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Abstract— To compute reliable and low-cost operating points,
electric power system operators solve optimization problems
that enforce inequality constraints such as limits on line flows,
voltage magnitudes, and generator outputs. A common empiri-
cal observation regarding these constraints is that only a small
fraction of them are binding (satisfied with equality) during
operation. Furthermore, the same constraints tend to be binding
across time periods. Recent research efforts have developed
constraint screening algorithms that formalize this observation
and allow for screening across operational conditions that are
representative of longer time periods. These algorithms identify
redundant constraints, i.e., constraints that can never be vio-
lated if other constraints are satisfied, by solving optimization
problems for each constraint separately. This paper investigates
how the choice of power flow formulation, represented either by
the non-convex AC power flow, convex relaxations, or a linear
DC approximation, impacts the results and the computational
time of the screening method. This allows us to characterize the
conservativeness of convex relaxations in constraint screening
and assess the efficacy of the DC approximation in this context.

I. INTRODUCTION

Optimization problems are commonly used in the day-to-
day operation, protection, and expansion of the electric grid.
Problems such as the optimal power flow (OPF) [1] provide
engineers and grid operators valuable insights that inform
their planning and control decisions. These optimization
problems usually incorporate both physical constraints to
model the power flow equations and engineering constraints
such as voltage, generator, angle difference, and line flow
limits. As a result, the number of variables and constraints
increase rapidly with the network size, leading to computa-
tional challenges for large systems.

While all the constraints in these optimization problems
must be satisfied for a solution to be feasible, previous
work has shown many constraints are never binding (i.e.,
satisfied with equality) at the optimal solution [2]. This opens
the possibility for screening out non-binding constraints
to reduce the problem size, speed up computations, and
improve numerical conditioning. Additionally, analyzing the
binding constraints provides insights into system operations
by identifying which components are operated at their limits.

Constraint screening algorithms have been proposed for
DC OPF and DC unit commitment in [3]–[6] and applied in
the context of load variability in [7]–[9]. These approaches
solve an optimization problem associated with each line flow
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limit to identify and remove the limits that never become
binding across a large range of load fluctuations that is repre-
sentative of long-term load variability. The existing work on
AC constraint screening, on the other hand, comes from the
bound tightening literature, where the objective is to tighten
bounds on voltage magnitude and angle difference limits to
improve the quality of convex relaxations [10]. This leads
to some differences in the approach and large differences in
motivation and interpretation relative to constraint screening.

This paper’s main contribution is a method for identifying
redundant constraints in AC OPF problems for a range of
operational conditions by adapting an existing bound tight-
ening method. The proposed method is ultimately intended
as a prepossessing step that can be infrequently computed
offline to obtain a simplified mathematical model that is
useful for a range of subsequent optimization problems. We
use numerical experiments to first determine the effectiveness
of this method in identifying constraints that are found to be
redundant for some operating point and then evaluate the
impact of removing these constraints on AC OPF compu-
tational times. Lastly, we apply the proposed method with
two different convex relaxations and the DC approximation
to compare the relative effectiveness of these formulations.

The reminder of the paper is organized as follows. Sec-
tion II describes the AC OPF problem. Section III presents a
methodology to identify both the redundant and the binding
constraints in the AC OPF problem with load variability.
Section IV discusses the numerical results for several test
cases, followed by conclusions in Section V.

II. AC OPTIMAL POWER FLOW PROBLEM FORMULATION

The AC OPF problem computes the least-cost operating
point subject to physical laws governing power flows and
engineering constraints on line flows, power generation, and
voltages. A power system consists of a set N of buses
(a subset of which have generators denoted by the set G),
and a set L of lines. There are a variety of different OPF
formulations [11], and here we use the following:
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The objective (1a) minimizes the generation cost, with ck2
,

ck1
and ck0

denoting the coefficients for a quadratic cost
function. The voltage magnitudes at each bus k ∈ N are
bounded by upper and lower limits V min

k and V max
k in (1b),

which is described as a quadratic constraint. The superscript
* denotes the complex conjugate. Similarly, the active and
reactive power outputs of each generator k ∈ G are bounded
by Pmin

k , Pmax
k , Qmin

k and Qmax
k in (1c) and (1d), respectively.

The current flows Iij at each line (i, j) ∈ L are defined in
(1g)–(1h) where It and If are vectors containing the current
flow phasors for the “to” (t) and “from” (f) directions of the
branches, V is the vector of voltage phasors, and Yf and
Yt are the system branch admittance matrices corresponding
to the current flows into the “from” (f ) and “to” (t) ends
of the lines. The squared magnitudes of the current flows
are upper bounded by (Imax

ij )2 in (1e). The angle differences
between buses connected by lines (i, j) ∈ L are defined in
(1i) and bounded by θmax

ij in (1f). The voltage angle at the
reference bus is set to zero in (1j) The complex power flow
Sij is defined in (1m). Lastly, power balance is enforced in
(1l), where SDk

is the power demand at each bus. Y refers
to the bus admittance matrix of the network. The inequality
constraints in (1b)–(1f) are the focus of this paper.

The non-linear power flow equations (1m) induce non-
convexities that can lead to locally (as opposed to globally)
optimal solutions. Convex relaxations of these equations
mitigate this difficulty by bounding the optimal objective
values of nonconvex AC OPF problems. In the context
of constraint screening, this is particularly important since
locally optimal solutions can lead to a constraint being
wrongfully characterized as redundant (and thus omitted
from the problem), as explained later in this paper. Two
commonly used AC power flow relaxations are the quadratic
convex (QC) relaxation and the semidefinite programming
(SDP) relaxation. The SDP relaxation [12] represents (1) as a
rank-constrained problem and then drops the rank constraint
to form a relaxation. The QC relaxation [13] constructs con-
vex envelopes of the polar representation of the power flow
equations. We will also consider the computationally efficient
DC power flow approximation [14], which ignores reactive
power and voltage magnitudes. For brevity, formulations of
the SDP relaxation, QC relaxation, and DC approximation
of the AC OPF problem are omitted in this paper.

III. AC CONSTRAINT SCREENING METHODOLOGY

The screening method proposed in this paper uses opti-
mization problems to minimize or maximize various quanti-
ties subject to all other constraints in the AC OPF problem.
If the maximum and minimum achievable values (subject to

all other constraints) for a quantity are within its specified
limits, then those limits are redundant and can be eliminated
from the problem. In other words, enforcing the combination
of certain constraints can imply the satisfaction of other
constraints. If the quantity in question reaches its established
limits, however, there exists some feasible operating point
for which that constraint becomes binding. In this case, we
consider the constraint to be non-redundant. We note that this
method only considers whether a constraint could potentially
be binding given the other constraints in the problem, not
whether typical generation cost functions would result in this
constraint being binding. Each voltage limit, angle difference
limit, line current flow limit, and generator active and reactive
power limit can be treated with this screening procedure.

Redundant constraint: A constraint that will never become
binding (satisfied with equality) if all other constraints are
satisfied. Since the satisfaction of other constraints implies
that this constraint it satisfied, it can be safely neglected.
Non-redundant constraint: There is at least one feasible
operating point in the considered operating range where
this constraint becomes binding. As a result, this constraint
cannot be safely neglected.
Inconclusive constraint: A constraint that is not classified
as either redundant or non-redundant.

Since we are interested in screening out constraints that
are redundant for a large set of possible operating points,
we solve our maximization and minimization problems for
each constraint over a range of load variability. Every active
load PDk

and reactive load QDk
for k ∈ D then become

extra decision variables in the optimization problem. This
gives rise to the optimization problem shown below, where
the objective function (2a) minimizes/maximizes one of the
quantities from constraints (1b)–(1f), subject to all other
AC OPF constraints (1k)–(1m) and the load variability
constraints (2b)–(2c). The parameter δ controls how much
loads are allowed to vary, and P o

Dk
and Qo

Dk
refer to the

nominal loads given by the test case.
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A. Addressing nonconvexities via convex relaxations

To rigorously classify a constraint as redundant, we need
to find the most extreme achievable value of the constrained
quantity over the operating range and verify that it is within
its specified limits. This is only possible by considering the
globally optimal objective values for (2). Globally solving (2)
can be challenging, as OPF problems are NP-hard in gen-
eral [15]. Therefore, instead of trying to solve the nonconvex
problem, we use a convex relaxation to bound the global
solution. If the bound from a relaxation is within the specified
limits for the constrained quantity, then we are assured that
the constraint is indeed redundant. We will compare the



performance of the sparsity-exploiting SDP relaxation [16]
and the QC relaxation with bound tightening [17], both
formulated with current flow limits.

An additional benefit of using the QC relaxation is that
we can use iterative bound tightening strategies on voltage
magnitudes and angle differences to help with the constraint
screening in two ways:

1) Bound tightening methods can improve the QC re-
laxation considerably, reducing the optimality gap to
within 1% for many cases [10]. Tighter relaxations
improve the ability of the constraint screening method
to characterize constraints as redundant.

2) As a byproduct of tightening the QC relaxation, bound
tightening inherently identifies redundant voltage and
angle difference constraints, eliminating the need to
solve extra optimization problems for those constraints.

Fig. 1 shows how the constraint screening method uses SDP
and QC relaxations of (2) to identify redundant constraints.

Fig. 1. AC constraint screening flow chart.

B. Finding non-redundant constraints
Convex relaxations can be used to bound the objective

value of a constraint screening problem (2). If this bound
is within the specified limit, then the constraint will never
be binding. However, relaxations do not guarantee that a
constraint can become binding. In other words, a relaxation
can find those constraints which are definitely redundant, but
not those which are definitely non-redundant. This comes
from the fact that there may still exist a relaxation gap even
after applying a bound tightening algorithm.

For this reason, we solve the maximization and mini-
mization problems with the full nonconvex AC power flow
equations to find non-redundant constraints. If we find that
a constrained quantity can reach or violate its limits, we can
guarantee that the constraint will become binding for some
point within the operating region (even if we did not find the
point with the worst-case violation).

Fig. 2 illustrates how the convex relaxation and the non-
convex problem are used to find which constraints are re-
dundant and non-redundant, respectively. We note that there

Fig. 2. In this illustration, a grey feasible region is defined in figure A by
the green upper bound and blue lower bound. Figure A also shows redundant
upper and lower bounds. In figures B through E, the constraint shown by
the red line is another upper bound that is being evaluated for redundancy.
The feasible region of a relaxation is shown in orange. In figure B, the
solution to the nonconvex problem is used to guarantee that a constraint
is non-redundant since it found an operating point that would violate the
constraint even though it only found a local optimum. In figure C, the same
nonconvex problem fails to find an operating point that would violate the
constraint because it could only solve to local optimality, thereby falsely
labeling the constraint as redundant. In figure D, the solution to the convex
relaxation is used to guarantee that the constraint is redundant by showing
that the upper bound on the maximum value does not violate the constraint.
Lastly, in figure E, a loose convex relaxation finds a possible constraint
violation whereas the actual constraint cannot be violated, thereby falsely
labeling the constraint as non-redundant. With our method, the situations in
figures C and E result in the constraint being labeled as inconclusive.

are cases where this approach will yield inconclusive results
for some constraints. This happens when the solution to
the relaxed problem suggests a possible constraint violation
(and thus the constraint is potentially non-redundant) but the
solution obtained for the nonconvex problem is within the
limit (and thus the constraint is potentially redundant). In
this case, the constraint is characterized as inconclusive.

The above discussion applies to the convex relaxations.
When using the DC approximation, we only label constraints
as redundant or non-redundant for the DC OPF problem
which uses the DC power flow approximation. We note that
a constraint that is classified as redundant or non-redundant
using the DC formulation is not necessarily redundant or
non-redundant for the AC OPF. The results in the following
section thus use the DC approximation for the sake of com-
parison to previously proposed constraint screening methods.

IV. RESULTS

This section demonstrates the methods described in Sec-
tion III for various PGLib-OPF test cases [18]. Modified
versions of the software packages PowerModels.jl and Pow-
erModelsAnnex.jl [19] were used for the implementation in
Julia. All non-linear programs (NLPs) were solved using
Ipopt [20], while all SDPs were solved using Mosek v9.2.40.
All computations were carried out on Georgia Tech’s PACE
cluster, where node had a quad-core 2.7 GHz processor and
9 GB of RAM. We consider load variabilities of ±0%,



TABLE I
SUMMARY OF CONSTRAINT SCREENING PERFORMANCE FOR ALL THREE FORMULATIONS (PERCENTAGE OF REDUNDANT LINE FLOW LIMITS).

±0% load variation ±25% load variation ±50% load variation ±75% load variation ±100% load variation
DC QC SDP DC QC SDP DC QC SDP DC QC SDP DC QC SDP

case3 lmbd 100 66.67 66.67 100 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67
case5 pjm 100 0 16.67 83.33 0 16.67 83.33 0 16.67 83.33 0 16.67 83.33 0 16.67

case14 ieee 100 100 90 100 100 30 100 100 15 100 100 10 100 90 10
case24 ieee rts 100 86.84 2.63 100 68.42 2.63 100 55.26 2.63 100 39.47 2.63 100 28.95 2.63

case39 epri 97.63 41.30 2.17 86.96 30.43 2.17 69.57 23.91 2.17 67.39 19.57 2.17 56.52 17.39 2.17
case57 ieee 98.75 100 23.75 97.50 96.25 17.50 97.50 96.25 13.75 97.50 92.50 10 97.50 92.50 10

case73 ieee rts 100 73.33 0.83 100 59.17 1.67 100 44.17 1.67 100 26.67 0.83 100 19.17 0
case118 ieee 96.24 62.37 4.84 93.55 48.92 4.84 87.63 42.47 4.84 83.33 30.11 4.30 79.03 25.81 4.30

±25%, ±50%, ±75%, and ±100% around the nominal
values specified in the test cases.

A. DC vs. QC vs. SDP: Constraint screening performance
For comparing the constraint screening performance be-

tween the different OPF formulations considered in this
paper, we focus on the removal of line flow limits. This
is because many of the other engineering constraints are
neglected when formulating the DC approximation. Table I
shows the redundant line flow limits for selected test cases.
These results include the percentage of redundant line flow
limits for different ranges of load variability using the DC
approximation, the QC relaxation with bound tightening, and
the sparsity-exploiting SDP relaxation.

Among these three formulations, the DC approximation
always removed the most line flow constraints. The DC
approximation consistently screened out over half of the line
flow constraints (in some cases, screening out constraints that
were proven to be non-redundant in the full AC case by one
of the relaxations), making it by far the least conservative
formulation for the purpose of screening out constraints of
this type. However, by being a linear approximation and not
a convex relaxation of the AC case, redundancy with respect
to the DC approximation does not guarantee redundancy for
the full nonconvex AC problem.

While both relaxations performed more conservatively
than the DC approximation, the QC relaxation removed more
constraints than the SDP relaxation for all but one test
case (case5 pjm). In several test cases, the QC relaxation
outperformed the SDP relaxation considerably. This suggests
that the QC relaxation (with bound tightening) is likely
tighter than the SDP relaxation for this application.

To further illustrate these results, we show the constraint
screening results for case118 ieee graphically in Fig. 3. This
figure shows that the DC approximation classifies over 79%
of all line flow constraints at all ranges of load variability
to be redundant (in blue). The percentage of redundant
constraints with the QC relaxation varies between 25% and
62% for different ranges of load variability, while the SDP
relaxation classifies less than 5% as redundant. Since the
number of constraints characterized as redundant by the
nonconvex problem (in yellow) are the same for both the
QC and SDP relaxations, the SDP relaxation leaves many
more constraints in the category of “inconclusive” (in red).

Not only are the number of redundant constraints different
in each formulation, but the particular redundant constraints

identified by each also differ. This can be seen in Fig. 4.
Even though the QC relaxation formulation screens out many
more constraints, this relaxation did not find all redundant
constraints identified by the SDP relaxation. Thus, by using
both the QC and SDP relaxations, we can increase the
number of redundant constraints identified. We also see
that not all constraints found to be redundant for the DC
approximation are actually redundant in the AC case.

For the remainder of the paper, we will use the QC
relaxation with bound tightening to carry out the constraint
screening algorithm for the AC OPF problem since (a)
using relaxations offers rigorous guarantees of constraint
redundancy in the AC case, and (b) the QC relaxation
considerably outperformed the SDP relaxation for most test
cases. These advantages come at the expense of carrying out
the very time consuming bound tightening algorithms, which
can become computationally prohibitive for larger cases. The
computational tractability of this pre-processing step could
be significantly improved by using parallel computing.

B. Analysis of the AC relaxation results

The full results of using the QC relaxation with bound
tightening to screen out line flow constraints are shown in
Fig. 5. We observe that the percentages of redundant line
flow constraints varies greatly depending on test case. While
for some test cases, such as case14 ieee and case57 ieee,
the algorithm found over 90% of line flow constraints to be
redundant for all ranges of load variability, some test cases
such as case5 pjm and case39 epri have as few as 0% and
17.39% redundant line flow constraints, respectively.

Moreover, not all types of constraints are removed at
the same ratios as line flow constraints. Constraints such
as angle difference limits and minimum voltage magnitudes
are removed much more consistently throughout all cases.
Generator limits, on the other hand are found to be redundant
much less frequently. A representative example of this is seen
in Table II for case118 ieee. In this case, 100% of lower
voltage limits are found to be redundant for all ranges of
load variability. However, no more than 18.52% of any given
generator constraints are certified as redundant.

C. Computational advantages

Removing redundant constraints reduces the size of opti-
mization problems. In addition to removing the constraints
themselves, variables can be removed if all constraints using
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Fig. 3. Redundant line flow constraints for case 118 for the DC approximation, QC relaxation, and SDP relaxation.
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Fig. 4. Venn diagram showing the sets of redundant line flow constraints
for case118 ieee with 25% load variability for the DC approximation (blue),
QC relaxation (red), and SDP relaxations (yellow), with shared constraints
in overlapping colors. The labels show the number of line flow constraints
in the corresponding set.

those variables are redundant and the variables are not
included in the objective function.

Here we consider the computational advantages of using
the constraint screening method from Section III before
solving AC OPF problems. After using the QC relaxation
to screen out constraints that are guaranteed to be redundant
at different ranges of load variability, we run fifty instances
of the AC OPF problem with random load profiles within
the corresponding variation range. The average solution time
is computed and compared to the average time required to
solve the original test cases. This comparison is described
in Table 6, where we show the time needed to solve the AC
OPF before and after removing the redundant constraints.
We observe more substantial computational improvements
for larger test cases (where the problem size is big) and
smaller load variability ranges (where it is easier to remove
more variables and constraints to simplify the problem).

V. CONCLUSION

Power system optimization problems often include vari-
ables and constraints that can be safely removed from the
formulation. The process of screening out redundant con-
straints depends largely on the approximations and relax-
ations applied to the nonconvex power flow equations. This

paper compares the constraint screening performance when
using the DC approximation, the QC relaxation, and the SDP
relaxation. We also evaluate the computational advantages
of reducing the size of the optimization problems using this
constraint screening method.

The results of this comparison on eight standard test
cases suggest that between the QC and SDP relaxations,
the QC relaxation provides a tighter relaxation since it per-
mits screening out many more constraints. Furthermore, we
demonstrate that the DC approximation incorrectly screens
out some constraints (i.e., the DC approximation identifies
constraints that may be binding in the AC OPF problem).
Lastly, our time comparisons when solving the AC OPF with
and without redundant constraints suggest that there are some
computational advantages when solving the reduced prob-
lem, especially for larger cases and smaller load variabilities.
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