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Advanced optimization methods for power systems
P. Panciatici, M.C. Campi, S. Garatti, S.H. Low, D.K. Molzahn, A.X. Sun, L. Wehenkel

Abstract—Power system planning and operation offers mul-
titudinous opportunities for optimization methods. In practice,
these problems are generally large-scale, non-linear, subject to
uncertainties, and combine both continuous and discrete vari-
ables. In the recent years, a number of complementary theoretical
advances in addressing such problems have been obtained in the
field of applied mathematics. The paper introduces a selection of
these advances in the fields of non-convex optimization, in mixed-
integer programming, and in optimization under uncertainty.
The practical relevance of these developments for power systems
planning and operation are discussed, and the opportunities for
combining them, together with high-performance computing and
big data infrastructures, as well as novel machine learning and
randomized algorithms, are highlighted.

I. NEEDS FROM A GRID OPERATOR PERSPECTIVE

The electrical grids and their management become more and
more complex. This state of affairs has different causes that
will not disappear in the near future.

In Europe, the first reason is the massive integration of
renewable but generally intermittent generation in the system.
Power flows in the grid are created by differences in the
location of sinks and sources. With a significant amount
of intermittent generation, the predictability of the sources
(location and amount of power injections) decreases and affects
the predictability of the flows. Furthermore, some of these
new power plants could be small units (e.g. PV) connected
to the distribution grid, changing the distribution grid into
an active system. Moreover, Transmission System Operators
(TSOs) have a poor observability of these power injections
and have no control at all over them. Another factor is the
inconsistency between the relatively short time to build new
wind farms (2 or 3 years) and the time to go through all
administrative procedures to build new lines (more than 5
years everywhere in Europe). In Europe, the best locations for
wind farms are mostly along the coasts and offshore, while for
photo-voltaic generation they are in the south of Europe. Since
these locations do not generally match those of the large load
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centers, a transmission network is required and this network
will have to cope with the variability of the flows induced by
the stochastic nature of the novel generation subsystems.

The second main reason is that it is more difficult than ever
to build new overhead lines because of low public acceptance
and “Not In My BackYard” (NIMBY) attitude. People are
more and more afraid of hypothetical electromagnetic effects
or just don’t like to see big towers in the landscape and in par-
ticular in protected areas which are more and more numerous
around Europe. It is very difficult to explain the need for new
power lines to people who already have access to electricity
at a reasonable price and with high reliability. An increase in
the European Social Welfare with a positive feedback for the
European economy and hopefully for all European citizens is a
concept that is too theoretical compared to the negative local
impact. Alternative solutions are technically complex, costly
and need more time to be deployed.

The third reason is linked to the setup of electricity markets
crossing the administrative and historical borders. Generators,
retailers and consumers view the transmission system as a pub-
lic resource to which they should have unlimited access. This
approach has the desirable effect of pushing the system towards
a maximization of the social welfare and an optimal utilization
of the assets. However, this optimization is constrained by se-
curity considerations because wide-spread service interruptions
spanning over long periods of time are unacceptable in our
modern societies due to their huge economic and social costs.
Since TSOs are responsible for maintaining the reliability
of the electric power system, they must therefore define the
operating limits that must be respected. As in any constrained
optimization problem, the optimal solution towards which the
market evolves tends to be limited by these security constraints.
The stakeholders therefore perceive reliability management by
the TSOs as constraining their activities and reducing the
European Social Welfare rather than as enablers of this large
physical market place, as it would be the case if the grid
were a copper plate. The transparent definition and the precise
assessment of the distance to these limits thus become more
and more critical.

The last reason is that the ageing of grid assets needs
increasing attention. A significant part of the European grids’
assets are more than 50 years old. Asset management, and
maintenance in systems that can’t be stopped, are extremely
challenging and need to be precisely anticipated when large
numbers of assets are approaching simultaneously the end of
their expected life times.

To maintain the security of the supply in this context, TSOs
have to change the architecture of the system by considering
the following technologies:
• Long distance HVAC underground cables with large
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2

• HVDC underground cables in parallel with the AC grid
with smart controls of AC/DC converters.

• And, ultimately, HVDC grids, first to connect efficiently
offshore wind farms and then to provide cheaper inter-
connections between distant areas.

Meanwhile, TSOs will try to optimize the existing systems
by adding more and more special devices such as Phase
Shifting Transformers, Static VAr Compensators and advanced
controls and protection schemes, taking also advantage of the
flexibility provided by HVDC links embedded in AC grids.
At the same time, demand response or dispersed storage
could offer new ways to control the system, even if business
models and costs are still questionable. But in any case,
this flexibility will require a rethinking of historical operating
practices where grid operators made the assumption that the
load is an uncontrollable exogenous stochastic variable.

We have heard so often in conferences, seminars and work-
shops, that the power grid will soon be operated very near to its
limits, so that this statement has become a cliché. This cliché
is now a reality. To be more precise, it is no longer possible
to respect the classical preventive N − 1 security standards
during all hours in a year. The system is indeed no longer
able to survive all single faults without post-fault actions, i.e.
corrective controls. More and more corrective control strategies
are hence elaborated and prepared to maintain the security of
the system. The number of hours during which the system
requires corrective actions to be secure is increasing, and that
seems to be a natural trend associated with the massive integra-
tion of intermittent generation. More and more local or cen-
tralized Special Protection Schemes (SPS)/Remedial Actions
Schemes(RAS) are deployed to implement automatically some
of these corrective actions based on advanced measurement
devices (Phasor Measurement Units, Dynamic Line Ratings,
...) and high bandwidth communication networks.

Grid operators have to manage an extremely complex
decision making process in order to ensure the reliability
and quality of supply at minimal cost over different time
horizons. For the sake of clarity, while not aiming at being
exhaustive, the following problems need to be dressed by the
grid operators:
• Long term (10-20 years): planning stage

◦ where to build new power lines? which technol-
ogy? which capacity?

• Mid term (2-5 years):
◦ installation of control devices: substation design,

var/reactive support, PSTs, replacement of conduc-
tors, SPS/RAS design;

◦ asset management and maintenance: which equip-
ment to upgrade, to replace, to repair and when?

• Short term (monthly-weekly):
◦ outage management, must-run generators, prepara-

tion of corrective actions, required margins.
• Real Time (two days ahead to real time):

◦ interaction with energy markets: definition of grid
capacities;

◦ selection of substation’s topology, settings of
SPS/RAS, adjustment of generating units.

In all these contexts, the grid operators want to make
“optimal” decisions over these different time horizons, even if
some decision making processes are currently not formalized
mathematically as optimization problems but are rather based
solely on knowledge of experts. However, as complexity
increases, decision support tools become mandatory to help
these experts to make their decisions:
• For the long term planning, there is hyper uncertainty

associated with the implementation of energy transition
policies and long term market behavior (Priority to
renewable energies, Demand Growth in context of effi-
ciency promotion, Technology Costs: electrical batteries,
Demand Response, EV, Distributed Generation, Carbon
Tax, Fuel Costs) and Grid operators have to make robust
decisions based on multi-scenario grid planning.

• In all these processes, the increasing level of uncertainty
associated to wind and solar power must be taken into
account, hence pushing towards the use of probabilistic
methods.

• Operation nearest to the limits requires an accurate mod-
eling of all pieces of equipment, of the corrective actions
and of the dynamic behaviors, so as to allow an accurate
enough assessment of security margins. Moreover, the
active constraints could be related to voltage/reactive or
stability issues and not only to thermal limits.

Grid operators must ensure an adequate consistency between
these decision making processes. They are in fact multistage
decision making processes considering all the different time
horizons. At the planning stage, they have to consider the
decisions which could be made in lower level problems:
asset management and operation and the same between asset
management and operation. The modeling of these lower
level problems seems very challenging when these lower level
problems become more complex. Approximations are required
and relevant “proxies” must be found for this modeling.

In this paper we defend the idea that in order to address all
these different questions, it is valuable to explicitly formulate
them as optimization problems. Most of these problems, once
stated, are hard to solve exactly. On the other hand significant
progress has been collected in the recent years both in com-
putational and in mathematical respects. The goal of the paper
is to highlight the main avenues of progress in these respects
and explain how they can be leveraged for improving power
systems management.

The rest of the paper is organized as follows. In the next
section, we present a taxonomy of optimization problems as-
sociated with the practical needs of power systems. In Section
3, we focus on the main recent progresses in optimization and
their impacts on solving power system management problems.
In Section 4, we discuss how these progresses could/should
be combined with progresses in sister fields, such as mas-
sively parallel computation platforms and novel approaches
developed in Computer Science for the exploitation of very
big amounts of data.

II. TAXONOMY OF OPTIMIZATION PROBLEMS

The objective of this section is to dig into the different
ways one can formulate and model optimization problems to
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be addressed in power systems (with a focus on system-wide
problems, as those addressed by TSOs).

A. Modeling the optimization problem from a formal viewpoint
Based on examples, we discuss the intrinsic nature of the

different optimization problems, by distinguishing different
possible formulations.

The general formulation can be summarized as a multistage
decision making problem under uncertainty. But the formula-
tion of this very general problem depends on the different time
horizons and the type of decisions to make.

We can divide these decisions in three classes, illustrated
here by an analogy with IT systems.

1) Decisions changing the structure of the system (devel-
oping the hardware)

2) Decisions changing policies or control/protection
schemes (developing the software)

3) Decisions modifying the operating points of the system
(selecting input data to run the software on the hard-
ware)

We focus our discussion on the first problem which is the
most challenging. This problem ideally requires the modeling
of all the aspects of power systems: from possible long term
energy policies to system operation using realistic modeling
of the physical system and expectations of the grid users.

The decisions related to the structure of the system (”hard-
ware”) take long time to be implemented, they have to go
through long permitting processes and need quite long con-
struction times. They are investment decisions. The objective
is to optimize the associated capital expenditures (capex)
by comparing them to future operational expenditures (opex)
saving. The time frame is varying from around ten years for
the construction a new power line to one year for changing
conductors on existing power lines. A part of the problem
is to choose the relevant mixture of technological options: ac
overhead power lines, ac underground cables, hvdc links, phase
shifter transformers (PSTs), new conductors for existing power
lines, new reactive compensation devices, ...

The problem can be formulated as stochastic dynamic
programming problem. For long term expansion planning (as
illustrated in Figure 1), scenario-based approaches seem the
most attractive formulations in order to ensure some level of
robustness as proposed in [1].

How to define reliability criteria and how to implement
them, are key questions in these optimization problems. ”En-
ergy Not Served” or ”Loss of Load” are generally used.
An “artificial” monetization is performed and estimated costs
are associated to these indexes. These large costs are simply
added to operational expenditures. In stochastic formulations,
generally only expected values are minimized without any cap
on the maximum risk. This could be questionable and chance
constraint programming or robust optimization could offer
more relevant solutions. We could imagine that a generalization
of Demand Response could change dramatically the definition
of reliability and the foundations of power system design,
pushing to less ”hardware” and more ”software” solutions as
anticipated very optimistically in 1978 by F. C. Schweppe [2].

Fig. 1. Expansion Planning

A review of the current formulation and associated optimiza-
tion problem is mandatory as proposed for example in the
two on-going European projects: e-HIGHWAY2050 [3] and
GARPUR [4]. In this global optimization problem, the sub
problem on selection of relevant technological options leads
to a combinatorial optimization very similar to a ”knapsack”
problem 1, increasing even more the complexity.

We can identify three different dimensions: spatial, temporal
and stochastic. The spatial complexity is increasing: ”more and
more the electrical phenomena don’t stop at administrative
borders”. We have to consider systems very extended (Pan-
European Transmission System, Eastern or Western Intercon-
nection in US, ...) and at the same time local active distribution
grids. Time constants range from milliseconds to several
years, leading to temporal complexity. Uncontrollable load and
renewable energy sources implies to take into account more
than ever stochastic behaviors. Considering spatial, temporal
and stochastic complexity all together is still out of reach.
Trade-offs must be made to take into account at most two of
them in details at the same time and using approximation for
third one.

The appropriate modeling of uncertainties is also a key fac-
tor to find realistic optimal solutions. The spatial and temporal
correlations between these uncertainties must be taken into
account not to be too optimistic or too pessimistic. This pushes
towards probabilistic methods and risk based approaches.
When the probabilistic properties of the uncertainties are only
partially known, generalized semi-infinite programming seems
an appealing method proposing to find robust solutions when
the uncertainties live in a defined domain:

minx∈X f(x)
subject to: ∀δ ∈ ∆ : g(x, δ) ≤ 0,

where x are the decision variables and δ the uncertainties.

The objective function is related to satisfaction of the grid
users (consumers and suppliers): maximization of social wel-
fare. We need to estimate the expectations and the behaviors
of the grid users. For long term decisions, it seems reasonable

1the knapsack problem: given a set of items, each with a mass and a value,
determine those to include in a collection so that the total weight is less than
or equal to a given limit and the total value is as large as possible.
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to simulate a “perfect market” leading to a global rational
behavior minimizing the costs. For more short term decisions,
it could be important to simulate the actual behavior of the
market players and the imperfect market design. These esti-
mations could be formulated as optimization problems based
on game theory finding Nash equilibrium2.

In practice, we could have to formulate multi-objective
optimization problems which are generally transformed in a
single optimization problem using a weighted sum of the
different objective functions

min(w1.f1(x) + w2.f2(x) + ...+ wn.fn(x)).

(For example, we want to minimize the production costs and
the amount of emitted CO2). Finding the associated weighting
factors could be difficult and questionable. A more rational
approach should be to formulate a true multi-objective function

min(f1(x), f2(x), ..., fn(x)).

But for a nontrivial multi-objective optimization problem, there
does not exist a single solution that simultaneously optimizes
each objective. In that case, the objective functions are said to
be conflicting, and there exists a (possibly infinite number of)
Pareto optimal solutions. A solution is called nondominated,
Pareto optimal, Pareto efficient or noninferior, if none of the
objective functions can be improved in value without degrading
some of the other objective values. This leads to complex
optimization problems which could be solved using meta-
heuristics methods.

We could see that power system management could lead
to a large diversity of optimization problems. The proper
formulation of each problem has to be well thought out before
searching for computational solutions.

B. Modeling the physics of the power system
The objective of this section is to analyze the physics and

technological constraints arising from the power system, and
explain their implications in terms of the nature of the above
formulated optimization problems.

The quality of physical modeling of power systems used in
optimization problems is essential in order to make ”optimal”
decisions. Solving optimization problems with a high accuracy
based on not realistic enough modeling is useless. We need to
find the right balance between realism and complexity. The
usage of static and deterministic modeling using a lineariza-
tion of the associated mathematical formulations should be
questioned in the new context presented in the introduction.

A significant number of controls in electrical grids are
discrete: switch on/off of breakers, switch on/off capacitor
or reactor banks, tap changers on transformers, generating
units producing with non zero minimal active power when
they are started. These controls become integer variables in
optimization problems and their treatments require a special

2Nash equilibrium is a solution concept of a non-cooperative game involving
two or more players, in which each player is assumed to know the equilibrium
strategies of the other players, and no player has anything to gain by changing
only their own strategy

attention; with a naive relaxation (round off strategy) is not
always possible even to find feasible solutions.

Some controls and protection schemes implemented in local
or centralized SPS/RAS are not event-based but measurement-
based. They acts conditionally when a measurement or a set
of measurements don’t fulfill a given rule (for example, when
a measurement value is beyond a given limit). This kind of
behavior must taken into account in optimization problem. This
leads to conditional corrective actions and the modeling of this
type of hybrid system (continuous and discrete) requires binary
variable [5].

Some active constraints in power systems could be more and
more related to stability and the system dynamic behavior. The
ultimate solution should be use a DAE-constrained optimiza-
tion formulation but a reasonable first step could be to use
”proxies” to hide this complexity. The idea is to learn using
Monte-Carlo simulation, rules which ensure that the study case
has a very low probability to be prone to stability issues [6]
and to introduce these rules in static optimization problems.

III. RECENT DEVELOPMENTS IN THE FIELD OF
OPTIMIZATION

In this section we highlight a set of novel results obtained
in the last 10 years, that should be leveraged to better address
the optimization problems encountered by TSOs.

A. Convexification
In this subsection, we introduce two recently explored

directions aiming at developing algorithms which can compute,
under some relatively general conditions, global optima for
OPF problems and provide optimality bounds / certificates of
optimality / certificates of infeasibility.

At the core of our problem, we have a nonconvex program
to solve (AC power flow) even without considering discrete
variables or discrete decisions. FERC sponsored a number of
studies on ACOPF [7]. The motivation extracted from these
studies is: “The AC Optimal Power Flow (ACOPF) is at the
heart of Independent System Operator (ISO) power markets
and vertically integrated utility dispatch. ACOPF simultane-
ously optimizes real and reactive power. An approximated
form of the ACOPF is solved in some form annually for
system planning, daily for day-ahead commitment markets,
and even every 5 minutes for real-time market balancing.
The ACOPF was first formulated in 1962 by Carpentier. With
advances in computing power and solution algorithms, we can
model more constraints and remove unnecessary limits and
approximations that were previously required to find a good
solution in reasonable time. Today, 50 years after the problem
was formulated, we still do not have a fast, robust solution
technique for the ACOPF. Finding a good solution technique
for the ACOPF could potentially save tens of billions of dollars
annually.”

The main conclusion is: “The iterative linear approximation
(ILIV-ACOPF) solves faster and is more robust than most
other approaches examined. Parameter tuning can improve
performance. With binary variables, for example, as in the
unit commitment and optimal transmission switching problems,
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linear approximations can be solved faster than nonlinear
models.”

This is indeed the state of the art but a large amount of
dedicated tunings and heuristics is still required to solve each
specific practical problem. The main drawback is that it is
impossible to ensure that an AC feasible solution could be
obtained using an iterative linear method. Moreover, when
this iterative linear method is able to find an AC feasible
and optimal solution, we believe that advanced nonlinear
solvers are also able to find it in a quite efficient way. The
comparison between solvers is always a very difficult task, a
specific team has always a better knowledge of one solver and
has a good understanding of all possible tunings, this is not
generally the case for all the other solvers under comparison
The convexification of ACOPF is the most promising generic
method to avoid most of these tunings and heuristics. In the
following sections, we present two recent promising convexi-
fication methods.

Notations. Let C denote the set of complex numbers,
R the set of real numbers, N the set of non-negative
integers, and i :=

√
−1. For a ∈ C, Re a and Im a

denote the real and imaginary parts of a respec-
tively. For a, b ∈ C, a ≤ b means Re a ≤ Re b
and Im a ≤ Im b. A variable without a subscript
denotes a vector with appropriate components, e.g.
s := (sj , j = 0, . . . , n), S := (Sjk, (j, k) ∈ E).
For vectors x, y, x ≤ y denotes componentwise
inequality. The transpose of a matrix A is denoted
as Aᵀ, and the Hermitian (complex conjugate) trans-
pose is denoted by AH . A matrix A is Hermitian if
A = AH . A is positive semidefinite (or psd), denoted
by A � 0, if A is Hermitian and xHAx ≥ 0 for all
x ∈ Cn. Let Sn be the set of all n × n Hermitian
matrices.

1) Semidefinite programming primer: ACOPF can be for-
mulated as a quadratic constrained quadratic program (QCQP);
see (22) below and the paper [8] in the invited session of
PSCC2014 for more details. Convex relaxation of quadratic
programs has been applied to many engineering problems [9]
(see also [10] for some applications in power systems). There
is a rich theory, mature algorithms, and extensive empirical
experiences; see, e.g., [11], [12], [9]. We now summarize
QCQP and its semidefinite relaxation. We formulate these
problems in the complex domain for notational simplicity.

QCQP is the following optimization problem:

min
x∈Cn

xHC0x (1a)

subject to xHClx ≤ bl, l = 1, . . . , L, (1b)

where the optimization variables are x ∈ Cn, and for l =
0, . . . , L, bl are given real numbers and Cl are given Hermitian
matrices in Sn (so that xHClx are real). If Cl, l = 0, . . . , L,
are positive semidefinite then (1) is a convex QCQP. Otherwise
it is generally nonconvex, as OPF problems are.

Any psd rank-1 matrix X has a spectral decomposition X =
xxH , unique up to a rotation. Using xHClx = tr ClxxH =:
tr ClX we can rewrite a QCQP as the following equivalent

problem where the optimization is over Hermitian matrices:

min
X∈Sn

tr C0X (2a)

subject to tr ClX ≤ bl, l = 1, . . . , L (2b)
X � 0, rank X = 1 (2c)

The key observation is that, while the objective function and
the constraints in (1) are quadratic in x they are linear in X
in (2a)–(2b). The constraint X � 0 in (2c) is convex (Sn+
is a convex cone). The rank constraint in (2c) is the only
nonconvex constraint. Removing the rank constraint results in
a semidefinite program (SDP):

min
X∈Sn

tr C0X (3a)

subject to tr ClX ≤ bl, l = 1, . . . , L (3b)
X � 0. (3c)

SDP is a convex program and can be efficiently computed.
We call (3) an SDP relaxation of QCQP (1) because the
feasible set of (2) is a subset of the feasible set of SDP (3).
A strategy for solving QCQP (1) is to solve SDP (3) for an
optimal Xopt and check its rank. If rank Xopt = 1 then Xopt is
optimal for (2) as well and an optimal solution xopt of QCQP
(1) can be recovered from Xopt through spectral decomposition
Xopt = xopt(xopt)H . If rank Xopt > 1 then, in general, no
feasible solution of QCQP can be directly obtained from Xopt

but the optimal objective value of SDP provides a lower bound
on that of QCQP. If the SDP (3) is infeasible, then it is a
certificate that the original QCQP (1) is infeasible.

2) Moment relaxation primer: Although the semidefinite
relaxation in Section III-A1 globally solves many QCQP
problems, the rank condition fails to be satisfied (i.e.,
rank (Xopt) > 1) for some practical power system opti-
mization problems. Thus, the semidefinite relaxation does
not yield the globally optimal solution to all problems of
interest. Recognizing that QCQP is a special case of polyno-
mial optimization problems (i.e., optimization problems with
a polynomial objective function and polynomial constraints),
tools from polynomial optimization theory can be exploited to
solve a broader class of QCQP problems.

In particular, by exploiting the fact that polynomial opti-
mization problems are themselves special cases of generalized
moment problems, the Lasserre hierarchy [13], [14] can be
applied to solve QCQP problems. The Lasserre hierarchy is
composed of “moment” relaxations that take the form of SDPs.
Increasing the relaxation order in the Lasserre hierarchy adds
constraints that are redundant in the original QCQP but tighten
the relaxation’s feasible space, thus enabling global solution of
a broader class of problems at the computational cost of larger
SDPs.3

We next describe the moment relaxations resulting from the
Lasserre hierarchy. Consider the generic polynomial optimiza-

3The dual form of the moment relaxations are sum-of-squares programs.
The relaxation order corresponds to maximum degree of the sum-of-squares
polynomials. See [13], [14] for details.
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tion problem

min
x∈Rn

f0 (x) (4a)

subject to fl (x) ≥ 0, l = 1, . . . , L, (4b)

where fl (x) for l = 0, . . . , L are polynomial functions of the
decision variables x. The QCQP in (1) is a special case of
(4) where all polynomials fl (x) are quadratic and a complex
x is decomposed into real and imaginary parts. We use the
notation xα to represent a monomial in fl (x), where α ∈ Nn
is a vector denoting the exponents for each variable in x (i.e.,
xα = xα1

1 xα2
2 · · ·xαnn ). Each polynomial is then written as

fl (x) =
∑
α∈Nn

cl,α x
α, (5)

where cl,α is the scalar coefficient associated with each mono-
mial xα in fl (x).

The moment relaxations in the Lasserre hierarchy are de-
rived using the fact that every polynomial optimization prob-
lem can be written as a generalized moment problem:

min
µ∈M (K)+

∫
K
f0 dµ (6a)

subject to
∫
K
dµ = 1, (6b)

where K is the feasible space defined by the constraints (4b)
and M (K)+ is the space of finite Borel measures µ on K.
(See Theorem 1.1 and its corresponding proof in [14].) The
formulation (6) represents the polynomial optimization prob-
lem (5) as a linear (and therefore convex), infinite-dimensional
optimization problem.

We next define a linear functional Ly (f) which converts
a polynomial argument f (x) =

∑
α∈Nn cl,α x

α to a linear
combination of scalars y indexed by α:

Ly (f) =
∑
α∈Nn

cl,α yα. (7)

For matrix arguments F (x) (i.e., entries of the matrix F
are polynomials), Ly (F ) applies the linear functional to each
element of F .

We can then use (7) to reformulate (6) as

min
y

Ly (f0)

(
=
∑
α∈Nn

c0,α yα

)
(8a)

s.t. y0 = 1 (8b)

yα =

∫
K
xαdµ, α ∈ Nn, for some µ ∈M (K)+ .(8c)

See Chapter 4 of [14]. Note that constraint (8b), which
corresponds to (6b), enforces the fact that x0 = 1.

With this reformulation, the optimization problem is de-
scribed solely with the moments yα of µ rather than µ itself.
We form a moment relaxation by rewriting (8) entirely in terms
of yα (i.e., eliminating explicit dependence on µ) and adding

constraints that enforce necessary conditions for yα satisfying
(8c).

The order of the moment relaxation determines the strin-
gency of the necessary conditions used in place of (8c). For
the order-γ moment relaxation, define the vector χγ containing
all monomials of the decision variables x up to order-γ:

χγ =
[
1 x1 . . . xn x

2
1 x1x2 . . . x

2
n x

3
1 x

2
1x2 . . . x

γ
n

]ᵀ
. (9)

The necessary conditions for yα to satisfy (8c) take the
form of positive semidefinite matrix constraints on a single
moment matrix and on localizing matrices corresponding to
each polynomial constraint in (4b). The order-γ moment
relaxation has a moment matrix formed by applying the linear
functional Ly to the outer product χγχ

ᵀ
γ :

Ly
(
χγχ

ᵀ
γ

)
. (10)

The localizing matrices result for application of the linear func-
tional Ly to the polynomial matrices formed by multiplying
the scalar polynomial constraints fl (x) by the outer product
χγ−βlχ

ᵀ
γ−βl :

Ly

(
fl (x)χγ−βlχ

ᵀ
γ−βl

)
, l = 1, . . . , L, (11)

where the polynomial fl (x) in the lth constraint of (4b) has
degree 2βl or 2βl−1. (Thus, for QCQP, βl = 2, l = 1, . . . , L.)

The order-γ moment relaxation is then

min
y

Ly (f0 (x)) (12a)

s.t. y0 = 1 (12b)
Ly
(
χγχ

ᵀ
γ

)
� 0 (12c)

Ly

(
fl (x)χγ−βlχ

ᵀ
γ−βl

)
� 0, l = 1, . . . , L. (12d)

In the same way as the semidefinite relaxation in Sec-
tion III-A1, satisfaction of a rank condition is sufficient for
exactness of the moment relaxation:

rank (Ly (χ1χ
ᵀ
1)) = 1. (13)

When the rank condition (13) is satisfied, the globally optimal
decision variables are obtained from an spectral decomposition
of the matrix Ly (χ1χ

ᵀ
1). Define λ as the non-zero eigen-

value of the matrix Ly (χ1χ
ᵀ
1) with corresponding unit-length

eigenvector η. The globally optimal solution to the polynomial
optimization problem is

xopt =
√
λ η. (14)

Since positive semidefinite moment and localizing matri-
ces are only necessary for satisfaction of (8c), rather than
necessary and sufficient, the moment relaxation may not be
exact. That is, the moment relaxation may only provide a lower
bound on the optimal objective value rather than the globally
optimal decision variables xopt. When the rank condition (13)
is not satisfied, either 1) there are multiple global solutions,
necessitating the more general conditions for exactness of
the moment relaxations that are described in [14], which
include the ability to extract multiple global solutions, or
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2) the moment relaxation is not exact and only provides a
lower bound on the optimal objective value. In the latter
case, increasing the relaxation order can improve the lower
bound on the optimal objective value and potentially yield a
global solution. Solutions to the moment relaxations converge
to the global optima of a polynomial optimization problem
with increasing relaxation order [14].

Applying the first-order moment relaxation to a QCQP
problem results in a moment matrix equivalent to X in (3). The
localizing “matrices” for the first-order moment relaxation are
in fact scalars which impose equivalent constraints as (3b).4
Thus, the first-order relaxation is equivalent to the semidefinite
relaxation described in Section III-A1.

The upper-left block of the moment and localizing matrices
for a moment relaxation contain the moment and localiz-
ing matrices for the lower-order relaxations. Thus, positive
semidefinite constraints on the order-γ moment and localizing
matrices ensure that the (γ − k)-order moment relaxations’
constraints are also satisfied for k = 1, . . . , γ − 1. Therefore,
the higher-order moment relaxations generalize the lower-
order moment relaxations (and also generalize the semidefinite
relaxation in Section III-A1).

As an illustrative example, consider the polynomial opti-
mization problem

min
x

x2
1 + x1x2 + x2

2 (15a)

subject to x1x2 − x2
2 ≥ 1 (15b)

x1 + x2 ≥ 0 (15c)

The first-order moment relaxation for this problem is

min
y

y20 + y11 + y02 (16a)

subject to y00 = 1 (16b)
y11 − y02 − 1y00 ≥ 0 (16c)
y10 + y01 ≥ 0 (16d)[
y00 y10 y01

y10 y20 y11

y01 y11 y02

]
� 0 (16e)

where (16b) corresponds to (12b); (16c) and (16d) are the con-
straints on the localizing matrices (which are, in fact, scalars
for the first-order relaxation) corresponding to (15b) and (15c),
respectively; and (16e) is the moment matrix constraint.

The solution to (16) has a moment matrix with rank 2. Since
the rank condition (13) is not satisfied, the first-order relaxation
only provides a lower bound on the globally optimal objective
value rather than the globally optimal decision variables. (The
lower bound is 2.130.)

For this example, solving the second-order moment relax-
ation yields the globally optimal solution. The second-order

4For the first-order moment relaxation, the lth localizing matrix is
Ly

(
fl (x)χ0χ

ᵀ
0

)
= Ly (fl (x) · 1 · 1ᵀ) = Ly (fl (x)) (i.e., a scalar that

imposes an equivalent constraint as (3b)).

moment relaxation for this example problem is

min
y

y20 + y11 + y02 (17a)

s.t. y00 = 1 (17b)y11−y02−y00 y21−y12−y10 y12−y03−y01

y21−y12−y10 y31−y22−y20 y22−y13−y11

y12−y03−y01 y22−y13−y11 y13−y04−y02

�0 (17c)y10 + y01 y20 + y11 y11 + y02

y20 + y11 y30 + y21 y21 + y12

y11 + y02 y21 + y12 y12 + y03

 � 0 (17d)


y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

 � 0 (17e)

where (17c) and (17d) are the localizing matrix constraints
corresponding to (15b) and (15c), respectively, and (17e)
is the moment matrix constraint. Note that the upper-left
block of the second-order moment and localizing matrices in
(17) are equivalent to the first-order matrices in (16), which
demonstrates that the moment relaxations build on themselves.

Since the solution to (17) satisfies the rank condition,
we can obtain the globally optimal solution to (15): x =
[2.076 0.760]

ᵀ. Observe that the optimal objective value of
6.464 is indeed greater than the lower bound of 2.130 provided
by the first-order relaxation.

3) Application to the OPF problem: Solving OPF through
convex relaxation offers several advantages. First, while the
linear DC OPF approximation is useful in a wide variety of
applications, it is not always applicable, e.g., when power loss
is not negligible, voltage magnitudes can fluctuate significantly,
and reactive power needs to be optimized to stabilize voltages.
Second, a solution of DC OPF may not be feasible. In this
case, an operator may tighten some constraints in DC OPF
and solve again. This may not only reduce efficiency but also
relies on heuristics that are hard to scale to larger systems or
faster control in the future. Third, when they converge, most
nonlinear algorithms compute a local optimum, usually without
assurance on the quality of the solution. In contrast, a convex
relaxation provides for the first time the ability to check if a
solution is globally optimal. If it is not, the solution provides
a lower bound on the minimum cost and hence a bound on
how far any feasible solution is from optimality. Moreover,
unlike approximations, if a relaxed problem is infeasible, it is
a certificate that the original OPF is infeasible.

Convex relaxations can also be used to verify the optimality
of a feasible solution obtained by other methods (e.g. interior
point methods, sequential linear or quadratic programming):
if such a solution attains the same optimal value of the SDP
relaxation of OPF, then it is globally optimal.

Further, if a candidate solution from any solver that provides
both primal and dual solution values satisfies the Karush-
Kuhn-Tucker (KKT) conditions for a relaxation, then the
candidate solution is, in fact, the global optimum. (Note that
these conditions are sufficient but not necessary for global
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optimality of the candidate solution.) Since evaluating the
KKT conditions for a semidefinite program only requires
linear algebra operations (specifically, an inner product and
a Cholesky decomposition) rather than solving a semidefinite
program, testing for global optimality can be computation-
ally advantageous. In [15], this approach is applied using
the semidefinite relaxation described in Section III-A1. As
an example of the computational benefits of this approach,
solving the 2736-bus Polish system with MATPOWER [16] and
verifying global optimality with the semidefinite relaxation’s
KKT conditions only requires 1.6% of the time required to
actually solve the semidefinite relaxation directly.

Overall, research in convex relaxations lends itself to prac-
tical algorithms which are applicable to large-scale problems.
For radial networks, sufficient conditions are known that
guarantee exact semidefinite relaxations. Numerical experience
with more general mesh networks demonstrates the relax-
ations’ ability to find globally optimal solutions.

a) Semidefinite relaxation of the OPF problem: To the
best of our knowledge, solving OPF through convex relaxation
is first proposed in [17] as an SOCP for radial (tree) networks
and in [18] as an SDP for general networks in a bus injection
model. It is first proposed in [19], [20] as an SOCP for radial
networks in the branch flow model of [21]. While these convex
relaxations have been illustrated numerically in [17] and [18],
whether or when they will turn out to be exact is first studied in
[22]. Exploiting graph sparsity to simplify the SDP relaxation
of OPF is first proposed in [23], [24] and analyzed in [25],
[26]. See a comprehensive tutorial in [27], [28] (also [8]).

Consider a power network modeled by a connected undi-
rected graph G(N+, E) where N+ := {0} ∪ N , N :=
{1, 2, . . . , n}, and E ⊆ N+ × N+. Each node in N+

represents a bus and each edge in E represents a transmission
or distribution line or transformer. For each edge (i, j) ∈ E let
yij ∈ C be its admittance. A bus j ∈ N+ can have a generator,
a load, both or neither. Let yj denote a shunt element at bus j.
Let Vj be the complex voltage at bus j ∈ N+ and |Vj | denote
its magnitude. Bus 0 is the slack bus. Its voltage is fixed and
we assume without loss of generality that V0 = 1∠0◦ per unit
(pu). Let sj be the net complex power injection (generation
minus load) at bus j ∈ N+.

The state of the network can be represented by the complex
voltages vector V ∈ Cn+1.5 It satisfies the Kirchhoff’s laws
(power balance):

sj =
∑
k:j∼k

yHjk Vj(V
H
j − V Hk ) + yHj |Vj |2 (18)

The power injections are constrained: sj ≤ sj ≤ sj , j ∈ N+,
where sj and sj are given bounds on the injections at buses j.
We can eliminate the variables sj from the OPF formulation
by using (18) to translate power injection constraints into
quadratic constraints on V :

sj≤
∑

k:(j,k)∈E

yHjk Vj(V
H
j − V Hk ) + yHj |Vj |2≤sj , j ∈ N+ (19)

5For convenience we include V0 in the vector variable V := (Vj , j ∈ N+)
with the understanding that V0 := 1∠0◦ is fixed.

In addition, all voltage magnitudes must satisfy:

vj ≤ |Vj |2 ≤ vj , j ∈ N+ (20)

where vj and vj are given lower and upper bounds on the
squared voltage magnitudes. Other constraints, such as line
limits, can also be written as quadratic constraints on V , e.g.,
a limit on a line current may take the form |yHjk (Vj −Vk)|2 ≤
`jk. For notational simplicity, we restrict our discussion to
constraints (19) and (20).

The OPF problem can be defined in terms of the complex
voltage vector V . Suppose the cost function takes the form
V HCV for some psd cost matrix C (e.g., the cost of real
power at each generator bus or line loss over the network).
Then the problem of interest is:
OPF:

min
V

C(V ) subject to V satisfies (19), (20). (21)

Since (19) is quadratic, the feasible set is generally a noncon-
vex set. To see this, we transform (21) into the standard form
QCQP (1), using the derivation in [29].

Let Y denote the (n+ 1)× (n+ 1) admittance matrix. Let
Ij be the net injection current from bus j to the rest of the
network. Then the current vector I and the voltage vector V are
related by the Ohm’s law I = Y V . The power flow equations
(18) are equivalent to:

sj = VjI
H
j = (eHj V )(IHej), j ∈ N+

where ej is the (n + 1)-dimensional vector with 1 in the jth
entry and 0 elsewhere. Hence, since I = Y V , we have

sj = tr
(
eHj V V

HY Hej
)

= tr
(
Y Heje

H
j

)
V V H = V HY Hj V

where Yj := eje
H
j Y is an (n + 1) × (n + 1) matrix with its

jth row equal to the jth row of the admittance matrix Y and
all other rows equal to the zero vector. Yj is in general not
Hermitian so that V HY Hj V is in general a complex number.
Its real and imaginary parts can be expressed in terms of the
Hermitian and skew Hermitian components of Y Hj defined as:

Φj :=
1

2

(
Y Hj + Yj

)
and Ψj :=

1

2i
(
Y Hj − Yj

)
Then

Re sj = V HΦjV and Im sj = V HΨjV

Let their upper and lower bounds be denoted by

p
j

:= Re sj and pj := Re sj
q
j

:= Re sj and qj := Re sj

Let Jj := eje
H
j denote the Hermitian matrix with a single 1 in

the (j, j)th entry and 0 everywhere else. Then OPF (21) can
be written as a standard form QCQP:

min
V ∈Cn+1

V HCV (22a)

subject to V HΦjV ≤ pj , V H(−Φj)V ≤ −pj (22b)

V HΨjV ≤ qj , V H(−Ψj)V ≤ −qj (22c)

V HJjV ≤ vj , V H(−Jj)V ≤ −vj , (22d)
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where j ∈ N+ in (22), and the matrices Φj ,Ψj , Jj are
Hermitian. It is clear that the equivalent OPF (22) is a QCQP.
Moreover, since Φj ,Ψj are generally not psd, OPF is a
nonconvex problem and NP-hard to solve in general.

As explained in Section III-A1, SDP relaxation can be
applied to OPF and it takes the form

min
W∈Sn+1

tr CW

subject to tr (ΦjW ) ≤ pj , tr ((−Φj)W ) ≤ −p
j
,

tr (ΨjW ) ≤ qj , tr ((−Ψj)W ) ≤ −q
j
,

tr (JjW ) ≤ vj , tr ((−Jj)W ) ≤ −vj .

If an SDP solution W opt is of rank 1, then an optimal solution
V opt of OPF (22) can be recovered from W opt. Otherwise, the
optimal value of SDP provides a lower bound on the optimal
cost of OPF.

b) Moment relaxations of the OPF problem: There are a
variety of approaches for handling cases where the semidef-
inite relaxation fails to yield a global solution to OPF (i.e.,
rank (Xopt) > 1). These approaches include heuristics that
attempt to find “nearby” local solutions (that may often be, in
fact, the global solution) [30], [31] and the use of a branch-
and-bound method to eliminate the gap between the lower
bound from a relaxation and the upper bound from a nonlinear
programming solver [32]. We next discusses an alternative to
these approaches that generalizes the semidefinite relaxation
using the Lasserre hierarchy of moment relaxations.

By specifying the voltage decision variables in rectangular
coordinates (i.e., decomposing the complex voltage variable V
in (21) such that the OPF problem has real decision variables
Vd and Vq with V = Vd+iVq), the OPF problem takes the form
of a polynomial optimization problem of the form described
in (4). That is, the objective and constraints are polynomial
functions of the voltage components. This formulation enables
global solution of OPF problems using tools from polynomial
optimization theory. In particular, the Lasserre hierarchy [13],
[14] described in Section III-A2 can be applied to the OPF
problem.

The order-γ moment relaxation of the OPF
problem is developed using the vector χγ from (9)
containing all monomials of the voltage components
Vd1, Vd2, . . . , Vdn, Vq1, Vq2, . . . , Vqn up to degree γ. (To
maintain notational consistency with Section III-A2, the slack
bus is labeled as bus 1 in the remainder of this section.)

Next construct the moment and localizing matrices. The
moment matrix Ly

(
χγχ

ᵀ
γ

)
from (10) contains terms corre-

sponding to all monomials of the voltage components with up
to degree 2γ. With all constraint polynomials having degree
2, the localizing matrices Ly

(
fl (x)χγ−1χ

ᵀ
γ−1

)
from (11) are

composed of polynomials with maximum degree 2γ. (The
monomials in the matrix χγ−1χ

ᵀ
γ−1 have maximum degree

2γ−2. Multiplication by the second-degree polynomials fl (x)
results in a matrix with up to 2γ-degree polynomials.)

To eliminate the degree-of-freedom corresponding to the
choice of the reference angle, include the angle reference
constraint Vq1 = 0. (Alternatively, Vq1 can be eliminated from
the optimization problem.) Also add constraint (12b) to enforce

x0 = 1. Applying the linear functional Ly to the quadratic
cost function in (21) results in a linear objective function. The
semidefinite program corresponding to this objective function
with these constraints and positive semidefinite constraints on
the moment and localizing matrices is the order-γ moment
relaxation of the OPF problem.

As a small illustrative example, consider the second-order
relaxation of a two-bus OPF problem. (For notational con-
ciseness, the reference angle constraint Vq1 = 0 is used to
eliminate Vq1.) This relaxation is developed using

χ1 = [1 Vd1 Vd2 Vq2 ]
ᵀ (23a)

χ2 =
[
1 Vd1 Vd2 Vq2 V

2
d1 Vd1Vd2 Vd1Vq2 V

2
d2 Vd2Vq2 V

2
q2

]ᵀ
.

(23b)

The second-order moment matrix for a two-bus system is

Ly (χ2χ
ᵀ
2) =



y000 y100 y010 y001 y200 y110 y101 y020 y011 y002
y100 y200 y110 y101 y300 y210 y201 y120 y111 y102
y010 y110 y020 y011 y210 y120 y111 y030 y021 y012
y001 y101 y011 y002 y201 y111 y102 y021 y012 y003
y200 y300 y210 y201 y400 y310 y301 y220 y211 y202
y110 y210 y120 y111 y310 y220 y211 y130 y121 y112
y101 y201 y111 y102 y301 y211 y202 y121 y112 y103
y020 y120 y030 y021 y220 y130 y121 y040 y031 y022
y011 y111 y021 y012 y211 y121 y112 y031 y022 y013
y002 y102 y012 y003 y202 y112 y103 y022 y013 y004


(24)

where the subscripts indicate the exponents α in the monomials
xα for x = [Vd1 Vd2 Vq2]

ᵀ. Observe that the upper-left
block of the moment matrix in (24) is equivalent to the moment
matrix from the first-order relaxation Ly (χ1χ

ᵀ
1).

Consider the polynomial constraint V 2
d2 +V 2

q2− (0.9)
2 ≥ 0,

which enforces a minimum voltage magnitude at bus 2 of 0.9
per unit. The localizing matrix corresponding to this constraint
is shown in eqn. (25).

The (1,1) element of the localizing matrices are the scalar
constraints from the first-order relaxation, again demonstrating
that the higher-order moment relaxations build on the lower-
order relaxations.

The first-order moment relaxation in the Lasserre hierarchy
is equivalent to the SDP relaxation. In the same way as
the SDP relaxation, the first-order relaxation in the Lasserre
hierarchy is sufficient for globally solving many practical OPF
problems [22], [25]. However, there exist OPF problems for
which the first-order relaxation yields only a lower bound on
the optimal objective value rather than the globally optimal
decision variables [33], [34].

Although there is an upper bound on the relaxation order
necessary for obtaining a global solution, this bound is too
large for practical application [14]. If large relaxation orders
were necessary for practical OPF problems, the moment re-
laxations would be computationally intractable. Fortunately,
numerical experience demonstrates that the second-order re-
laxation globally solves most small OPF problems for which
the first-order relaxation fails, with a third-order relaxation
being necessary for only small parameter ranges of some
problems [35], [36], [37].

One particularly illustrative example is the nine-bus system
in [38]. MATPOWER [16] with the default interior point solver
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Ly
((
V 2
d2 + V 2

q2 − 0.81
)
χ1χ

ᵀ
1

)
= y020 + y002 − 0.81y000 y120 + y102 − 0.81y100 y030 + y012 − 0.81y010 y021 + y003 − 0.81y001

y120 + y102 − 0.81y100 y220 + y202 − 0.81y200 y130 + y112 − 0.81y110 y121 + y103 − 0.81y101

y030 + y012 − 0.81y010 y130 + y112 − 0.81y110 y040 + y022 − 0.81y020 y031 + y013 − 0.81y011

y021 + y003 − 0.81y001 y121 + y103 − 0.81y101 y031 + y013 − 0.81y011 y022 + y004 − 0.81y002

 . (25)

and default solver options either fails to converge or converges
to one of three local optima (with objective values that are
10.0%, 37.5%, and 38.1% greater than the global optimum)
for typical initializations. The first-order relaxation yields a
lower bound that is 11% less than the global optimum. Thus,
the first-order relaxation and a typical interior point method
both perform poorly for this problem while a second-order
relaxation finds the global solution.

While low-order relaxations solve many small OPF prob-
lems, there are computational challenges associated with large
OPF problems. The size of the SDP matrices grows combina-
torially with the relaxation order.6 Only OPF problems with
up to approximately ten buses are computationally tractable
for direct applications of the second-order relaxation. Fortu-
nately, the sparsity of typical OPF problems can be exploited
in the moment-based relaxations using a matrix completion
decomposition [39], [37], [40]. This approach decomposes the
positive semidefinite constraint on the moment matrix into
constraints on many smaller matrices. With direct application
of this approach, the first-order moment-based relaxation is
feasible for problems with thousands of buses [41], [25], [37].
Direct application of the matrix completion decomposition
to the second-order relaxation results in computational in-
tractability for problems with more than approximately forty
buses [37], [40]. Solving higher-order moment relaxations for
larger OPF problems can be accomplished by exploiting the
fact that the first-order relaxation is sufficient for most regions
of typical large OPF problems. An iterative technique that
selectively applies the higher-order constraints to specific buses
enables global solution of OPF problems with up to 300
buses [40].

There are many directions for future research related to the
moment relaxations. For instance, one direction is extension to
larger OPF problems, potentially using distributed optimiza-
tion techniques. Expanding on research for existing convex
relaxations [28], [34], another direction is the development
of sufficient conditions for which the moment relaxations are
guaranteed to yield globally optimal solutions and characteri-
zation of OPF problems for which moment relaxations fail.

B. Integer variables

The treatment of integer variables in optimization problems
is a difficult task but some integer variables appear naturally
in the modeling of power systems (See Section II.B).

For linear systems, very efficient solvers based on branch
and bound methods exist (CPLEX, Xpress, Gurobi, ...), They

6The size of the moment matrix in the order-γ relaxation of an n-bus system
is (2n+γ)!

(2n)!γ!
.

are able to deal with very large systems (millions of con-
straints, several thousands of variables). They have generally
very impressive presolvers capable to reduce drastically the
number of constraints taken into account in the core algorithm.
Some solvers can take advantage of multicore architectures and
implement parallel evaluations over the combinatorial tree. The
efficiency of these parallel methods is very problem depend
and it must be tuned. The solvers offer hot start capabilities
which can speedup a sequence of optimization problems
(for example optimization of successive power system states
encountered in real-time).

The integer variables could be useful not only for the mod-
eling of physical components but also to implement complex
behaviors and decisions making processes.

For example, for simulating automatic devices or operating
rules acting when the system is in a specific state (conditional
corrective actions) that must be taken into account in the power
system optimization, we propose below a simple illustrative
example, the modeling of the control of Phase Shifter Trans-
formers (PST) in optimization problems.

We want to find the initial active powers of ng generations
(P ) and initial phase shift φ0 of a transformer phase shifter
which minimize the deviation from a given generation schedule
(P 0) and which ensure that the security remains inside security
boundaries after each single contingency belonging to a finite
set of contingencies (Sc) while simulating the effect of the
local control of a single PST. Using a DC approximation, θ
is the vector of voltage angles of the base case, θk the vector
of voltage angles in the post contingency (k) and θck is the
vector of voltage angles in the post contingency (k) and action
of the PST. φk is the phase shift after contingency (k). φk
is a free variable after the contingency (k) if a local quantity
gpst(θk, φ0) is greater than a given limit Lpst

min

ng∑
g=1

|pg − p0
g|

subject to: F (P, θ, φ0) = 0

C(θ, φ0) ≤ L0

Pmin ≤ P ≤ Pmax
−φm ≤ φ0 ≤ φm
for each contingency: k ∈ Sc
Fk(P, θk, φ0) = 0

Ck(θk, φ0) ≤ L1

if (gpst(θk, φ0) ≤ Lpst) then {φk = φ0}
−φm ≤ φk ≤ φm
F ck (P, θck, φk) = 0

Cck(θck, φk) ≤ L2
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where F, Fk, C, Ck and gpst are linear functions.
The conditional action of PST can be modeled using a

integer variable.

δ.Lpst ≤ gpst(θk, φ0) ≤ δ.Mg + Lpst
−δ.Mφ + φ0 ≤ φk ≤ δ.Mφ + φ0

where δ is a binary variable Mg and Mφ are two big positive
constants;

Indeed:
when δ = 0 :

0 ≤ gpst(θk, φ0) ≤ Lpst
φk = φ0

when δ = 1 :
Lpst ≤ gpst(θk, φ0) ≤Mg + Lpst
−Mφ + φ0 ≤ φk ≤Mφ + φ0

The problem becomes a MILP:

min

ng∑
g=1

|pg − p0
g|

subject to: F (P, θ, φ0) = 0

C(θ, φ0) ≤ L0

Pmin ≤ P ≤ Pmax
−φm ≤ φ0 ≤ φm
for each contingency: k ∈ Sc
Fk(P, θk, φ0) = 0

Ck(θk, φ0) ≤ L1

δ.Lpst ≤ gpst(θk, φ0) ≤ δ.Mg + Lpst
−δ.Mφ + φ0 ≤ φk ≤ δ.Mφ + φ0

−φm ≤ φk ≤ φm
F ck (P, θck, φk) = 0

Cck(θck, φk) ≤ L2.

This requires to find the two big positive constants Mg and
Mφ. To avoid possible numerical problems, it is recommended
to select these big constants as small as possible. For example,
in this case: Mφ = 2.φm + ε with ε: a small positive constant

This is only an illustrative example of what could be
done for the modeling of complex behaviors in optimization
problems. A case by case analysis is required for each specific
problem but a powerful general framework is proposed in [5].

Another important example is the formulation of the optimal
expansion planning problem. We want to find the power lines
to add in an existing grid in order to have a feasible state and
in order to optimize a given objective. In this problem, using
constant incremental values for the power lines’ parameters
(incremental reactance ∆X and incremental capacity ∆C),
the power flow between two buses could be expressed as the
product between the difference of phase angles and the sum
of incremental admittance.

Psr = Kv.
(θs−θr)
X0

+
∑n
k=1 δkKv.

(θs−θr)
∆X

−C0 −
∑n
k=1 δk∆C ≤ Psr ≤ C0 +

∑n
k=1 δk∆C

where δk are binary variables
δk+1 ≤ δk.

These equations are non linear; the product between two
decision variables appears in the formulation δk(θs−θr) but it
is possible to change it in a linear problem using the method
proposed in [42].

pk = Kv.δk
(θs−θr)

∆X
−δk∆C ≤ pk ≤ δk∆C

where δk are binary variables.

These equations are equivalent to:

−M.(1− δk) ≤ pk −Kv.
(θs−θr)

∆X ≤M.(1− δk)
−δk∆C ≤ pk ≤ δk∆C,

where M is a big positive constant and δk are binary
variables.

Indeed:

when δk = 1 :
pk = Kv.

(θs−θr)
∆X

−∆C ≤ pk ≤ ∆C

when δk = 0 :
−M ≤ pk −Kv.

(θs−θr)
∆X ≤M

pk = 0

θ ∈ [−π, π]
M > Kv.

2π
∆X .

Mixed Integer Non Linear Programming (MINLP) remains
very challenging; the paper [43] gives a general diagnostic
on practical problems. The branch and bound method remains
attractive only if the NLP relaxation sub problems are not too
expensive to solve, or if only few of them need to be solved.
The existing MINLP solvers may run in trouble on non convex
problems because the solution of the NLP relaxed sub problem
cannot provide a lower bound on the solution of the original
problem. Moreover, the very large CPU time spent diagnosing
infeasible nodes for non convex problems may result in the
failure of branch and bound solvers.

For practical applications, two heuristic approaches are
currently used: sequential MILPs [7] or round-off methods,
both of them must be tuned for each specific problem; even
finding a feasible solution could be difficult for a new problem.
An interesting alternative approach is to use mathematical pro-
gramming with equilibrium (or complementarity) constraints
(MPEC) [44]. This method ensures the feasibility of the
solution. The mixed integer nonlinear programming (MINLP)
problems can be seen as belonging to this more general class
of MPEC optimization problems.

minx∈Dx J(x)
subject to: c(x) ≥ 0

x1 ⊥ x2 = 0,
where x = (x0, x1, x2) and ⊥ is the complementarity

operator which requires that either a component x1i = 0 or
the corresponding component x2i = 0.
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The motivation is to use this complementarity operator for
binary variables: if x is a binary variable, x ∈ {0, 1} ⇐⇒
x ⊥ (x− 1) = 0

One attractive way of solving the above problem is to
replace ⊥ by a set of nonlinear inequalities such as:

minx∈Dx J(x)
subject to: c(x) ≥ 0

x1 ≥ 0, x2 ≥ 0, X1x2 ≤ 0
where X1 = diag(x1).

Unfortunately, it has been shown that this equivalent problem
violates the MFCQ (Mangasarian and Fromovitz Constraint
Qualifications) condition at any feasible point. The domain
x1 ≥ 0, x2 ≥ 0, X1x2 ≤ 0 has no interior. Formulations
compatible with Interior Point Methods have been proposed.
To remedy the nonexistence of the central path, the idea is
either to perturb or to penalize the complementarity constraint
[45].

The First scheme is based on a “relaxation”: a standard
primal-dual method is applied to the following constraint:
x1 ≥ 0, x2 ≥ 0, X1x2 ≤ τ .

The parameter τ is controlled in conjunction with the barrier
parameters of the Interior Point Method. It can be shown
that near a strongly stationary solution, the multipliers remain
bounded and the central path exists.

The second scheme proposes a “penalization”: an alternative
to relaxation is to introduce a penalty for the complementarity
constraint by adding ρxT1 x2 to the objective. The resulting
penalised NLP problem satisfies MFCQ and is well behaved.

Near a strongly stationary point, a sufficient large (but finite)
penalty parameter exists and any IPM method converges to this
point.

The two schemes can be shown to be equivalent in the sense
that for every relaxation τ there exists a penalty parameter ρ
such as both approaches give the same solution.

Another completely different alternative is to use a function
for the modeling of complementary constraints (called NRS
function: smooth natural residual). The desired property is that
an NRS function vanishes at (a,b) if and only if a and b are
non negative and their product ab is non positive. For example
the following function:

φ(a, b) = 1
2 (a+ b−

√
(a− b)2 + ab

σ )

for σ > 1
2 , the property holds.

The use of NRS function is appealing because it appears to
allow standard large-scale NLP solvers to take into account
MPEC.

The MPEC method seems to be useful to manage very large
size problems when no other method could provide results
as shown in the European Project PEGASE [46]. This idea
is intensively used in the on going European Project iTesla
to build realistic base cases in Monte Carlo simulations; a
paper [47] describing this work, is presented in PSCC 2014.
Of course as any non global MINLP solver, only sub-optimal
solutions are expected from MPEC solvers for non-convex
MINLP problems.

C. Chance constrained optimization

The basic idea of chance constrained optimization (CCO)
is to solve a problem by minimising some function of the
decision variables, while ensuring that the probability of some
some constraint violations is small enough. This problem
setting is useful in the context of many decision making
problems under uncertainty.

1) The nature of CCO: A chance constrained optimization
problem may be formulated as follows:

choose x∗ to minimize f(x) subject to x ∈ X , δ ∈ ∆ and
P{δ : x ∈ Xδ} ≥ 1− ε.

In this framework, δ is denoting an exogenous (vector of)
variable(s) modeled in a stochastic way, and influencing the set
of constraints of the problem to be solved, while x is a vector
of decision variables to be chosen by the decision-maker. The
latter wishes to choose x∗ ∈ X so as to avoid the Xδ constraint
violation, with a probability ε-close to 1.

In the context of power systems management, we could
apply this framework in order to choose preventive controls,
while bounding the risk of insecure operation over the next
time period, linked to contingencies and operating condition
changes modelled as exogenous stochastic processes.

Notice that if the set ∆ of possible exogenous random events
is finite (i.e. ∆ = {δ1, . . . , δK}), then the chance constraint
may be written as

∑K
i=1 P{δi}1x∈Xδi ≥ 1−ε. While this is in

general a non-convex constraint, in the finite case the subset
of δi-values such that x ∈ Xδi could be modeled by integer
variables, thus reducing the chance constrained optimization
problem to a Mixed-Integer-Programming problem. However,
when the set of uncertainties ∆ is not finite, then the problem
can in general not be reduced to a finite-dimensional optimiza-
tion problem.

2) The scenario approach to CCO: When the function f(·)
to be minimized is convex, and so are the constraints X
and {Xδ,∀δ ∈ ∆}, chance constrained optimization can be
addressed by a recently developed and extremely powerful
technique, known under the name of scenario approach, [48],
[49], [50], [51]. To explain this technique, suppose that N
samples δ(1), δ(2), . . . , δ(N) independent and identically dis-
tributed according to the probability measure P are available.
The idea behind the scenario approach of [48], [49], [50], [51]
is to substitute the vast multitude of constraints in the infinite
initial domain ∆ with these N constraints only, and to find the
optimal solution that satisfies all of these N constraints. This
boils down to the program

SPN : minx∈X c
Tx

s.t. x ∈ Xδ(i) , i ∈ {1, . . . , N}.

Note that linearity of the cost function cTx comes to no
loss of generality within a convex set-up. In fact, should the
cost be a convex function f(x), one could reformulate the
problem of minimizing f(x) with the constraints Xδ(i) as the
minimization of an additional variable y with the constraints
Xδ(i) ∩ {y ≥ f(x)} (epigraphic reformulation). Contrary to
the original chance constrained formulation, SPN is a standard
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convex finite (i.e. with a finite number of constraints) optimiza-
tion problem and, consequently, a solution can be found at low
computational cost via available solvers.

Though totally disregarding all constraints but N of them
may appear naive, the scenario approach stands on a very solid
mathematical footing. Precisely, in [50] it has been shown that
if

N ≥ 2

ε

(
ln

1

β
+ d

)
(d is the number of optimization variables), then, with proba-
bility no smaller than 1−β, the solution x∗N of SPN satisfies all
constrains in ∆ but at most an ε-fraction, i.e. P{x∗N /∈ Xδ} ≤ ε,
that is, the obtained solution is chance constrained feasible
with high confidence 1− β.

On the other hand, the solution provided by SPN can be
conservative in that the achieved optimal cost is away from
the optimal cost of the initial chance constrained problem.
To improve the performance, one can a posteriori remove k
constraints among the initial set of N constraints. In this way,
the solution improves, and a solid theory permits one to still
guarantee chance constrained feasibility. More precisely, one
can show, [52], [53], that the solution obtained after removing
k constraints satisfies

P{x∗N /∈ Xδ} ≤
k

N
+O

(√
k ln k

N

)
.

O
(√

k ln k
N

)
has been used here for short, but it has a precise

expression valid for any finite k and N , see [53]. Interestingly,
this expression shows that P{x∗N /∈ Xδ} rapidly approaches the
empirical chance constrained violation k

N as N increases, so
that the approach bears very little conservatism.

3) Applications of CCO to power systems: In the context of
power systems, chance constrained optimization offers a rich
framework for formulating decision making problems under
uncertainty, when it is desired to avoid extreme situations, e.g.
situations where the power system operation is not feasible
without significant degradation of the quality of service.

In particular, in operation planning and real-time operation,
one needs to take into account many uncertainties about load
and generation patterns, combined with contingencies and
possible failures of corrective and/or emergency controls. In
such cases, rather than (as it is carried out in classical deter-
ministic SCOPF formulations [54]) choosing a set of decisions
that given a best guess of future operating conditions will
ensure feasibility of operation for all possible contingencies
(assuming a finite set of contingencies), or, alternatively, by
ensuring that even for the worst-case scenario operation is
still feasible given any contingency [55], one may prefer to
model the problem as avoiding with high enough probability
a set of undesirable operating conditions, which naturally
leads to a chance constrained optimal power flow problem.
We refer the reader to the paper [56], which provides a nice
bibliography of such formulations, and discusses the interest
of the chance-constrained OPF with respect to the classical
security constrained OPF.

To our best knowledge, in the context of power systems
management the first body of work leveraging the above de-
scribed scenario approach to chance constrained optimization
has been proposed by the group of ETH Zürich. In particular,
reference [57] proposes to use this approach in the context
of day-ahead operation planing while taking into account
uncertainties about the next day load and renewable generation,
so that the proposed schedule covers with high probability
all next day operation conditions. On the other hand, the
recent work reported in [58] focuses on real-time operation
and more specifically on the tradeoff between preventive and
corrective control, while taking into account probabilities of
contingencies and also the probabilities of different failure
modes of corrective controls. The authors propose to frame
real-time security control as a chance constrained optimization
problem, where the goal is to minimise expected costs (those
related to preventive controls, combined with the expected
costs of corrective controls and of service interruptions) while
upper-bounding the probability of large service interruptions.
The scenario based approach can be applied to this problem
fruitfully as soon as the exhaustive treatment of all possible
combinations of contingencies and control failure modes be-
comes intractable, and/or if uncertainties about the demand and
renewable generation need to be taken into accout, e.g. when
working in look-ahead mode over a few hours of real-time
operation.

To summarise, using the scenario based approach to chance
constrained optimization essentially opens the way to a much
broader applicability of the chance constrained optimization
paradigm, since the scenario based approach is completely
agnostic with respect to the nature of the constraints and
of the probabilistic properties of the problem, provided that
convexity assumptions are valid. In this latter respect, the OPF
“convexification” approaches discussed earlier in this paper
should play also a very significant role in the future to further
leverage the chance constrained optimization framework to
many other power system management problems, such as
operation planning, asset management and long-term system
expansion problems. A first paper proposing such a combi-
nation of SDP relaxations with the scenario based chance-
constrained optimization, is provided in [59], for the context
of day-ahead operation planning.

D. Robust optimization

Another appealing approach to deal with uncertainty is
“robust optimization” (RO), which essentially targets at finding
the decision variables that would maximize the minimum pos-
sible objective function value under uncertainties. Indeed, as
shown in the previous section “chance constraint optimization”
may be technically difficult and requires the modeling of the
probabilistic behavior of uncertainties. An advantage of RO is
that operators are quite familiar with worst-case approaches
and they are hence more prone to accept RO formulations
when uncertainty can not be represented in a credible proba-
bilistic way. One of the central questions regarding the RO
framework is its conservativeness against high-impact-low-
probability events. As will be shown in this section, choosing
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proper optimization structure (e.g. static formulation versus
two-stage and multi-stage formulations) and designing more
flexible uncertainty modeling techniques are key to controlling
the conservatism of the robust formulations.

RO could be used to solve different type of problems from
Security Assessment to Unit Commitment. For example, the
paper [60] proposes an application to Security Asssesment.
This paper deals with day-ahead security management with
respect to a postulated set of contingencies, while taking
into account uncertainties about the next day generation/load
scenario. The paper is based on a general method proposed
in [61] with in this case, a specific bilevel linear optimization
with discrete decisions variables in the follower problem.

In the following section, we present more in details an
application to robust unit commitment.

1) Two-stage robust unit commitment models: The two-stage
adaptive robust unit commitment (UC) model can be written
in the following compact form

min
x∈X

{
c>x + max

d∈D
min

y∈Y (x,d)
b>y

}
. (26)

This formulation and solution methods have been first pro-
posed and discussed in a series of papers, see e.g. [62], [63],
[64], [65], [66]. It provides a fundamental robust optimization
model in power systems operation. Here, the first-stage deci-
sion is the unit commitment decision x in the feasible region
X , and the second-stage decision is the dispatch decision y,
which adapts to the realization of uncertainty d in the un-
certainty set D and satisfies various operational constraints in
Y (x,d) parametrized by the first-stage commitment decision
x and d. Usually, the uncertainty d models load uncertainty
and generation uncertainty in variable resources such as wind
and solar power.

Another important source of uncertainty is generation and
transmission contingencies. One of the first applications of
robust optimization to UC problems concerns contingency-
constrained UC problems with N − k generation security
criterion (see [67]), where the traditional N − k condition
is modeled by the so-called budgeted uncertainty set [68].
The work [67] is further extended to include transmission
contingencies and post-contingency redispatch in [69]. The
proposed model has the two-stage structure as described in
(26), except here d is the uncertainty of generation and
transmission outages.

Several extensions of the fundamental model (26) have
been proposed. For example, regret minimization objective is
introduced as a means to decrease the conservativeness of the
robust UC solution [70], where the regret of a UC solution
is defined as the maximum difference between the minimum
total cost by adjusting the dispatch decision for the fixed
UC solution and the total cost in the perfect-information case
where the UC and dispatch solutions can be jointly optimized
after knowing the uncertainty. A hybrid approach of combining
the worst-case cost of a robust UC model with the average cost
of a stochastic UC model is proposed in [71].

The two-stage robust model (26) is also applied to the
AGC control problem. The first-stage decision x stands for

the operating point for the nominal load level, then the second-
stage decision is the AGC dispatch signal responding to the
uncertain load realization, see [72]. An alternative approach
using affine decision policy for the AGC dispatch signal
is discussed in [73]. A multiperiod adaptive robust model
is proposed for look-ahead ED under significant wind [74],
where the first-stage decision is the dispatch decision in the
current time period, and the dispatch decisions for future
look-ahead periods are the second-stage decision. A rolling-
horizon simulation platform is developed for real-time dispatch
integrated with statistical modules for updating uncertainty
sets.

2) New Uncertainty Modeling Techniques: Besides the clas-
sic budget uncertainty set used in most of the robust UC mod-
els, some new uncertainty modeling techniques are proposed.
For example, instead of using one uncertainty set D as in
(26), multiple nested uncertainty sets Dk can be used for the
second-stage problem as

∑
k ρk maxd∈Dk miny∈Ωk(x,d) b

>
k y

(see [75]). The positive weights ρk reflect the decision maker’s
risk choice. Some generalizations of uncertainty sets are dis-
cussed in [76]. In particular, some simple interval based models
are proposed for modeling spatial and temporal correlations,
non-polyhedral uncertainty sets such as ellipsoids can be used
to model correlation, and using multiple uncertainty sets to
model specific regions of uncertain data is also discussed,
which reduces conservativeness through refining uncertainty
sets, having a similar spirit as in [75]. A different type of
uncertainty sets, termed dynamic uncertainty sets, is proposed
in [74], which explictly model the dynamic relations between
uncertainty in different times and space. A concrete example
is proposed for modeling wind speed and power uncertainty
of adjacent wind farms over multiple periods. A data-driven
approach that fuses time-series models and uncertainty set
modeling is implemented [74].

3) Multistage robust UC model: All of the above models
are two-stage robust optimization formulations. A general
multistage adaptive robust UC model is proposed in [77],
where the dispatch decision depends on the sequential rev-
elation of uncertainty, thus respecting the non-anticipativity
constraints for real-time operations. The concept of simplified
affine policies is introduced and efficient algorithms are devel-
oped. Extensive computational experiments on small, medium,
and large-scale systems show significant improvement over
existing deterministic and two-stage robust UC models in both
cost reduction and reliability improvement.

IV. POSSIBLE SYNERGIES WITH SISTER FIELDS

On top of the above presented significant developments
specific to the field of optimization, and their declination in
the context of the core optimization problems ubiquitous in the
context of power systems planning, maintenance, and operation
activities, the present section aims at highlighting the potential
for additional progress raised by ongoing developments in
Information Technology (IT) (large scale computing and data
management infrastructures, Internet of Things, broadband
communications. . . ) and by parallel scientific developments
in the field of Computer Science (CS) (Machine Learning
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and Randomized Algorithms). While these sister fields may
provide many different opportunities in the context of power
systems, we focus on those that are directly linked with the
question of advanced optimization in power systems addressed
in this paper.

A. Opportunities/needs from progress in Information Technol-
ogy (IT)

Recent technological developments make High Performance
Computing (HPC) as well as distributed Big Data (BD) man-
agement become low cost solutions of great value in many
areas. The question is “How to take the best advantage of these
novel technologies in the context of power system’s optimiza-
tion practice?”. In this section we suggest some opportunities
and needs in this respect.

1) High Performance Computing (HPC) opportunities: In
the context of very large-scale optimization of power system
problems, HPC offers still a lot of opportunities to yield signif-
icant practical progress. Indeed, if we analyse the availability
(at constant costs) of computing infrastructures and compare
it to those actually exploited in power system optimization
problems, we observe that the gap between available means
and actually used ones is increasing over the last years. This
means that further work should as well focus on how to exploit
these HPC environments to solve more efficiently many of the
optimization problems encountered in power system practice.

There are basically two ways of taking advantage of HPC in
this context: i.) by developing parallel/distributed versions of
the generic solvers used (MILP, IP, SDP, . . . ); ii) by mapping
the power system optimization applications in a clever and
thought out way on the available low cost HPC architectures.

Both directions are of interest, but given the pressure on
power systems application scale up and the larger number of
opportunities to do this, we believe that the leveraging of HPC
infrastructures should be also directed by the nature of power
system applications, rather than solely rely on the expected
progress in generic optimization solver implementations on
HPC infrastructures.

Notably, many Monte-Carlo methods, e.g. used in power
systems reliability assessment, trivially lend themselves to
decompositions into a large number of independent computa-
tional tasks, each one corresponding to a sub-sample. On the
other hand, many of the optimization problems used for power
system planning and operation can be decomposed naturally
into a large set of much smaller optimization problems formu-
lated over partial objectives and coupled only by a reduced
number of equality constraints, while the overall objective
function is decomposable into a (possibly weighted) sum of
the partial objectives. In this case, the so-called Progressive
Hedging Algorithm (PHA) [1], initially proposed for scenario-
tree based multi-stage stochastic programming, can be applied
in order to exploit multiple processors, where at each iteration
a given processor solves one of the subproblems modified
by penalizing its partial objective by the discrepancy of its
decision variables to the coupling constraints’ satisfaction. The
resulting algorithm offers convergence guarantees under the
assumption that the concerned optimization problem is convex,

and even if the partial problems are not solved perfectly at
each iteration. In particular, the classical security constrained
OPF, as well as various scenario-based stochastic versions
of this problem, may be reformulated in order to possibly
take advantage of this decomposition strategy when a HPC
infrastructure is available. For example, the SPN problem of
section III-C2, may be rewritten as follows:

SPN : min 1
N

∑N
i=1 c

Txδ(i)

s.t. xδ(i) ∈ X ∩ Xδ(i) , i ∈ {1, . . . , N},
s.t. xδ(i) = 1

N

∑n
i=1 xδ(i) , i ∈ {1, . . . , N},

where the last set of constraints are the coupling constraints
among the solutions of the N subproblems, each one of which
would be written as:

SPN (i) : min cTxδ(i)

s.t. xδ(i) ∈ X ∩ Xδ(i) .
This formulation lends itself directly to the application of the
PHA (we refer the reader to [78] for an explanation of the use
of PHA to optimization problems having a similar structure).

On the other hand, when it comes to the use of HPC
infrastructures for the resolution of non-convex optimization
problems, further complications arise. In this respect, we refer
the interested reader to the PSCC2014 paper [79], which
addresses the problem of leveraging HPC for the efficient
resolution of non-convex optimization problems arising in the
context of energy systems.

Still, no software packages are available to solve such
problems in a seamless way by exploiting available HPC
infrastructures. Further work is thus required to make this
happen as soon as possible.

2) Big Data (BD) exploitation needs: When it comes to real-
world applications, it is notable that: i) optimization problem
solving may take advantage of a large body of existing data
(input data, scenarios for validation and tuning of algorithms);
ii) the recurrent applications of optimization solvers generate
as well huge amounts of output data that may be exploited by
other applications (see also Section 4.2).

It is therefore of interest to be attentive about the progresses
in the context of BD management and exploitation methods,
in order to well target the added value of novel optimization
workflows in the context of power systems planning, mainte-
nance and operation.

While the power systems field could undoubtedly benefit
from the rapid growth of measurement, data-collection, and
data-processing technologies, some important kinds of data
will at the same time remain scarce, such as for example data
about component failures, or data about system performance in
the context of large deviations from the steady-state operation
(short-term and medium-term dynamics). Hence, some of the
mathematical models used in the context of optimization will
continue to suffer from a Lack of Big Data. Therefore, one
of the main questions to be addressed is to develop methods
able to translate the growing amounts of data not only into
“optimal” parameter settings to be used in optimization, but
also to quantify the uncertainties on these parameters given
the inevitable lack of some of the relevant data. Essentially,
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this means that all optimization problems should be formulated
in such a way so as to make their solution robust to inaccu-
racies in their parameter settings, given the data exploitation
technology that is applied to the available amounts of data.

Modeling uncertainties about models used in optimization
(sic) allows in principle to assess suboptimalities induced by
these uncertainties, and hence should allow one to justify
investments in data collection, sharing, and processing. To do
this, one will have to formulate “meta-optimization problems”,
of even larger sizes than those discussed in the present paper
(see [80]).

B. Opportunities raised by progress in Computer Science (CS)
Recent progresses in theoretical computer science of interest

in the context of the present paper concern mainly two direc-
tions: i) the development of methodologies to construct ran-
domized algorithms of low complexity and with probabilistic
guarantees of performance; ii) the huge progress in machine
learning allowing these methods to be applied both to very
large scale problems and also to problems with structured input
and output spaces.

1) Randomized Algorithms (RA): It is well known that
the Monte-Carlo method is a randomized algorithm for
computing an integral over a high dimensional space, and
an algorithm that does not suffer from the curse of di-
mensionality of alternative deterministic discretization tech-
niques. The Monte-Carlo method essentially trades determin-
istic guarantees and corresponding intractable computational
complexities of high-dimensional deterministic discretization-
and-integration schemes for an extremely simple randomized
sampling-and-averaging algorithm, the latter however present-
ing “only” probabilistic guarantees of accuracy scaled by the
complexity (i.e. the variance) of the function that has to be inte-
grated [81]. The generic Monte-Carlo method has been evolved
during the last 50 years into a sophisticated set of modified
sampling and aggregation techniques that make the approach
very efficient in many applications by exploiting knowledge
about the structure of the practical problem to be addressed.
Furthermore, deterministic low-discrepancy sampling schemes
have been developed in this context, so as to further reduce
the variance of the Monte-Carlo methods when the problem
structure is well understood.

More broadly, the study of randomized algorithms and
their de-randomization has become one of the major avenues
for progress in algorithmics, and specially in the study of
the distinction between truly difficult (but often artificial)
computational problems and those that only appear as difficult
but can be in practice tackled efficiently at least in a probably-
approximately-correct way [82]. For the sake of space, we will
not dig further in this direction, but we clearly indicate that the
realm of randomized algorithms is a major direction for future
progress, specially in the context of large scale power system
optimization problems. As a matter of fact, the scenario-
based approach to chance constrained optimization presented
in section III-C is an instance of this generic approach.

2) Machine Learning (ML): Machine Learning is the mod-
ern word for denominating Statistics. Statistics, as well as

Machine Learning, aims at drawing conclusions from obser-
vational data in the form of mathematical models. While the
statistics community has been educated mostly by the math-
ematical theory of probability, machine learning researchers
have as well (and mostly) been influenced by computer science
and algorithmics. It also is important to notice that progress
in machine learning has been driven in the last twenty years
by a combination of progresses in data collection (such as
in the field of bioinformatics, in environmental sciences, and
social networks) yielding novel needs for problem solutions,
and by the leveraging of optimization solvers (at the heart
of most machine learning algorithms, in combination with
randomization techniques) to the very large scale problems
raised by machine learning. In this context, the possibility to
reformulate machine learning problems in a flexible way has
been a major source of progress.

From the point of view of power systems optimization,
machine learning offers the possibility to exploit both input and
output data-streams of optimization solvers in order to build
simplified models (we have called them “proxies”, in section
2.2) of the corresponding input-output relation [6], [80]. Such
machine-learnt proxies extracted from a given context (say
short-term power system operation) can then be exploited in
other contexts (say mid-term operation planning) by being
“plugged” into the optimization problems to be solved in
these other contexts. To make this possible, the machine-learnt
models not only need to be accurate (which is the main target
of machine learning research), but they need as well to be
expressed in a mathematical form that is exploitable within the
upstream optimization contexts, which should be the target of
power systems research.

V. SUMMARY

Power system planning and operation raises many important
decision making problems, which can generally be stated as
large-scale, non-linear, mixed-integer continuous, non-convex,
stochastic and/or robust optimization problems.

In the last years, many progresses have been made in the
theory and implementation of optimization algorithms, driven
by research in applied mathematics and by multitudinous
opportunities of application. The combination of these novel
ideas to improve the state-of-the-art of power systems opti-
mization is an important direction of future work.

On the other hand, low cost information technology (HPC
and Big Data) as well as progresses in machine learning
and randomized algorithms offer other enabling approaches
to apply optimization techniques in power systems.

We suggest that the research community should further
focus on the proper formulation of power system optimization
problems with the help of power system experts, and develop
more intensively fruitful collaborations with researchers in
applied mathematics and computer science to determine the
most effective solution strategies for these problems.

At the same time, we think that more systematic investments
in a more effective use of modern information technologies,
especially in the context of high-performance computing and
massive data exploitation should be made by the power sys-
tems industry.
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