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Abstract—Energy communities (ECs) are emerging as a
promising decentralized model for managing cooperative dis-
tributed energy resources (DERs). As these communities expand
and their operations become increasingly integrated into the grid,
ensuring fairness in allocating operating costs among participants
becomes a challenge. In distribution networks, DER operations
at the community level can influence Distribution Locational
Marginal Prices (DLMPs), which in turn affect system’s op-
eration cost. This interdependence between local decisions and
system-level pricing introduces new challenges for fair and
transparent cost allocation. Despite growing interest in fairness-
aware methods, most methods do not account for the impact of
DLMPs. To fill this gap, we propose a bilevel optimization model
in which a Community Energy Aggregator (CEA) schedules
DERs across multiple ECs while a Distribution System Op-
erator (DSO) determines DLMPs through network-constrained
dispatch. Leveraging the Karush-Kuhn-Tucker (KKT) conditions
and strong duality, the bilevel model is reformulated into a
tractable single-level problem. We achieve fairness in the cost
allocation by applying the Shapley value to quantify each
community’s marginal contribution to system-wide cost savings.
The effectiveness of the proposed method is validated through
simulations on several benchmark distribution systems.

Index Terms—Fairness-aware, Energy Community, LinDist-
Flow, DLMP, Shapley Value

NOMENCLATURE

Sets:
N Set of all distribution buses.
N, Set of buses where communities are located.
N, Set of slack buses (single bus at index 0).
L Set of distribution lines (I, k) in the network.
T Set of time periods in the scheduling horizon.
Parameters:
]%p: Forecasted available PV generation at bus [ and

time ¢.
S Apparent power rating of PV inverter at bus [.
PF:min Minimum allowable power factor of PV inverter.
¢y Reactive power coefficient derived from PF,.
EZ: Charging power capacity of BESS at bus /.
P, Discharging power capacity of BESS at bus [.
E,, E, Min, max energy limits of BESS at bus [.
n", nis  Charging and discharging efficiency of BESS at

bus I.
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Maximum flexible portion of controllable load at
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Compensation rate for curtailed load.
Resistance and reactance of line (k,1).
Complex impedance of line (k,l), ie., zx =
Tkt + JTki-

Wholesale electricity price at time ¢.

Marginal cost of local generator at bus [.
Minimum and maximum active power output of
generator at bus /.

Minimum and maximum reactive power output
of generator at bus .
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Decision Variables:

v pv
Pri ¢

ch dis
plﬁ, pldt

Cl 1S
Upp> Wyt
€t

bat
pll’td

0a
Py

c,red

1.t

C C
Pris dry

P q
ALts ALt

g g
Prs Ay
Ut

Active and reactive power outputs of PV system
at bus [ and time t.

Charging and discharging power of BESS.
Binary indicators for charging and discharging
mode of BESS.

State of Charge of BESS.

Net active power from BESS fht — p?j‘:).
Scheduled controllable load.

Amount of curtailed controllable load.

Net active and reactive power consumption of
the community.

DLMPs for active and reactive power at bus [
and time t.

Active and reactive power outputs of the gener-
ator at bus [/ and time ¢.

Squared voltage magnitude at bus / and time t¢.
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Complex power flow from bus [ to k at time ¢.
Current magnitude on line (I, k) at time ¢.

Net active and reactive power injection at bus [
at time .
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Multiplier for voltage drop constraint on line
(I,k) at time ¢.

Multipliers for lower and upper bounds on
squared voltage magnitude at bus [.

Multipliers for active and reactive power balance
at bus [ and time ¢.

Multipliers for lower and upper bounds on pz‘{ 4

Multipliers for lower and upper bounds on ¢7,.



I. INTRODUCTION

The rapid proliferation of prosumers equipped with re-
newable energy resources (RES) and battery energy storage
systems (BESS) has significantly increased interest in decen-
tralized energy systems in recent years [|1]. One such example
is the rise of energy communities (ECs) [2], which coordinate
distributed energy resources (DERs) and flexible loads at the
local level. ECs have emerged as a promising solution to
promote sustainability, resilience, and local energy autonomy
[2]. While ECs offer various technical and economic benefits,
such as improved self-consumption, peak shaving, and reduced
grid dependency, their effective formation and operation pose
several challenges. A critical issue lies in the fair allocation
of collective costs and benefits arising from shared assets or
coordinated operation within the distribution grid [3].

Recent studies on collaborative energy systems (e.g., ECs)
have increasingly explored how to fairly allocate costs and
benefits among participants. For example, [4] adopts a Nash
bargaining—based priority mechanism for peer-to-peer energy
trading in local communities, and a nucleolus analysis is used
in [5] to ensure coalition stability in transmission expansion
planning models. The Shapley value [[6] has also attracted
attention as an approach for fair cost and benefit allocation.

This approach is designed to allocate the total cost (or ben-
efit) based on each participant’s marginal contribution across
all possible groupings and is widely regarded for satisfying
key fairness principles such as efficiency, symmetry, and the
null player property [7]. These axioms make the Shapley
value a fair and transparent solution for cooperative cost
sharing, particularly in settings where multiple parties share
infrastructure or coordinate their operations.

Building on this idea, several studies have applied the
Shapley value in the context of investment allocation for ECs.
For instance, Rui et al. [[§] proposed a Shapley-based incentive
scheme to allocate the cost of grid-enhancing technologies
fairly among multiple participants. Similarly, Pedrero et al. [9]
introduced a scalable Shapley value method to determine fair
investment strategies for large energy communities, focusing
on equitable distribution of infrastructure costs such as shared
batteries or RES installations.

The Shapley value has also been incorporated into the
design of market mechanisms. Xie and Chen [|10] employed an
Aumann-Shapley pricing scheme to derive real-time bidding
strategies for storage operators, linking emission allocation and
marginal system cost. Vespermann et al. [[11] explored market
designs that enable “access economy” models for energy
storage, allowing non-owners to benefit from storage through
financial or physical rights. Both [10] and [11] highlight the
importance of cooperative cost or value allocation in market
settings, using Shapley-based approaches to ensure fairness in
either emission pricing or shared storage access.

Despite the growing interest in fairness-aware mechanisms,
existing works do not account for the dynamic feedback
between community-level decisions and distribution network-
level price signals. If benefits are not fairly allocated to
ECs, each individual EC could be incentivized to adjust its
operation to reduce the price at their own location, even if such

actions increase the prices at other ECs. This behavior would
ultimately deviate from the overall optimum for the group
of ECs, reducing collective benefits. Fair allocation is thus
essential to keep ECs aligned and incentivized to collaborate
rather than compete.

In future distribution systems, node-level electricity prices
are proposed through Distribution Locational Marginal Prices
(DLMPs) [12], which reflect the spatiotemporal value of
energy and grid constraints. To date, DLMPs have been widely
studied as pricing signals but have not been applied to fair
cost allocation among ECs in the same network. In practice,
the operation of each EC can influence DLMPs through its
net injections and location. Thus, an EC’s scheduling decision
affects not only its own cost but also system-wide DLMPs and
cost distribution. While several studies have proposed Shapley-
based methods for fair operating cost allocation in ECs [3]],
[13[]-[16], none of them consider the DLMPs variations due
to ECs’ coordination. For example, [13]] focuses on allocation
under forecast uncertainty, and [|14]] proposes a cooperative
cost allocation rule based on predefined sharing functions.
Similarly, [15]], [16] adopt coalitional game theory but assume
fixed price environments or simplified distribution models.

Moreover, the high computational complexity of cooperative
game theory allocation methods, such as the Shapley value and
the Nucleolus, is a well-known barrier to their application in
large-scale systems [17]—[23]]. To address this, approximation
methods based on statistical sampling have been proposed,
such as the stratified sampling highlighted in [[I7]. Another
stream of research suggests grouping or clustering players
to reduce the problem’s dimensionality. However, the criteria
for grouping in these studies are typically based on players’
operational and economic characteristics, such as consumption
patterns [18]], their energy profiles [19], or market impact
[20]. While these approaches reduce complexity, they do not
directly account for the underlying physical characteristics of
the power grid, which fundamentally determine the players’
interactions. The potential of using physical location and
parameters for clustering has been noted as a promising future
direction but remains an open research question [21].

In light of these gaps, this paper proposes a fair cost
allocation framework for a Community Energy Aggregator
(CEA) coordinating multiple DER-equipped ECs accounting
for the DLMP-based pricing. The problem is formulated as
a bilevel optimization problem accounting for the interac-
tion between the CEA and the Distribution System Operator
(DSO). The scheme determines the DLMPs, which are then
used to determine fair cost allocation using the Shapley value.
We achieve scalability for large-scale systems via a novel
signature-based approximation scheme to compute the the
Shapley value. The proposed framework can offer valuable
policy insights into (i) fairness-aware community coordination,
(ii) incentive-compatible market design, and (iii) mechanisms
to encourage DER participation in distribution-level markets.

The key contributions of this work are listed below.

1) We formulate a DLMP-based bilevel optimization model
that captures the interaction between a CEA and the DSO,
including operational constraints and DER coordination
across multiple communities.



2) We develop a tractable single-level reformulation of the
bilevel model using the Karush-Kuhn-Tucker (KKT) con-
ditions and strong duality, enabling numerical solution
under realistic settings.

3) We propose a Shapley value-based cost allocation method
that quantifies each community’s marginal contribution
under DLMP feedback, and we evaluate its performance
through case studies on benchmark distribution networks.

4) We propose a signature-based approximation method for
efficient Shapley value computation by grouping ECs
based on their physical and topological characteristics.

The remainder of this paper is organized as follows. Sec-
tion describes the operational policies of the CEA and
the DSO, including the problem structure and mathematical
formulation. Section |III| presents the coalitional game-theoretic
model and details the Shapley value method for fair cost
allocation among communities. In Section case studies
are provided to evaluate the proposed methods, and Section [V]
summarizes the findings and concludes the paper.

Active/reactive
DLMPs

UPPER LEVEL: CEA operation
Objective: Minimize total energy
cost of communities
Constraints:

(1)DER operating constraints
(2)Net power injection

LOWER LEVEL: DSO operation
Objective: Minimize distribution
grid operation cost

Constraints:

(1) Linearized DistFlow model

(2) Voltage and generator bounds
(3) Power balance at each node

—)
Active/reactive
Power Injections

¥

Reformulated using KKT & duality

Single-Level Equivalent Optimization
- Replace CEA objective (bilinear) with
dual of DSO

- Add DSO primal constraints + KKT
conditions

- Resulting problem is MILP

Fig. 1. Bilevel optimization framework between the CEA and the DSO, and
its duality-based single-level reformulation.

II. CEA & DSO SCHEDULING FRAMEWORK
A. Description of Problem Structure

To enable coordination between local communities and the
distribution network, this study models their interaction using a
bilevel optimization framework, where the CEA and the DSO
are structured as the leader and the follower, respectively. The
overall structure of this interaction is illustrated in Fig. (1| The
upper-level problem represents the CEA’s decision-making
on community-level energy scheduling, while the lower-level
problem reflects the DSO’s response in maintaining system-
wide balance and operational feasibility.

The CEA coordinates multiple ECs through centralized
scheduling. These communities host various DERs that are
directly controlled and optimized by the CEA. Specifically,
photovoltaic (PV), BESS, and controllable loads are managed
collectively to achieve the aggregate objectives of all com-
munities. The individual contributions of each community can
later be evaluated using various allocation methods.

The DSO is responsible for the reliable operation of the dis-
tribution network. It procures electricity from the transmission-
distribution interface at wholesale market prices, supplies
power to non-community consumers, and controls local gener-
ators while respecting distribution network constraints. As part

of this process, the DSO must account for each community’s
nodal power generation or consumption scheduled by its CEA.
The price signals used in CEA scheduling are DLMPs
derived from the DSQO’s optimization problem. These DLMPs
are the dual variables associated with active and reactive power
balance constraints at each bus. Consequently, each CEA’s
cost is affected by the locational and temporal conditions of
the distribution grid. At the same time, the CEAs’ scheduling
decisions influence the nodal power injections affecting the
DSO’s power balance and the resulting DLMPs. This interde-
pendency results in a coupled bilevel optimization problem.
Similar bilevel structures in distribution systems, where price
signals are determined by one entity and energy volumes are
scheduled in response, have been studied in [24]], [25].

B. CEA Model

The CEA centrally coordinates DERs — including PV,
BESS, and controllable loads — across multiple participating
ECs. Each EC is located at a specific bus in the network, and
the CEA optimizes their aggregated operation to minimize the
total system cost under DLMP-based price signals.

The objective of the CEA is to minimize the total cost of
active and reactive power consumption, along with the incen-
tive payments for flexible load reductions. The corresponding
objective function is given by
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Here, /\f, , and /\?,t represent DLMPs for active and reactive
power and are treated as input parameters in the CEA problem.
They are, however, determined as dual variables associated
with power balance constraints in the DSO model described
later in Section It is important to note that the CEA
only considers community buses in its objective function and
excludes the operation of other non-community buses.

The CEA scheduling problem includes constraints on DER
operations across all community buses | € A/, and time periods
t € T. These constraints consist of (i) PV generation limits,
(i) BESS operating rules, (iii) controllable load bounds, and
(iv) the resulting net power consumptions submitted to the
DSO. The complete set of constraints is outlined as follows:
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Constraints (2a)-2b) specify the PV operating limits i.e.,
real power availability based on solar forecasts, inverter capac-
ity constraints on apparent power, and minimum power factor
constraints reﬂecting grid code requirements.

Constraints (2¢)-@2j) are imposed on BESS units. Con-
straints (2e]) and @ set the maximum charging and discharg-
ing power levels, while (Zg) restricts simultaneous charging
and discharging through binary control logic. The state of
charge is updated in considering BESS efficiency, and it
is bounded by (2i). Finally, (2j) defines the net battery power
as the difference between discharging and charging power.

Constraints (2k)—(2m) describe the operation of controllable
loads. Constraint (Zk) sets the upper bound of the scheduled
load based on forecasted demand, while @]) defines the
curtailed portion as the difference from the forecast which
is limited by (2m)), defined by the user.

Constraints and (20) compute the net active and reac-
tive power consumptions at each community bus. These are
obtained by subtracting local DER contributions, namely PV
generation and battery discharge from the total load. Here,
we assume that BESS does not provide any reactive power
regulation. The resulting values are passed to the DSO as
inputs to grid-level optimization and DLMP calculation.

C. DSO Model

The DSO aims to ensure the reliable and cost-effective
operation of the distribution grid in response to the power
injections scheduled by the CEAs. Specifically, it minimizes
the total procurement and dispatch costs while maintaining
system-wide power balance and voltage limits. The upstream
power purchase is settled at the wholesale market price,
while dispatchable local generators are operated based on
their marginal costs. In this model, the DSO determines the
nodal DLMPs through the dual variables of the power balance
constraints, which are fed back to the CEAs as price signals
for subsequent scheduling. The objective function is given as:
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To ensure a tractable convex formulation, we adopt the lin-
earized DistFlow model [26]. In this approximation, quadratic
power loss terms are neglected. In addition, we impose op-
erational limits on bus voltages and generator outputs. The
resulting linearized constraints and their associated Lagrange
multipliers A\* are given below. Note that these constraints are
defined for all buses [ € A and time periods ¢ € 7T, although
such indices are omitted in individual expressions for brevity.
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The lines’ apparent power flows are neglected assuming
that voltage problems dominate in the distribution system.
This simplification avoids convex quadratic constraints, though
the same reformulation approach applies and such an ex-
tension is straightforward. In the nodal power balance con-
straint (@), power injections are related to the net active and
reactive power consumptlon of the connected community and

load forecasts as p)"y = —pf,,Vl € N. otherwise 10"IJ =

—If’ll"ad,w e NMWMN.. Similarly, reactive power injections
follow q)"} = qf,, V1 € N, and ¢)"} = —QI™, VI € N\N...

D. Single-level Reformulation via KKT Conditions

As described in Section the interaction between
the CEA and the DSO is formulated as a bilevel opti-
mization problem, where the CEA (upper-level) determines
community-level energy schedules, and the DSO (lower-level)
responds with optimal dispatch and pricing decisions. To
enable tractable computation, this bilevel structure is refor-
mulated into a single-level optimization problem by replacing
the lower-level DSO problem with its KKT optimality condi-
tions [27]]. This transformation ensures that the DSO solution
remains optimal while removing the nested structure of the
original bilevel formulation.

Moreover, the original CEA objective () includes bilinear
terms A}, - pf, and A/, - ¢f,, which increases computational
complexity due to its ﬁonlinearity. We address this by lever-
aging the strong duality property of the convex DSO problem
to eliminate these bilinear terms and replacing them with the
dual representation of the lower-level objective. The resulting
objective function is given by:
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Note that all terms in the objective function are linear as
a result of the dual substitution. Together with the linear or
linearized constraints described below, this yields a tractable
optimization model.



The single-level reformulation is subject to all primal con-
straints of the CEA and DSO models, including community-
level DER scheduling constraints (2)) and distribution network
power flow equations (@). To ensure the optimality of the
lower-level DSO problem, the KKT conditions — in addi-
tion to the primal feasibility constraints — are imposed as
additional constraints in the single-level reformulation. These
conditions consist of three components.

First, the stationarity conditions require that the gradient
of the DSO Lagrangian £(x,\), with respect to the DSO’s
primal variables x, must be zero:

V.L(z,A) =0 (62)

Second, the dual feasibility conditions require all dual
variables A® for inequality constraints to be non-negative:

A* >0 (6b)

Third, the complementarity slackness conditions are lin-
earized using a standard Big-M reformulation [28]]. For each
inequality constraint ¢;(2) < 0 and its associated dual variable
Ai, a binary variable z; € {0, 1} is introduced:

The final single-level optimization problem, structured as a
Mixed Integer Linear Program (MILP), is:

min  fSNGLE @)
subject to  CEA constraints: (2), 7
DSO KKT conditions: @), (6)

The overall reformulation process eliminates the nested
bilevel structure by imposing the KKT conditions for the DSO
problem, while the strong duality theorem is used to replace
the bilinear objective of the CEA with the dual of the DSO.
This reformulation procedure is visually summarized in Fig. [I]

III. COALITIONAL GAME AND
SHAPLEY VALUE ALLOCATION

The optimal value obtained by solving represents the
total operational cost aggregated over all participating ECs.
Although this joint scheduling ensures overall cost minimiza-
tion from the CEA’s perspective, it does not guarantee fairness
in allocating costs to individual ECs. Under this centralized
coordination scheme, the CEA is granted full control over
DERs owned by the ECs, and optimizes their collective
operation to minimize the total cost across all ECs. As a result,
the resources of a specific EC may be dispatched in ways that
primarily benefit others, potentially leading to cost allocations
that do not accurately reflect each EC’s contribution. If costs
are allocated solely based on nodal energy usage under the
jointly optimized schedule, the resulting allocation may not
fully capture each EC’s contribution, and could result in unfair
cost allocations.

To address this issue, we model the cost allocation problem
as a coalitional game in characteristic form and adopt the
Shapley value as a solution concept to improve fairness in
allocating the collective cost savings based on each EC’s
marginal contribution. Let M denote the set of participating
ECs, and let v : 2" — R be the characteristic function that

maps each coalition to the corresponding cost savings achieved
through cooperation [29]. The individual cost ¢ of EC m
is computed by solving problem under a modified setting
in which only EC m participates, while all other ECs” DER
schedules (generation, load, storage) are fixed at their base-
case profiles. Similarly, the cooperative cost c¢ for a coalition
C C M is obtained by solving the same optimization problem
for the participating ECs in C, while treating non-participating
ECs as passive entities [[15].

The value of a coalition C can then be defined as the total
cost savings achieved by the coalition relative to operating
individually:

v(C) = Z AV e (8)
meC
This definition ensures that v(f)) = 0 and v(M) corresponds
to the total cost savings of the grand coalition.

In cooperative games with transferable utility, the value of
a coalition must be distributed among its members according
to a fair allocation rule. Among various solution concepts pro-
posed in cooperative game theory, the Shapley value provides
a unique and axiomatic method based on each player’s average
marginal contribution [6]]. In our context, it is used to allocate
the total cost savings v (M) of the grand coalition to individual
communities in a manner that reflects their contribution to
cooperative performance.

For a set of communities M with |[M| = N, the Shapley
value assigned to each community m € M is given by:
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Here, the term v(SU{m})—uv(S) represents the marginal con-
tribution of community m to subset S. The sum of all Shapley
values satisfies the efficiency property, ie., >, .\ &m(v) =
v(M). In our framework, the total cost savings from joint op-
timization is therefore fully and fairly allocated to participating
communities based on their Shapley values.

Intuitively, the Shapley value assigns a larger share of
the total cost savings to communities that consistently make
greater marginal contributions across different coalitions. For
instance, if the BESS of a specific community plays a key role
in reducing the total operational cost of the cooperating com-
munities, that community will receive a higher Shapley value.
This allocation reflects the synergistic benefit of integrating its
resources into the cooperative operation.

Note that the independence of optimization problems for
different coalitions allows the Shapley value to be computed
in parallel, improving scalability. However, the number of
coalitions grows exponentially with the number of ECs, which
makes exact computation intractable for large systems. We
address this with a signature-based approximation method that
efficiently samples a representative subset of coalitions. Details
and numerical validation are in Section IV.

After allocating the cooperative cost savings via the Shapley
value, the final cost incurred by each community is obtained
by subtracting its share of the cost savings from its individual
cost:

e = " = G (v) (10)



IV. NUMERICAL VALIDATION
A. Simulation Setup

To evaluate the effectiveness of the proposed fair allocation
mechanism based on the Shapley value, numerical simulations
are performed on various distribution networks under realistic
operating conditions. Fig. [ illustrates the benchmark CIGRE
low-voltage distribution network used in this study [30]. The
feeder is connected to the upstream transmission system via
a 20/0.4 kV, 400 kVA transformer. The system includes both
community and non-community loads, and the impact of com-
munity locations on system-level fairness and grid operation
is analyzed under multiple scenarios.
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Fig. 2. CIGRE low voltage benchmark network.

Each energy community is composed of DERs, including
PV systems, BESS, and controllable loads. It is assumed
that the communities are allowed to adjust up to 30% of
their base demand through flexible load response, with a
compensation rate of $75/MWh [31]]. The electricity price at
the transmission-distribution interface is based on the 2024
average of hourly CAISO locational marginal prices (LMP) for
the NP-15 zone, which ranges approximately from $12/MWh
to $55/MWh [32]. In addition, each distribution node is
assumed to have a local dispatchable generator operating at a
marginal cost of $250/MWh, based on values reported in [33].
The reactive power capabilities of dispatchable generators and
PV inverters are constrained by typical grid code requirements.
Generator output is limited by a minimum power factor of 0.9,
which corresponds to a reactive power limit of approximately
0.484 times the active power, while PV inverters are restricted
to supplying reactive power up to 20% of their real power
output [24]. The charging and discharging efficiencies of BESS
are both set to 95%, i.e., 7" = ¥ = 0.95, and simultaneous
charging and discharging are not permitted. The initial and
final state of charge (SoC) is set to 50% of the rated capacity.

We model the load and PV generation using the real mea-
surements from the smart grid setup at the EPFL, Switzerland
[34]. The dataﬂ which is available at per second resolution, is
down-sampled to hourly resolution for our simulation.

To test scalability under different network sizes, we also
conducted additional simulations on larger distribution sys-
tems, specifically case69 [26] and case123 [35]]. Across all test
cases, the same modeling assumptions and DER parameters
are applied. Simulations are implemented in MATLAB using
YALMIP with Gurobi as the solver [36]], and executed on a
laptop with 24GB memory.

Uhttps://github.com/DESL-EPFL/DESL-Photovoltaic-timeseries

B. Simulation Results

1) CIGRE 19-bus system: We consider a scenario based on
the CIGRE 19-bus test system, where three communities are
located at Bus 9, Bus 11, and Bus 18. Each community is
initially assumed to have an identical DER setup consisting of
PV, controllable demand, and a BESS rated at 20 kW/50 kWh.

For each community, three cost-related quantities are evalu-
ated. The individual cost ¢"V is obtained by solving prob-
lem (7) with only that community active while fixing the
net injections of the others. This represents the cost if each
community operates independently without coordination. The
Shapley-based saving ¢,,,(v) is computed using (@) from the
costs of all possible coalitions and quantifies the marginal
contribution of community m to the grand coalition. Finally,
the final settlement for each community is calculated as
clinal — cindiv. ¢ (v) according to (T0), ensuring that the
cost reduction from cooperation is allocated based on the
contribution of each participant.

In addition to the Shapley-based allocation (referred to as
the Shapley method), we also consider a baseline method
denoted by Base. In this approach, each community’s cost,
cbse s calculated directly from the DLMPs and dispatch
results from the solution to problem (7)), without accounting
for the community’s marginal contribution to cost savings. The
calculation is given by:

%Se = Z ()‘fn,t D T )‘qm,t et e p%eg) :
teT

C

Fig. 3] compares the individual costs, the Shapley-based
savings, and the final allocated costs under the Shapley
and Base methods. Even with identical DER capacities, the
resulting costs differ across communities due to their locations
and their impact on overall system operation. All communities
achieve a lower cost than in the individual case, showing
that cooperation through the CEA reduces the total cost.
While both methods produce the same total system cost, the
Shapley method distributes the savings based on marginal
contributions, whereas the Base method directly uses DLMP
results without considering individual contributions.

Among the three, the community located at Bus 18 ex-
hibits the highest individual and final costs, along with the
largest Shapley value. This result can be further explained by
Fig. @ which shows the active power DLMP distributions at
each community node under individual and grand coalition
scenarios. Due to voltage constraints, the DLMPs at Bus 18

Il ndividual Cost
I Shapley Saving

Final Cost (Shapley)
I Final Cost (Base)

e 102.00
.§100 ; 84.36 88.26
©
» 53.00 58.12 56.97
2 5 50.25
1723
o
o
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Bus 9 Bus 11 Bus 18
Fig. 3. Individual cost, Shapley-based savings, and final cost for each

community bus in the CIGRE system, under Shapley and base allocation
methods. The Shapley-based final cost reflects each community’s marginal
contribution, while the base method directly applies DLMPs and dispatch
results without fairness considerations.
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Fig. 4. Active power DLMP distributions at the community nodes under
individual activation and grand coalition participation.
TABLE I
FINAL COST COMPARISON UNDER BESS EXPANSION (3X ORIGINAL
CAPACITY) AT A SINGLE COMMUNITY. “COMM.” DENOTES THE BUS ID OF
EACH COMMUNITY.

. Original ~ BESS x3 Cost
Method Scenario Comm. Cost (5) Cost($) Diff. ($)
BESS@9 x3 Bus 9 53.00 39.31 13.69
Bus 11 58.12 58.21 —0.08
Bus 18 84.36 82.62 1.75
Total 195.48 180.13 15.35
BESS@11 x3 Bus 9 53.00 49.15 3.85
Shapley Bus 11 58.12 40.66 17.46
Bus 18 84.36 80.61 3.75
Total 195.48 170.42 25.06
BESS@18 x3 Bus 9 53.00 47.77 5.23
Bus 11 58.12 52.17 5.95
Bus 18 84.36 54.86 29.50
Total 195.48 154.80 40.68
BESS@9 x3 Bus 9 50.25 38.82 11.43
Bus 11 56.97 56.62 0.35
Bus 18 88.26 84.69 3.57
Total 195.48 180.13 15.35
BESS@11 x3 Bus 9 50.25 46.65 3.61
Bus 11 56.97 45.93 11.04
Base
Bus 18 88.26 77.84 10.42
Total 195.48 170.42 25.06
BESS@18 x3 Bus 9 50.25 41.89 8.36
Bus 11 56.97 46.63 10.34
Bus 18 88.26 66.28 21.98
Total 195.48 154.80 40.68

are significantly higher, making its DERs more influential in
alleviating local constraints. As a result, its contribution to
reducing overall system costs is the most significant, which is
reflected in its higher Shapley value. Across all buses, DLMP
distributions shift lower under the grand coalition, indicating
that coordinated participation reduces the marginal cost of
supplying power and benefits all communities.

Sensitivity with BESS size: To examine fairness concerns
that may arise when allocating the outcome of problem
directly to each community (i.e., when using the Base
method), we consider scenarios in which the BESS capacity
at a single site is selectively expanded. Table [I] presents the
final cost of each community when the BESS at one site is
increased to three times its original capacity. In all cases, the
additional BESS enhances operational flexibility and enables

TABLE 11
FINAL COST COMPARISON WHEN EXPANDING BESS AT BUS 11 TO 3.5
ITS ORIGINAL CAPACITY. “COMM.” DENOTES THE BUS ID OF EACH

COMMUNITY.
Original  BESS x3.5 Cost
Method S i C .
o cenario TOMM- - cost $)  Cost($)  Dift. ($)
BESS@11 Bus 9 53.00 47.89 5.11
x3.5 Bus 11 58.12 36.41 21.71
Shapley
Bus 18 84.36 79.43 493
Total 195.48 163.73 31.76
BESS@11 Bus 9 50.25 44.44 5.81
x3.5 Bus 11 56.97 44.19 12.78
Base
Bus 18 88.26 75.09 13.17
Total 195.48 163.73 31.76

peak shaving, leading to reduced system-wide costs. However,
how these savings are distributed across communities differs
significantly depending on the allocation rule.

Notably, the Shapley allocation more precisely assigns
the resulting cost savings to the community that contributes
additional BESS capacity. For example, when Bus 11 hosts
the expanded BESS, the cost at Bus 11 decreases from $58.12
to $40.66 (a reduction of $17.46) under Shapley allocation.
In contrast, under the Base allocation, the cost at Bus 11
decreases from $56.97 to $45.93 ($11.04 reduction), while Bus
18 also benefits with a cost decrease from $88.26 to $77.84
($10.42 reduction), despite not contributing any additional
resources. This highlights a key limitation of the baseline
method in capturing localized benefits.

Table [II] further extends the analysis by considering a case
where the BESS capacity at Bus 11 is expanded to 3.5 times
its original size. Under the Shapley method, the total cost de-
creases from $195.48 to $163.73, with the largest benefit con-
centrated at Bus 11, whose cost drops from $58.12 to $36.41
($21.71 reduction). In contrast, under the Base method, the
cost at Bus 11 decreases from $56.97 to $44.19 ($12.78
reduction), while Bus 18—without any new investment—sees
its cost drop from $88.26 to $75.09 ($13.17 reduction), which
is even larger. This result highlights a potential limitation of
the Base allocation—it may not fully reflect the origin of the
cost savings, which could result in a less fair allocation. Such
misalignment between contribution and benefit may weaken
the incentive for communities to invest in grid-supportive
resources like BESS.

Even in the one case where a community’s allocated cost
increases compared to the original allocation—namely, Bus 11
under the “BESS@9 x3” scenario—the Shapley allocation
remains cooperative. Although Bus 11’s cost rises slightly to
$58.21, it is still well below its individual cost of $71.08
(Fig. B), ensuring no incentive to leave the coalition. This
outcome upholds the principle of individual rationality, as all
communities benefit from cooperation relative to acting alone.

Sensitivity with the number of participating communities: To
examine the impact on buses that are not part of the coalition,
we analyzed how the share of the system managed by the
CEA affects non-community nodes when more communities
participate in coordinated operation. Specifically, in the same
distribution system, communities are located at buses 4, 6, 7, 9,
11, 12, and 18, and the costs of non-participating nodes 2, 10,



14, 15, 16, and 17 are evaluated. Fig.|§| shows the cost distribu-
tion for non-participating buses with number of participating
communities, highlighting both the general downward trend
and the variability caused by different coalition compositions.
The results show that the average cost of non-community load
buses decreases as more communities join the coalition and
the CEA optimizes a larger share of the system, indicating that
lowering DLMPs at the system level also benefits other buses.
However, even with the same number of participating com-
munities, noticeable variation in costs is observed depending
on the specific combination of communities in the coalition.
This indicates that increasing the number of participating
communities does not necessarily guarantee benefits for all
non-participating buses, as the specific coalition composition
can lead to widely varying outcomes. For clarity, results for
buses 10 and 16 are omitted, but they exhibit similar trends.

Non-participating Buses
—— participating
= Bus2
= Bus 14
[ Bus 15
300 E =  Bus17

8 Bus Index
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Fig. 5. 3D box-plot of non-participating buses’ cost distribution across
different numbers of participating communities.
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Fig. 6. IEEE 69-bus distribution system showing three different EC placement
configurations. The first two configurations consider three ECs located at buses
15, 26, and 40 and at buses 15, 26, and 56, respectively. The third configuration
places six ECs at Buses 17, 18, 26, 27, 39, and 40, marked with an asterisk
(), to demonstrate the signature-based approximation. Non-community load
buses are omitted for clarity.

2) IEEE 69-bus system: We extend the analysis to the
IEEE 69-bus test system, and we consider multiple scenarios
depicting different placement of ECs to examine the impact
of community location on cost savings. All ECs are assumed

BN |ndividual Cost
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Final Cost (Shapley)
W Final Cost (Base)

300

200 190.64 177 34
134,67 148.00
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0
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Fig. 7. Individual cost, Shapley-based savings, and final cost for each
community node in the IEEE 69-bus system (ECs at Buses 15, 26, 40), under
Shapley and Base allocation methods.

to have identical DER portfolios and capacities. Again, we
compare Shapley and Base methods as defined earlier.

We first examine a configuration where one community
is placed farther away from the others, with communities
located at Buses 15, 26, and 40. The results are visualized
in Fig. [7] As observed, the community at Bus 40 has a
similar costs for individual and cooperative case, illustrating
minimal influence on overall CEA operation. This may be due
to weak coupling with the rest of the network. In contrast,
the communities at Buses 15 and 26 exhibit equal Shapley
savings, reflecting their symmetric contributions to system-
wide cost savings. This symmetry is not preserved under the
Base method, which leads to a relatively more favorable
allocation for Bus 26, illustrating the base method’s inability
to fully reflect contribution-based fairness. Nevertheless, the
contributing communities still benefit from participating in the
coalition, with final costs lower than their individual operation
costs, preserving the principle of individual rationality.

Next, we consider a configuration in which the community
at Bus 40 is relocated to Bus 56 to consider the impact of
location on the cost saving. The computed Shapley values are
accordingly non-zero for all three communities, as can be seen
in Fig. [§] In this configuration, all three communities inter-
act more strongly via grid constraints, and each contributes
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Fig. 8. Individual cost, Shapley-based savings, and final cost for each
community node in the IEEE 69-bus system (ECs at Buses 15, 26, 56), under
Shapley and Base allocation methods.
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Fig. 9. Elapsed time for computing all 64 coalitions. Sampled coalitions
(blue) correspond to the 27 representative signatures.



TABLE III
COMPARISON OF EXACT AND APPROXIMATED SHAPLEY SAVING
(IEEE 69-BUS).

TABLE V
COMPARISON OF EXACT AND APPROXIMATED FINAL COSTS (SHAPLEY)
(IEEE 123-BUS).

Bus Exact ($) Approx. ($) Abs. Error ($) Rel. Error (%) Bus Exact ($) Approx. ($) Abs. Error ($) Rel. Error (%)
17 31.261 31.321 0.060 0.19 4 12.12 11.72 0.40 3.30
18 31.271 31.321 0.050 0.16 6 12.12 11.72 0.40 3.30
26 34.096 34.171 0.075 0.22 55 41.34 41.99 0.65 1.57
27 34.356 34.171 0.185 0.54 59 50.17 50.39 0.22 0.44
39 0.00153 0.00151 0.00002 1.27 90 24.97 24.46 0.51 2.04
40 0.00144 0.00151 0.00007 5.01 94 36.24 36.69 0.45 1.24
Total 130.987 130.987 - - Total 176.95 176.95 - -
TABLE IV
COMPUTATIONTIME COMPARISON (IEEE 69-BUS). the framework to the IEEE 123-bus test system. This system
Method Coalitions Solved  Total Time (s) includes six communities with different DER capacities lo-
Full enumeration 64 719 cated at Buses 4, 6, 55, 59, 90, and 94. Unlike the 69-bus
Signature-based sampling 27 304

non-negligibly to the coalition’s performance. These findings
highlight that the Shapley allocation accurately captures the
locational differences in impact and ensures fair distribution
across diverse network configurations.

To investigate computational scalability, we expand the
study to six ECs by placing three closely located pairs at buses
17, 18, 26, 27, 39, and 40, as shown in Fig. @ It is assumed
that all communities have identical DER configurations and
capacities. Six ECs results in 26 = 64 coalitions. Since adding
more ECs results in combinatorial explosion of coalitions, we
therefore propose a “signature-based approximation”.

Instead of evaluating every possible coalition, we group to-
gether those that have a similar impact on the coalition—such
as when two nearby communities can be interchanged without
changing the overall result—and represent each group with
a single “signature.” Formally, we define this community
similarity based on two key criteria grounded in network
physics: (1) electrical proximity within the network topology
and (2) the portfolio of DER assets. This approach can greatly
reduce the number of optimization problems that must be
solved while preserving the accuracy of the resulting Shapley
values.

For example, a coalition including Bus 17 produces nearly
the same impact as one including Bus 18, because the two
buses are located close together and contribute symmetrically
to the system, so only one representative coalition needs to be
evaluated. In other words, a coalition formed by communities
at Buses 17, 26, and 39 yields almost the same result as the
one with Buses 18, 26, and 39, so it is sufficient to evaluate
only one of them. This yields 3> = 27 unique group-level
signatures, significantly reducing the number of coalitions to
evaluate compared to the original 26 = 64.

Each of the 27 representative coalitions is solved once,
and the resulting values are assigned to coalitions with same
signature. Fig. [9] compared the elapsed time for solving each
coalition, highlighting the sampled subset. Table |[1I| compares
the Shapely savings computed with exact and approximated
method. Despite using fewer samples, the approximated Shap-
ley values closely match the exact values, validating its effec-
tiveness without significantly sacrificing fairness accuracy.

3) IEEE 123-bus system: To evaluate the scalability and
robustness of the proposed cost allocation method, we apply

case, these communities are not directly adjacent, but they
are located along the same major branch of the distribution
feeder. The six communities include both identical and non-
identical DER capacities to reflect diverse sizing scenarios. It
is assumed that Buses 4 and 6 are identical in size, forming
a symmetric pair. Bus 55 has a 20% larger capacity than Bus
59, while Bus 94 has 50% more DER capacity than Bus 90.

Even when DER capacities differ across communities, the
final cost under Shapley allocation can be approximated
under the assumption that it scales linearly with DER size,
since communities with similar setups tend to have costs (or
benefits) that are roughly proportional to their installed DER
capacities. This enables us to reduce the number of coalitions
by grouping similar communities. For instance, we treat the
asymmetric pair (e.g., Buses 55 and 59) as symmetric during
coalition sampling. For each community, we first compute the
individual cost and the associated Shapley savings, and then
obtain the final cost as their difference. The final costs are
subsequently scaled using a post-processing adjustment ratio
(e.g., 1.2:1 for Bus 55 and 59 as Bus 55 has 20% larger
capacity) to reflect the actual DER size differences, yielding
reasonably accurate allocations as shown in Table As
the results demonstrate, the approximation produces shapely
savings with reasonable accuracies.

The proposed strategy is particularly feasible in practice
because cost allocation is performed ex-post. That is, exact
values are not required during real-time operation, and final
settlements can be computed using stored data. Also, note that
the total settlement amount across all communities remains
unchanged, and only the allocation among participants needs
to be fine-tuned afterward. That is, although individual cost
allocations differ slightly between the exact and approximate
methods, the total settlement is preserved, thereby maintaining
efficiency. In addition, the method can be extended to further
reduce computational complexity when more than two similar
communities are present. For instance, even with six commu-
nities, if they can be organized into two symmetric triplets,
the number of required coalitions can be reduced from 27 to
16, highlighting the method’s potential for further scaling.

V. CONCLUSIONS

This work addressed the problem of fair cost allocation in
ECs, where the DERs across multiple communities jointly



TABLE VI
COMPUTATION TIME COMPARISON (IEEE 123-BUS).

Method Coalitions Solved  Total Time (s)
Full enumeration 64 1521
Signature-based sampling 27 640

influence DLMPs and overall dispatch outcomes. The key
challenge was to ensure that operating cost savings from cen-
tralized scheduling are distributed fairly across communities,
accounting for their contributions to system-level performance.
To this end, a bilevel optimization framework was proposed
from the perspectives of the CEA and the DSO. The bilevel
problem was reformulated into a tractable single-level MILP
using KKT conditions and strong duality. To ensure fair
cost distribution among communities, the Shapley value was
applied to quantify each community’s marginal contribution to
system-wide cost savings.

Simulation results demonstrated that the proposed Shapley-
based allocation method fairly reflects the locational impact
and resource contribution of each community. Furthermore,
sensitivity studies showed that communities hosting larger
BESS units receive higher cost savings, highlighting the in-
centive compatibility of the proposed approach.
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