figure 4. Percentage of correct predictions in
top-100 combinations vs. load variability.

5. Conclusion and Future Work

The N − k interdiction problem, which identifies
small sets of component failures that result in large
load shed, is an important problem for power system
operation. The most natural bilevel optimization
formulation of this problem is computationally
intractable due to the nonconvexity of the AC power
flow equations, and thus alternative approaches are
needed. This paper compares the performance of three
approaches: 1) a state-of-the-art bilevel optimization
approach that uses a “network flow” relaxation of
the AC power flow equations to obtain a tractable
formulation, 2) a neural network trained on a set of
line failure scenarios that is formulated as an MILP
(NN-MILP), and 3) a multi-step neural network
approach which predicts load shed one line at a time
and allows for nonlinear activation functions (MNNR).

The results of this comparison on several
PGLib-OPF test cases show that these approaches are
capable of identifying the worst-case or near-worst-case
sets of line failures. The ML approaches are trained
on 10% of the failure combination sample space
and display good performance on a range of loading
conditions. Note that we considered up to k = 3 line
failures, but the same approach could be extended to
k > 3 by training on less than 10% of the failure
combination sample space if that space is too large. The
bilevel network flow and MNNR approaches were most
successful at finding the single worst failure in most of
the tests, while the NN-MILP and MNNR approaches
were best at identifying large sets of high-quality
solutions. The MNNR approach also outperformed

NN-MILP in maintaining accuracy as load variability
increases. The superior performance of MNNR may
be due to the use of more general nonlinear activation
functions. In addition, it may be easier for a network to
map failure to load shed one line at a time in the MNNR
approach rather than all k lines at once in the NN-MILP
approach. However, the multi-step approach comes
at a cost. MNNR takes by far the most time during
execution, as our current method to find the worst
contingencies requires comparing MNNR predictions
on all failure combinations.

These results motivate items for future research:

1. Extend the results to include larger cases,
stochastic renewable generation, and interdiction
of other network components. Make the MNNR
approach more scalable by developing heuristics
to reduce the number of computations needed
during execution.

2. Assess how well the ML methods perform when
trained with fewer samples.

3. Evaluate the possible benefits of using more
complex neural network structures and blending
model-based and data-driven approaches.

References

[1] J. M. López-Lezama, J. Cortina-Gómez, and
N. Muñoz-Galeano, “Assessment of the Electric
Grid Interdiction Problem Using a Nonlinear
Modeling Approach,” Electr. Power Syst. Res.,
vol. 144, no. 1, pp. 243–254, Mar. 2017.

[2] S. Paul and F. Ding, “Identification of Worst
Impact Zones for Power Grids During Extreme
Weather Events Using Q-Learning,” in IEEE
PES Innovative Smart Grid Technologies Conf.
(ISGT), 2020.

[3] J. Arroyo and F. Galiana, “On the Solution
of the Bilevel Programming Formulation of the
Terrorist Threat Problem,” IEEE Trans. Power
Syst., vol. 20, no. 2, pp. 789–797, May 2005.

[4] “North American Energy Resilience Model,”
U.S. Department of Energy, Washington, DC,
Tech. Rep., Jul. 2019.

[5] B. C. Dandurand, K. Kim, and S. Leyffer, “A
Bilevel Approach for Identifying the Worst
Contingencies for Nonconvex Alternating
Current Power Systems,” SIAM J. Optimiz.,
vol. 31, no. 1, pp. 702–726, Jan. 2021.

[6] F. Capitanescu and L. Wehenkel, “Computation
of Worst Operation Scenarios Under Uncertainty
for Static Security Management,” IEEE Trans.
Power Syst., vol. 28, no. 2, pp. 1697–1705, May
2013.

[7] J. M. Arroyo and F. J. Fernández, “Application
of a Genetic Algorithm to N-K Power System
Security Assessment,” Int. J. of Electr. Power
Energy Syst., vol. 49, pp. 114–121, Jul. 2013.

[8] K. Sundar, S. Misra, R. Bent, and F. Pan,
“Credible Interdiction for Transmission
Systems,” IEEE Trans. Control Netw. Syst.,
vol. 8, no. 2, pp. 738–748, 2021.

[9] A. Motto, J. Arroyo, and F. Galiana, “A
Mixed-Integer LP Procedure for the Analysis
of Electric Grid Security Under Disruptive
Threat,” IEEE Trans. Power Syst., vol. 20, no. 3,
pp. 1357–1365, Aug. 2005.

[10] J. Salmeron, K. Wood, and R. Baldick, “Analysis
of Electric Grid Security Under Terrorist Threat,”
IEEE Trans. Power Syst., vol. 19, no. 2,
pp. 905–912, May 2004.

[11] E. S. Johnson and S. S. Dey, “A Scalable Lower
Bound for the Worst-Case Relay Attack Problem
on the Transmission Grid,” May 2021, arXiv:
2105.02801.

[12] S. Rajan, R. S. Kumar, and A. T. Mathew,
“Online Static Security Assessment Module
Using Artificial Neural Networks,” IEEE Trans.
Power Syst., vol. 28, no. 4, pp. 4328–4335, Nov.
2013.

[13] B. Donnot, I. Guyon, M. Schoenauer, A. Marot,
and P. Panciatici, “Anticipating Contingencies in
Power Grids Using Fast Neural Net Screening,”
May 2018, arXiv: 1805.02608.

[14] K. Shanti Swarup and G. Sudhakar,
“Neural Network Approach to Contingency
Screening and Ranking in Power Systems,”
Neurocomputing, Neural Networks, vol. 70,
no. 1, pp. 105–118, Dec. 2006.

[15] D. Bienstock and A. Verma, “Strong NP-hardness
of AC power flows feasibility,” Oper. Res. Lett.,
vol. 47, no. 6, pp. 494–501, Nov. 2019.

[16] C. Coffrin, R. Bent, B. Tasseff, K. Sundar, and
S. Backhaus, “Relaxations of AC Maximal Load
Delivery for Severe Contingency Analysis,” IEEE
Trans. Power Syst., vol. 34, no. 2, pp. 1450–1458,
Mar. 2019.

[17] C. Coffrin, H. Hijazi, and P. Van Hentenryck,
“Network Flow and Copper Plate Relaxations for
AC Transmission Systems,” in 19th Power Syst.
Comput. Conf. (PSCC), Jun. 2016.

[18] H. W. Kuhn and A. W. Tucker, “Nonlinear
Programming,” Proc. 2nd Berkeley Symp. Math.
Stat. Probab., pp. 481–492, 1951.

[19] D. G. Luenberger and Y. Yinyu, Linear and
Nonlinear Programming, 2nd edn. Wiley, 1989.

[20] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating
Robustness of Neural Networks with
Mixed Integer Programming,” Nov. 2017,
arXiv:1711.07356.

[21] M. Fischetti and J. Jo, “Deep Neural Networks
and Mixed Integer Linear Optimization,”
Constraints, vol. 23, no. 3, pp. 296–309, Jul.
2018.

[22] B. Grimstad and H. Andersson, “ReLU Networks
as Surrogate Models in Mixed-Integer Linear
Programs,” Computers & Chemical Engineering,
vol. 131, no. 1, p. 106 580, Dec. 2019.

[23] I. Murzakhanov, A. Venzke, G. S. Misyris,
and S. Chatzivasileiadis, “Neural Networks
for Encoding Dynamic Security-Constrained
Optimal Power Flow,” Oct. 2021,
arXiv:2003.07939.

[24] A. Venzke, G. Qu, S. Low, and
S. Chatzivasileiadis, “Learning Optimal Power
Flow: Worst-Case Guarantees for Neural
Networks,” arXiv:2006.11029, Nov. 2020.

[25] IEEE PES PGLib-OPF Task Force, “The
Power Grid Library for Benchmarking AC
Optimal Power Flow Algorithms,” Aug. 2019,
arXiv:1908.02788.

[26] J. Lofberg, “YALMIP: A Toolbox for Modeling
and Optimization in MATLAB,” in IEEE
Int. Conf. Robotics Automat., Sep. 2004,
pp. 284–289.

[27] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and
M. Lubin, “Powermodels.jl: An Open-Source
Framework for Exploring Power Flow
Formulations,” in 20th Power Systems
Computation Conference (PSCC), Jun. 2018.

[28] N. Rhodes, D. M. Fobes, C. Coffrin, and
L. Roald, “PowerModelsRestoration.jl: An
Open-Source Framework for Exploring Power
Network Restoration Algorithms,” Electr. Power
Syst. Res., vol. 190, no. 1, p. 106 736, Jan. 2021,
Presented at 21st Power Syst. Comput. Conf
(PSCC).

[29] M. Innes, E. Saba, K. Fischer, et al., “Fashionable
Modelling with Flux,” Nov. 2018, arXiv:
1811.01457.

[30] A. Wächter and L. T. Biegler, “On the
Implementation of an Interior-Point Filter
Line-Search Algorithm for Large-Scale
Nonlinear Programming,” Math. Program.,
vol. 106, no. 1, pp. 25–57, Mar. 2006.

[31] D. J. Fuller, R. Ramasra, and A. Cha, “Fast
Heuristics for Transmission-Line Switching,”
IEEE Trans. Power Syst., vol. 27, no. 3,
pp. 1377–1386, Mar. 2012.

