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Abstract—Electric distribution grid operations typically rely
on both centralized optimization and local non-optimal control
techniques. As an alternative, distribution system operational
practices can consider distributed optimization techniques that
leverage communications among various neighboring agents
to achieve optimal operation. With the rapidly increasing in-
tegration of distributed energy resources (DERs), distributed
optimization algorithms are growing in importance due to
their potential advantages in scalability, flexibility, privacy, and
robustness relative to centralized optimization. Implementation
of distributed optimization offers multiple challenges and also
opportunities. This paper provides a comprehensive review of
the recent advancements in distributed optimization for electric
distribution systems and classifications using key attributes.
Problem formulations and distributed optimization algorithms
are provided for example use cases, including volt/var control,
market clearing process, loss minimization, and conservation
voltage reduction. Finally, this paper also presents future research
needs for the applicability of distributed optimization algorithms
in the distribution system.

Index Terms—Optimal Power Flow, Distributed Energy Re-
sources, Active Distribution Systems, Distributed Optimization.

I. INTRODUCTION

ELECTRIC grid operation and control heavily rely on
optimal power flow (OPF) techniques to maneuver the

system to economic and reliable operating points [1]. Using
extensive sensing and communication infrastructures, power
grid operators centrally gather all information needed by
formulated OPF problems, solve these problems, and send
dispatch control to the generators and control devices. The
rapidly increasing integration of distributed energy resources
(DERs) motivates the application of advanced optimization
tools for distribution systems. However, applying OPF solution
techniques to distribution systems is challenging for many
reasons. Some of these challenges include the huge number
of controllable resources, flexible control due to inverter-based
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resources (IBR), the inapplicability of the DC power flow
approximation, limited communication and sensing infrastruc-
tures, and privacy concerns with control devices and resource
ownership.

Existing centralized schemes for operating and controlling
distribution systems span two operational layers: (a) the phys-
ical layer, where control agents like tap-changing transform-
ers, switched capacitors, reclosers, circuit breakers, etc. are
responsible for managing the state of the distribution system,
(b) the cyber layer, which can be classified into two more
sublayers, (i) the control and management sublayer where
the Advanced Distribution Management System (ADMS) runs
an optimization tool and is responsible for making control
decisions of power system operations throughout the day
and (ii) the communication sublayer where commands and
measurements are relayed between the physical layer and
the control/management sublayer (i.e., the ADMS). Along
with these centralized schemes, utilities often use purely local
feedback based control strategies in power grids. However,
these schemes generate non-optimal solutions since they are
solely based on local measurements. Stability is also an issue
for purely local feedback based schemes as they are unable
to consistently regulate the voltage/frequency throughout the
system [2]. Complementing this framework, distributed al-
gorithms involving communication and coordination among
various agents/control nodes provide the opportunity for op-
timal control and operation of active distribution grids. In
this context, “active” distribution grids refer to the evolving
distribution systems that allow prosumers to participate in grid
services which may involve power flow from distribution to
transmission grid [3]. Distributed algorithms have the follow-
ing advantages [4]:

• With the inclusion of DERs, the number of physical
control devices is rapidly growing. Hence, the ADMS
is challenged by the need to communicate with and
manage the operation of all deployed control agents
that are associated with the new DERs. Additionally,
centralized schemes will have mathematical challenges
in solving large-scale multi-variate multi-period problems
due to complexities associated with inverter-based DERs.
Relative to centralized approaches, distributed algorithms
have potential scalability advantages for addressing this
challenge.

• Distributed algorithms are based on decomposition of
the original centralized problem into smaller subproblems
having coordination and communication with only limited
numbers of neighboring control agents. The decomposed
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subproblems enable fast parallel computations [5], [6].
• Distributed algorithms have potential advantages in data

privacy given different ownership of DERs at the edge,
since the communication sublayer only involves neigh-
boring agents rather than centralized communication with
the ADMS.

• Centralized approaches are prone to single-point cyber
failures. Distributed algorithms have potential advantages
in robustness that can help improve the reliability and
resiliency of active distribution systems.

• Since each agent only needs to communicate with its
neighbors, distributed algorithms are naturally capable of
adapting to changing conditions such as modifications to
the network topology and communication infrastructure.
Moreover, unlike centralized schemes, no single agent
requires full knowledge of all network parameters while
computing optimal setpoints.

Relevant works in recent literature on distributed optimiza-
tion for problems in distributed systems include [4], [6]–[9].
References [6], [7] focus on voltage control in microgrids and
distribution systems using decentralized, local, and distributed
control schemes. Voltage control in smart grids considering
both transmission and distribution grids is reviewed in [8].
References [4], [9] are both broader surveys of distributed
approaches.

The major contributions of this work are:
• Taxonomy: A comprehensive taxonomy of distributed

algorithms in distribution power grids is given, with the
classifications based not only on algorithm and applica-
tion types, but also based on data exchange mechanism,
implementation type, communication type, and the un-
derlying type of power system model.

• Model Relaxations and Approximations: Relaxations
and approximations utilized in distributed optimization
formulations are described.

• Solution and Use Cases: Two disparate use cases are
presented, one of which employs a proximal-dual method
while another employs a dual-ascent method that solves
the underlying OPF in a distributed manner.

• Research Needs: An in-depth discussion on the research
needs for implementation of distributed approaches in the
real field is provided.

This paper has the following major differences relative to the
work in [4], [9]: (i) domain of application, which is focused on
the distribution grid, (ii) model formulations, approximations,
and relaxations for AC OPF, and (iii) taxonomy of solution
algorithms and two representative use cases that demonstrate
two common approaches.

The organization of the paper is as follows. Section II
formulates the OPF problem in both centralized and distributed
settings and discusses various power flow approximations and
relaxations used for distribution system analyses. Section III
surveys different distributed algorithms applied for optimal
control in distribution grids and discusses comparisons among
them. Section IV discusses several use cases for distributed
optimization algorithms. Section V presents an overview of
research needs for field implementations of distributed algo-
rithms in active distribution systems.

II. AC OPTIMAL POWER FLOW PROBLEMS FOR
ACTIVE DISTRIBUTION SYSTEMS

Accurately modeling distribution systems requires AC
power flow formulations which consist of nonlinear equations
involving complex bus voltages, line power flows, and bus
power injections. OPF problems which include the nonlin-
ear AC power flow equations and power system operational
bounds in their constraints are known as ACOPF problems.
While OPF problems are not the only problems in the distri-
bution grid that can be solved with distributed optimization,
a large subset of problems does rely on the OPF solution.
At a high level, the methods reviewed in this paper are
generalizable to these types of problems. However, these
problems also have their own unique features in facilitating
and/or challenging the distributed algorithm design that are
beyond the scope of this review. This section formulates
ACOPF problems in both centralized and distributed settings
and describes variants of ACOPF problems that have been
proposed for distributed applications.

A. Centralized ACOPF Problems

The centralized ACOPF problem optimizes an objective
function while satisfying steady-state power flow equations
and operational constraints. The power flow equations are typi-
cally represented via either the Bus Injection Model [4], [10] or
the Branch Flow Model (also called the DistFlow Model) [11]–
[13]. In either representation, power flow equations introduce
non-convexities in ACOPF problems. The power flow equa-
tions for multiphase systems are further complicated by inter-
phase coupling [14], [15]. Along with equalities corresponding
to the power flow equations, ACOPF problems include voltage
limits (typically ±5% of the nominal voltage [16]), generator
bounds, thermal limits on line flows, and constraints associated
with legacy devices such as tap-changing transformers and line
capacitors. Power injections from DERs are often limited by
the apparent power ratings of their interfacing converters. Line
flows are limited by the distribution lines’ ampacities. Legacy
devices are slow-acting in nature since they are geared by
mechanical actuators and switches.

In centralized settings, the ADMS collects measurements
from the entire system and solves an ACOPF problem. The
centralized ACOPF problem contains both state variables (e.g.,
voltage phasors, power flows) and control variables (e.g.,
setpoints for legacy devices and DER outputs). Denote the set
of all problem variables as x. The centralized ACOPF problem
aims to minimize operational costs (1a) subject to the power
flow equations (1b) and operational limits (1c):

min
x

f(x) (1a)

subject to G(x) = 0 (1b)
H(x) ≤ h (1c)

B. Distributed ACOPF Problems

Distributed OPF approaches involve two steps:
• Decomposition: The original centralized optimization

problem is decomposed into several subproblems. Hence,
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Fig. 1. A representation of the distribution of the objective function G over
multiple agents Gj

the centralized problem’s objective and constraint func-
tions are decomposed into subproblem-specific objective
functions and constraint functions.

• Coordination: Each agent solves its subproblem and
coordinates with its neighboring agents to share variables
of mutual interest. Ultimately, the overall distributed op-
timization problem is solved when each agent optimizes
its own subproblem while reaching consensus regarding
values for the shared variables.

To formulate the distributed ACOPF problem, we decom-
pose the centralized ACOPF problem (1) into k subproblems,
each of which has an agent that controls the corresponding
devices such as inverter-based DERs or legacy components
like voltage regulators and shunt capacitors. The set of sub-
problems is K = {1, . . . , k}.

The subproblem j ∈ K associated with each agent j
depends on a subset of the variables x that is denoted as xj .
Each agent performs calculations using a local copy of these
variables, which is indicated as x̃j . The objective, equality
constraints, and inequality constraints in the subproblem for
agent j are denoted as fj(x̃j), Gj(x̃j), and Hj(x̃j), respec-
tively. The distributed ACOPF is formulated as:

min
∑
j∈K

fj (x̃j) (2a)

subject to Gj(x̃j) = 0 j ∈ K (2b)
Hj(x̃j) ≤ hj j ∈ K (2c)

A
[
x̃⊺
1 . . . x̃⊺

k

]⊺
= 0 (2d)

where the jth agent solves the corresponding optimization
problem defined by objective function (2a), power flow con-
straints (2b), and operational limits (2c), all of which are
functions of agent j’s local copy of the variables, x̃j . This
is visually represented in Fig. 1.

The constraint in (2d) represents a consensus or coor-
dination constraint among neighboring agents. Optimization
problems are usually not trivially decomposable, meaning that
there are dependencies among different agents, such as a cost
function or constraint that depends on variables that are shared
with a different agent. With the matrix A constructed appro-
priately, constraints of the form (2d) address this dependency.

Fig. 2. A representation of the atomization and coupling from the distributed
formulation over multiple agents

Each agent sends information regarding its shared variables to
its neighboring agents to reach consensus. The shared variables
are often called “coupling” variables. A representation of the
distribution and coupling is shown in Fig. 2.

Distributed optimization approaches apply various methods
to simplify the coordination constraint (2d) into subproblem-
specific formulations such that (2) can be solved in
a distributed fashion. Examples of such decomposition-
coordination based distributed approaches are the Alternat-
ing Direction of Method of Multipliers (ADMM) [17]–
[20] and Proximal Atomic Coordination (PAC) [21]. The
coupling variable information may include physical states
(voltages, branch power flows, etc.) [22], [23], Lagrange
multipliers [24], or functions related to reactive power and
Lagrange multipliers [25]. Distributed approaches often en-
force the coordination constraint (2d) while exploiting network
sparsity. Such examples of network-sparsity based approaches
are OPTDIST-VC [25] and DIST-OPT [24], [26]–[28].

C. Nonconvexities in ACOPF problems

The set of operating points satisfying the power flow
equations (2b) and operational limits (2c) is referred to as the
ACOPF problem’s “feasible space”. However, the power flow
equations and other constraints are non-linear, meaning that
ACOPF is a non-linear programming (NLP) problem. The ma-
jor non-linearity lies in the power flow connecting two adjacent
buses which is a non-linear function of bus voltages and bus
angles [29]. These non-linear power flow equations and opera-
tional constraints make the ACOPF feasible space nonconvex
[30]–[32]. Moreover, the presence of on-load tap changing
transformers and shunt capacitors introduce binary variables in
the ACOPF problem, thus adding further non-convexities [15].
Non-convex feasible spaces give rise to the possibility of local
solutions rather than a single global optimum [29] as well as
the potential for disconnected feasible spaces [30]. Since the
ACOPF problem is non-convex, distributed approaches that
behave like local solvers may converge to a locally optimal
point rather than the global optimum [33], [34]. The ACOPF
problem is NP-Hard in general [35] and for tree networks too
[36]. Thus, ACOPF problems pose two major challenges:

• Nonconvexity of the ACOPF problem’s feasible space
resulting in the possibility of finding a local solution
instead of a global solution.

• Problem intractability where solution algorithms cannot
solve the problem in polynomial time.
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D. Approximations and Relaxations in Distributed Algorithms

There are two main approaches for addressing the chal-
lenges posed by the non-convexity and NP-hardness of
ACOPF problems: (a) Use an off-the-shelf local solver with an
initialization that is close to the global optimum. A sufficiently
close initialization should enable the algorithm to converge
to the global optimum, while a poor initialization may result
in failure to converge or convergence to a local optimum.
(b) Use convex relaxations or approximations of the power
flow equations to convert the centralized non-convex ACOPF
problem into a convex programming problem. Once convex,
the problem can be solved using any off-the-shelf convex pro-
gramming solver with polynomial runtime. This can address
problems posed by computational intractability.

Convex relaxations enclose the non-convex AC feasible
space within a convex space. Once the relaxed ACOPF space
is convex, any off-the-shelf convex programming solver can
find the globally optimal point. However, it needs to be
verified that the solution obtained is feasible, i.e., it must
lie within the original ACOPF problem’s non-convex feasible
space. One advantage of using convex relaxations is that they
always provide lower bounds of the original minimization
problem of ACOPF. To summarize, convex relaxations ap-
plied in distributed algorithms are often one of two types:
(a) Second-Order Cone Programming (SOCP) relaxations and
(b) Semidefinite Programming (SDP) relaxations. Many SOCP
relaxations replace an equality constraint associated with line
losses in the DistFlow equations with a less restrictive inequal-
ity constraint. These SOCP relaxations are “exact” (provide the
global solution to the original nonconvex ACOPF problem) for
radial networks represented via single-phase balanced power
flow constraints which also satisfy certain nontrivial technical
conditions [37]. SDP relaxations are tighter than certain SOCP
relaxations and can have advantages when considering meshed
networks and three-phase unbalanced network models. SDP
relaxations are typically constructed by reformulating the
ACOPF with linear constraints along with a rank constraint
on a matrix whose entries represent voltage phasor products.
The SDP relaxation is formed by replacing this rank constraint
with a weaker positive semidefinite constraint on this matrix.

Unlike convex relaxations, convex approximations do not
enclose the non-convex ACOPF space. Instead, they use
assumptions regarding the power flow equations to obtain
a convex formulation. Convex approximations may greatly
reduce the computational effort relative to convex relaxations.
In both cases, solution feasibility must be evaluated.

One of the most common approximations is the DC power
flow model [38], which assumes (a) lossless lines, (b) voltage
magnitudes are close to unity, (c) reactive power is neglected,
and (d) angle differences between connected buses are small.
Unlike transmission lines, these assumptions are not valid for
distribution lines since their resistance-to-inductance (R/X)
ratio is high. Accordingly, many distributed algorithms use
other linear approximations in distribution system applications,
such as the Linearized DistFlow approximation [11].

III. CLASSIFICATION OF DISTRIBUTED ALGORITHMS

This section classifies distributed algorithms used for opti-
mal operation and control of distribution systems into various
categories. Fig. 3 presents a taxonomy of distributed algo-
rithms based on their data exchange mechanism, implementa-
tion type, power system model, algorithm type, communica-
tion paradigm, and application type.

We categorize distributed algorithms based on how data
is exchanged with the grid as either (a) static optimization
algorithms and (b) dynamic optimization algorithms (also
known as “offline” and “online” algorithms, respectively). In
static optimization algorithms, control agents communicate
with neighboring agents in each optimization iteration and
generate control setpoints based on their distributed/atomized
optimization problems [10], [17], [17], [19], [21], [39]. Before
implementing any actions in the physical system, a solution
is obtained through multiple communication rounds among
agents with computations performed during each iteration.

In dynamic optimization algorithms, each optimization iter-
ation consists of control agents sensing grid variables (e.g.,
voltages, currents, and power flows), communicating with
their neighboring agents, and computing control setpoints
based on each agent’s local optimization problem. In contrast
to static optimization algorithms, these control setpoints are
immediately applied to the physical grid as the DER controller
references, thus directly affecting the power grid [22], [25]–
[27], [42], [44], [45]. The algorithm then operates on the next
iteration based on the grid’s response to the previous iteration
followed by communication and optimization computations.

Distributed optimization can be implemented with shared
access to a database (e.g., using cloud computing), hence
federated [47], or with data access only available locally
(e.g., using fog computing), hence peer-to-peer (P2P). P2P
implementation truly allows distributed optimization, while
preserving privacy with no centralized database access [48].
At the same time, federated is easier to implement with access
to a centralized database and large computing facility, while
P2P is harder to implement due to higher requirements on
communication and computation placed on the distributed
computing agents.

Distributed approaches typically use either branch flow
based [18], [20], [22], [25], [39], [41], [42], [42], [44], [45]
or bus injection based power system models [10], [17], [19],
[27], [43]. Since both of these models are non-convex, convex
relaxations or approximations (e.g., SDP and SOCP relax-
ations, the Linearized DistFlow approximation) are usually
applied to formulate the problem as a convex optimization
problem in order to achieve both computational tractability
and convergence guarantees for the distributed algorithms.

Distributed approaches can also be classified into two ma-
jor types: (a) Optimization approaches and (b) Coordination
methods. Optimization approaches can be classified in turn
into two sub-categories: (a) Primal-dual algorithms, and (b)
Dual-ascent algorithms. Both of these formulations consist of
a dual function formulation with corresponding dual variables
associated with constraints. Maximizing the dual function
provides a lower bound of the primal problem. Dual ascent
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Fig. 3. A Taxonomy of Distributed Approaches.

TABLE I
RELATED WORK ON DISTRIBUTED LAGRANGIAN DUAL BASED OPTIMIZATION ALGORITHMS FOR DISTRIBUTION SYSTEMS

Objective Reference Power Network Approximations Static Algorithm Coupling Communication
Flow Model /Relaxations /Dynamic Variables

Minimize
losses

[10] BIM Balanced SDP Static Dual-ascent Lagrangian Robust
rank-1 constraint Method multipliers under failures

[27] BIM Unbalanced Losses Dynamic Dual Lagrangian Asynchronous
approximated decomposition multipliers

[17] BIM Unbalanced SDP Static ADMM Bus voltages Synchronous
rank-1 constraint

[18] BFM Unbalanced SOCP Static ADMM Branch flows Synchronous
voltages

[19] BIM Unbalanced SDP Static ADMM Voltages Synchronous
rank-1 constraint

[39] BFM Balanced Losses Static ADMM Lagrangian Synchronous
ignored Multipliers

[40] BFM Balanced Losses Static ADMM Lagrangian Synchronous
ignored Mulitpliers

Minimize
voltage
devia-
tions

[41] BFM Unbalanced SDP Static ADMM Bus voltages, Synchronous
rank-1 constraint Branch power

flows
[22] BFM Unbalanced Losses Dynamic ADMM Reactive power Asynchronous

Ignored Voltage
[42] BFM Unbalanced Losses Dynamic Partial Primal- Bus voltages Asynchronous

ignored Dual method

Active
Power
Curtail-
ment

[43] BIM Balanced SDP Static ADMM Active power Synchronous
rank 1 constraint Reactive power

[44] BFM Balanced Ignore Dynamic Dual Ascent Lagrangian Robust
Losses Method multipliers

CVR [20] BFM Unbalanced Ignore Static ADMM Power flows Synchronous
losses Bus voltages

Minimize
DER
genera-
tion costs

[26] BFM Balanced Ignore Dynamic Primal-Dual Reactive power Limited
Losses Method communication

[25] BFM Balanced Ignore losses Dynamic Primal-Dual Lagrangian mulitpliers Asynchronous
Method Reactive power and robust

[21] BFM Balanced SOCP Static Proximal Atomic Branch Flows Synchronous
Coordination Bus Voltages

[45] BFM Balanced Ignore losses Dynamic Dual-ascent Lagrange multipliers Asynchronous
Method

[46] BFM Balanced SOCP Static ADMM Lagrangian Synchronous
Multipliers
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algorithms typically solve the dual problem with gradient
descent. At each iteration, with the value of the dual variable
fixed, the primal problem is completely solved. The resulting
primal solution is used to determine the dual variable at the
next iteration and so on. The dual ascent method is a precursor
to the dual decomposition, method of multipliers, ADMM,
and PAC. On the other hand, the primal-dual methods update
both the primal and dual variables at each iteration. Both of
these approaches have advantages and disadvantages, which
are explored more in the use cases. A list of distributed dual
methods is presented in Table I. These distributed algorithms
are categorized on the basis of the power flow model used,
convex relaxations or convex approximations applied, data
exchange mechanism, type of coupling or shared variables
among the control agents, and the type of communication.

Coordination methods are usually implemented through an
average consensus mechanism. In consensus based methods,
the distributed optimization problem is solved directly in
its primal form using communication based coordination.
Some examples of consensus based primal methods are the
distributed sub-gradient based method [49] and average con-
sensus based methods [50]. Since our focus is more on opti-
mization based approaches, a detailed review of coordination
methods is not presented in this paper.

Regarding the communication paradigm, distributed ap-
proaches either use synchronous or asynchronous communi-
cation. In synchronous communication, control agents share
coupling variables during every communication round [17]–
[21], [39], [41], [43]. Asynchronous communication results
due to latency in communication channels, loss of data, and
noisy communication channels. Hence, control agents operate
on variables shared in previous iterations in case of latency.
When updated data is not available, control agents do not
have any new inputs for their local optimization algorithms
and thereby revert to inputs from previous iterations. Noisy
data may result in non-optimal or even infeasible control de-
cisions generated in each optimization iteration. Asynchronous
communication may also result in non-convergence of various
distributed approaches. Examples of distributed approaches
using asynchronous communication are presented in [22],
[25]–[27], [42], [44], [45].

Distributed approaches have been considered for many
applications related to the optimal operation of distribution
grids, including (a) minimizing power losses [10], [17]–[19],
[27], [39], (b) minimizing voltage deviations [22], [41], [42],
(c) minimizing active power curtailment (APC) [44], [51],
(d) performing conservation voltage reduction (CVR) [20],
(e) minimizing DER generation costs [21], [25], [26], (f) maxi-
mizing social welfare, and (g) regulating the system frequency.

IV. USE CASES

This section describes use cases for Lagrangian dual based
distributed optimization algorithms in distribution power grids.
The different streams of methods used in the literature can be
broadly classified per the taxonomy in Fig. I. The vast majority
of the papers using distributed optimization techniques utilize
two methods – primal-dual or dual-ascent. The two use cases
that we will present are based on these two methods.

Section IV-A presents a network-sparsity based primal-
dual algorithm for voltage control in active distribution sys-
tems called OPTDIST-VC. Section IV-B presents a classical
decomposition-coordination based distributed dual algorithm
called PAC, which uses a dual-ascent approach. The ap-
proaches in Sections IV-A and IV-B have other distinctions
as well, which are based on the nature of the distributed
optimization. These are enumerated in Table II. OPTDIST-
VC uses a linearized power flow model called LinDistFlow,
while PAC uses the nonlinear variant, DistFlow. The detailed
linearization of these problems are not in the scope of this
paper and the reader is referred to [23], [25] for further details.

Apart from this key distinction, various solution techniques
can be used to solve the distributed problem. In this specific
case, PAC uses a dual-ascent approach, while OPTDIST-VC
utilizes a primal-dual solver. The algorithms also differ in their
actuations – while PAC actuates once the complete optimiza-
tion problem is solved, OPTDIST-VC actuates at the end of
every timestep (which can be chosen based on the distribution
system). While both approaches lead to optimal solutions,
there are upsides and downsides to both approaches. While
PAC’s performance is dependent on the atomization, acceler-
ation constants and other algorithmic parameters, OPTDIST-
VC’s performance is dependent on the validity of the model’s
radiality, availability of sufficient number of agents, and choos-
ing an appropriate timestep. These issues are open research
problems in the distributed optimization area.

A. Volt-Var Control

We consider a feedback based voltage control strategy
where distribution feeder voltages are controlled by varying
reactive power injections from DERs. At time t, we denote
the vector of controllable reactive power injections as q(t) =
[q1(t) q2(t) . . . qn(t)]

T , where n denotes the number of buses
in the network. Let vo be the substation voltage. The distri-
bution feeder voltage vector v(t) = [v1(t) v2(t) . . . vn(t)]

T

can be approximated as [25]:

v(q(t)) = Xq(t) + vpar = v(t) (3a)
vpar = Xqu(t) +Rp(t) + vo (3b)

where R and X are the resistance and reactance matrices.
vpar represents the uncontrollable part of the above equa-
tion whereas reactive power injection vector (qc) represents
the controllable part of the equation. Under certain loading
conditions, vpar remains fixed and qc can be modified to
control feeder bus voltage vector v. Additional details on the
parameters are provided in [25]. The vectors of uncontrollable
reactive and active power injections are denoted as qu(t)
and p(t), respectively. Given v(t) from (3a), the algorithm
seeks optimal controllable reactive power injections q(t+ 1)
for the next time instant (t + 1). The results should satisfy
operational constraints on the reactive power injections and
voltage magnitudes:

v(t) ≤ v(t)) ≤ v̄(t) (4a)
q(t) ≤ q(t)) ≤ q̄(t) (4b)
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TABLE II
DISTINCTIONS BETWEEN THE USE CASES: OPTDIST-VC AND PAC

Solution approach OPTDIST-VC PAC

Formulation Leverage the underlying unique features of dis-
tribution systems to create a naturally distributed
problem

Create an “atomized” problem that are solved by
several sub-agents

Power flow model LinDistFlow model, local measurements from the
system is used as a surrogate for the power
balance constraint

Non-linear DistFlow model

Data exchange
mechanism and
actuation

Dynamic optimization, optimal reactive power
setpoints are directly set as DER power refer-
ences in the next iteration

Static optimization, actuates once the complete
optimization problem is solved

Algorithm used Primal-dual approach Dual ascent approach

Fig. 4. Feedback structure of the voltage control problem.

Fig. 4 shows the feedback structure of voltage control problem.
For a particular time t, the power flow equations (3) and

operational constraints (4) can be expressed as (5a) and (5b).
The term t is dropped hereafter for notational brevity.

G(v,q, vpar) = 0 (5a)
H(v,q) ≤ h (5b)

The algorithm drives the network to the optimal point of the
following optimization problem under any loading conditions:

min
qk

f(q) ≜
n∑

k=1

fk(qk) +
d

2
qTXq (6a)

subject to (5a), (5b) (6b)

The cost function (6a) is the sum of the operating costs fk and
1
2q

TXq which is a network-wide cost, d ≥ 0 being a weighting
parameter. d can be set to zero (d = 0) thus ignoring the
cost term d

2q
TXq. The cost 1

2q
TXq approximates the network

losses (up to a multiplicative factor and an additive term that
does not depend on q), under the assumption that the R/X
ratio of the network is constant [28, Lemma 2]. This cost
is commonly used in distributed volt-var controller design;
see [52], [53].

In order to solve this problem, we next formally introduce
the distributed voltage control algorithm known as “Optimal
Distributed Feedback Voltage Control” (OPTDIST-VC) [25].
For each bus k, we introduce auxiliary variables, q̂k, ξk, λ̄k, λk.
At each iteration t, bus k measures the local voltage vk(t),

Fig. 5. The soft thresholding function.

computes variables q̂k(t+ 1), qk(t+ 1), ξk(t+ 1), λ̄k(t+ 1),
and λk(t+1), injects the reactive power qk(t+1), and lastly
shares certain variables to its neighboring buses. A detailed
description of OPTDIST-VC follows.

OPTDIST-VC:
At time t, each bus k executes the following four steps:
Step 1 (Measuring): Measure the local voltage vk(t).
Step 2 (Calculating): Calculate q̂k(t + 1), ξk(t + 1), λ̄k(t +
1), λk(t+ 1) as follows.

q̂k(t+ 1) = q̂k(t)− α

{
λ̄k(t)− λk(t) + dq̂k(t)

+
∑
i∈Nk

[Y ]ki
[
f ′
i(q̂i(t)) + STcq̄i

cq
i
(ξi(t) + cq̂i(t))

]}
,

(7a)

ξk(t+ 1) = ξk(t) + β
STcq̄k

cq
k
(ξk(t) + cq̂k(t))− ξk

c
, (7b)

λ̄k(t+ 1) = [λ̄k(t) + γ(vk(t)− v̄k)]
+, (7c)

λk(t+ 1) = [λk(t) + γ(vk − vk(t))]
+, (7d)

where [·]+ denotes projection onto the nonnegative orthant and
the quantities α, β, γ, and c are positive scalar parameters. For
any b1 < b2, let STb2

b1
(·) denote the soft-thresholding function

defined as STb2
b1
(y) = max(min(y − b1, 0), y − b2). Nk is the

set of neighbor agents of agent k. (See Fig. 5 for an illustration
of this function.)
Step 3 (Injecting Reactive Power): Set reactive power
injection at time t+ 1 as

qk(t+ 1) = [q̂k(t+ 1)]q̄kq
k
, (8)

where [·]q̄kq
k

denotes projection onto the set [q
k
, q̄k].
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Fig. 6. Information Flow of OPTDIST-VC.

Step 4 (Communicating): Send values f ′
k(q̂k(t + 1)) +

STcq̄k
cq

k
(ξk(t+ 1) + cq̂k(t+ 1)) to all neighboring buses.

OPTDIST-VC is a primal-dual gradient algorithm [54]–
[57] for an augmented Lagrangian [58], in which q̂k(t) is
the primal variable, ξk(t), λ̄k(t), and λk(t) are dual vari-
ables, and α, β, and γ are step sizes. Optimization prob-
lem (6) in OPTDIST-VC resembles (2) where x̃k(t) =
[q̂k(t), vk(t), ξk(t), λ̄k(t), λk(t)]

T . However, the coordination
constraints among neighboring agents is taken care of by
utilizing network sparsity. As can be observed in (7a), the term∑

i∈Nk
[Y ]ki

[
f ′
i(q̂i(t))+STcq̄i

cq
i
(ξi(t)+cq̂i(t))

]
only consists of

calculation of auxiliary variables belonging to set Nk where
Nk denotes the set of neighbor agents of agent k. Hence,
agent k needs to communicate only with neighboring agents
to calculate q̂k(t+ 1).

Fig. 6 shows the information exchange between different
buses and between the cyber layer (controller) and phys-
ical layer (network model) under OPTDIST-VC. The only
interaction between the cyber layer and the physical layer
is through voltage measurement vk(t) (Step 1) and reactive
power injection qk(t) (Step 3) as shown in Fig. 6. However,
all other steps of OPTDIST-VC are performed entirely inside
the cyber layer, including calculation of auxilliary variables
(Step 2) and communication among neighbor agents (Step 4).
We make a few comments regarding OPTDIST-VC:

• qk(t) and vk(t) are physical quantities (reactive power
injection and voltage) being exchanged between cyber
layer and physical layer, while (q̂k(t), ξk(t), λ̄k(t), λk(t))
are “digital” variables stored in the controller’s memory.

• Variable q̂k(t) is the desired amount of reactive power to
be injected by physical DER controller at bus k. However,
q̂k(t) may violate the reactive power capacity constraint.
Therefore, we set qk(t) to the projection of q̂k(t) onto
the capacity constraint.

• The update equation (7a) for the desired reactive power
injection q̂k(t) drives q̂k(t) towards the superposition of
the gradient of f and certain “correction directions”,
related to λ̄k(t) − λk(t) and ξk(t), which directs q̂k(t)
to satisfy the constraints. Due to the superposition of the
two directions, q̂k(t) will be driven to minimize f and
also avoid constraint violations.

0 2000 4000 6000 8000 10000
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Fig. 7. Convergence charateristics (OPTDIST-VC vs centralized)

• The variables ξk(t) and {λ̄k(t), λk(t)} are Lagrange mul-
tipliers associated with violations of the reactive power
limits and voltage limits, respectively.

In OPTDIST-VC, for any c > 0, when α, β, and γ are small
enough and satisfy mild conditions, q(t) will converge to the
unique optimizer of (6). This is proved in [25]. Fig. 7 shows
convergence characteristics of OPTDIST-VC.

Online dynamic optimization techniques such as OPTDIST-
VC are essentially feedback-based approaches where the non-
linear power system acts as the plant whereas controllers are
designed to operate in a distributed manner, as shown in Fig. 4.
The reactive power setpoints calculated following Steps 1-
4 as presented are then input back to the plant. Hence, if
the algorithm receives voltage measurements at time instant
t, it facilitates communication among agents at time instant
t + 1 and generates reactive power setpoints at t + 1 which
are then input to the plant model. In Fig. 6, consider the case
for controller located in the cyber layer corresponding to the
physical layer at bus i. The controller i receives local voltage
measurement vi(t) which represents Step 1. The reactive
power setpoints qi(t + 1) are calculated based on shared
variables obtained at time instant t. This represents Step 2
and Step 3. The controller i then shares the local variables
q̂i(t), f ′

i(q̂i(t)), and ξi(t) with the neighboring controllers at
bus k and bus j. Note that since the reactive power setpoints
of DERs as calculated in Step 2 are input back to the plant
at time instant (t + 1), these setpoints should be within the
capacity constraints of the DER inverter. Hence, the reactive
power setpoints are projected back to the capacity constraint
set as in Step 3 and then the resultant reactive power setpoint
is input back to the system. This avoids infeasible operating
points within optimization operations. Almost all dynamic
optimization approaches utilize this projection operator in each
optimization operation when power setpoints are input back to
the power system model [22], [26], [42], [44].

B. Retail Markets using Distributed Algorithms

The Proximal Atomic Coordination (PAC) Algorithm is a
recently developed distributed optimization algorithm [21],
[59] with enhanced privacy-preserving capabilities. The al-
gorithm leverages local data and measurements as well as
structured communications between immediate neighbours to
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recover the optimal actuation required to minimize a global
objective subject to network constraints. The network is rep-
resented as a directed graph ΓD = ⟨B, TD⟩, where j ∈ B
represents the nodes and TD ⊆ T represents the directed edges.

A general optimization problem (1) subject to equality
and inequality constraints can be decomposed (or atomized)
into j different optimization problems, where aj is the local
atomic decision vector for node j. This is done as per the
decomposition profile discussed in [21], [59], which has local
copies of coupling variables between two neighboring nodes
j and i, in either xj and xi or constraint matrices Gj

or Hj . Additional equality constraints, termed “coordination
constraints”, are introduced to enforce the copies to coincide
with the true value of the coupling variables at convergence:

Aa = 0, (9)

where A represents the adjacency matrix of ΓD. The atomized
problem then takes on the form of (2), and can be solved
with the fully distributed PAC algorithm.

The algorithm is based on a distributed linearized variant
of the proximal method of multipliers [60], [61] and is stated
below (see [21], [59] for further details):

aj [τ + 1] = argmin
aj

{ Lj (aj , µ̄j [τ ] , ν̄ [τ ])

+ 1
2ρ ∥aj − aj [τ ]∥22

}
, (10a)

µj [τ + 1] = µj [τ ] + ργjG̃jaj [τ + 1] , (10b)

µ̄j [τ + 1] = µj [τ + 1] + ργ̂j [τ + 1]G̃jaj [τ + 1] , (10c)
Communicate aj for all j ∈ [K] with neighbors, (10d)

νj [τ + 1] = νj [τ ] + ργj [B]
Oj a [τ + 1] , (10e)

ν̄j [τ + 1] = νj [τ + 1] + ργ̂j [τ + 1] [B]
Oj a [τ + 1] , (10f)

Communicate ν̄j for all j ∈ [K] with neighbors, (10g)

where ρ > 0 is the common step-size and γj , γ̂j [τ ] > 0 are
two over-relaxation terms with γj > γ̂j [τ ] > 0. In (10), µ
are the dual variables corresponding to equality constraints
and ν are the dual variables corresponding to coordination
constraints. As shown in [21], [59], the primal variables a
and dual variables µ and ν converge to the optimal solution
a∗, µ∗, and ν∗, with rate o(1/τ), where τ is the number of
algorithmic iterations, while maintaining complete privacy of
the dual variables, which can be interpreted as shadow prices
within a market.

The above distributed optimization problem is relevant in a
market with an objective function corresponding to the DER’s
generation costs. In a competitive economic environment,
such as a market involving DERs, the distributed algorithm
must also preserve the privacy of each agents’ information
by limiting the dissemination of any sensitive information
and protecting any sensitive data that is shared. We consider
any information about an agent’s computations that can be
used to the competitive advantage of other agents as sensitive.
We have limited the objectives of rogue agents to the use
of sensitive information to sabotage the global convergence
properties of the overall distributed algorithm, in contrast
to other adversarial scenarios. Thus, sensitive information
includes the cost functions fj(xj), operating constraints, and
the dual variables µj and νj . Under the PAC framework, the

Fig. 8. Convergence characteristics for the PAC algorithm showing (a) costs
comparison between centralized OPF and PAC and (b) distance to feasibility.

cost functions, operating constraints, and dual variables µj

(which correspond to market prices) are not shared between
neighbours and are thus kept private. The “protected” dual
variable ν̂j is communicated between neighbours, but the
“true” value νj cannot be recovered by a rouge agent due to the
use of a time-varying rate γ̂j [τ ], which is unique and private
to each atom j. Information regarding the trajectory of νj may
be used to sabotage the overall convergence of PAC through
deliberate manipulations of the coordination constraints.

The main assumptions of this algorithm are that the cost
and constraints are convex but both can be nonlinear. The PAC
algorithm also assumes a radial, balanced three-phase system,
and does not demonstrate the same convergence characteristic
for unbalanced meshed networks. However, in contrast to the
dynamic optimization presented in Section IV-A, this algo-
rithm does not make any assumptions regarding the sparsity
of the power system topology. Hence, the PAC algorithm can
be extended to study meshed systems, if the coordination con-
straints can be appropriately formulated. Also, while perfor-
mance worsens for unbalanced meshed networks, convergence
can still be obtained if an appropriate time interval is chosen.

A short discussion on the simulation results using the
PAC algorithm is presented below, and further details are
provided in [21], [23], [59]. PAC is used to solve a retail
market problem where the objective function maximizes social
welfare. The algorithm is initialized using a flat start. To show
the performance of the distributed optimization algorithm, two
plots are presented in Fig. 8. The first plot shows the cost
for the global atomic variable a[τ ] at every iteration τ . We
compare this cost with that of the optimal solution obtained
from the central solver, f |OPF |(x∗). The second plot shows
how close each atomic variable aj [τ ] is to satisfying the
local constraints, G̃jaj [τ ] = 0. From Fig. 8, observe that
PAC exhibits decaying oscillatory behavior, with a reasonably
accurate result achieved at around the 250 iteration mark. An
algorithm for maximizing the convergence rate for the PAC
algorithm is in [59, Theorem 4.7, 4.8]. The convergence rate
depends on multiple factors including system size, convexity
of the problem, atomization of the problem and so on. Further
research is underway to determine the sensitivity of these
parameters on the PAC convergence.
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C. Communication Requirements for Distributed Optimization

Distributed optimization techniques depend on the exchange
of data between the various agents. An important aspect of
distributed optimization is the communication network topol-
ogy used to connect the power grid components, both agents
and computation devices. For centralized optimization, the
communication topologies have different Quality of Service
(QoS) requirements as compared to distributed optimization
algorithms. Typically, distributed optimization schemes need
more communication infrastructure due to the higher number
of agents [62]. However, QoS requirements can vary, and
may even be less stringent than centralized optimization de-
pending on how the distributed optimization is set up [63].
Also, the synchronous/asynchronous nature of the optimization
algorithm is another important consideration. For synchronous
optimization algorithms, the communication becomes more
important, as the iteration cannot converge without data from
all distributed nodes. For asynchronous schemes, this con-
straint can be relaxed as a solution can potentially be found
even if data is not available simultaneously.

The choice of communication scheme often involves
a trade-off between convergence rates and communication
costs [64]. Distributed optimization techniques also involve
iterative methods, and hence data needs to be communicated
for every iteration and possibly even between iterations (such
as in the PAC algorithm in steps (10d) and (10g)). Ap-
propriately balancing this trade-off is essential for effective
implementations of distributed optimization algorithms [65].
In the two use cases studied in Section IV-A and IV-B,
this difference becomes evident. For a dynamic optimization
scheme such as OPTDIST-VC (Section IV-A), the actuation is
applied to the power grid control components at every time t.
Conversely, for static optimization algorithms such as PAC
(Section IV-B), the actuation is only applied after the algorithm
converges. The communication scheme and infrastructure need
to be designed considering these requirements. However, the
communication between the distributed agents is crucial for
both PAC and OPTDIST-VC, and further research is needed
to study the effect of communication system effects and on
system performance.

In addition to the communication scheme, the choice of
communication network topology is an important considera-
tion for distributed optimization. Studies such as [66], [67]
explore various communication network topologies and their
impacts on power system operational decisions, such as recon-
figuration. These studies provide simulation-based empirical
analyses regarding the effect of latency on power system
control algorithms. Similar studies have also been performed
for distributed optimization approaches by Guo et al. [68].
These studies explore the tradeoffs between communication la-
tency, computational speed, and convergence time for various
distributed optimization algorithms. Berahas et al. [64] propose
a new metric to balance communication and computation
requirements for distributed optimization algorithms, finding
the optimal balance for one algorithm.

In addition to asynchronous methods, software-based meth-
ods adapted from distributed and fault-tolerant computing can

Fig. 9. An online distributed algorithm architecture.

also be applied to address challenges associated with latency.
An example of this type of approach is to use Software
Defined Networking to reroute packets in the presence of
traffic congestion [69]. Other methods for addressing latency
and handling data management requirements for distributed
optimization algorithms include adopting lightweight proto-
cols that more quickly transfer information [63] and moving to
a cloud-based infrastructure instead of hierarchical/centralized
communication topologies [70].

V. RESEARCH NEEDS AND PATH FORWARD

As illustrated in Fig. 9, a dynamic optimization based
distributed algorithm operates on two layers: (a) the physical
layer where the power network and power-electronic DER
controllers interface with the physical grid and (b) the cyber
layer, where cyber information is used to compute optimal
setpoints that are fed back to the physical grid. In contrast to
centralized optimization techniques which require a central-
ized control layer (the ADMS as discussed in the introduction),
the communication and computing abilities of the distributed
agents are merged into the cyber layer. The cyber layer has
three sublayers of operation: (i) the measurement sublayer,
which consists of sensors which measure power flows, power
injections, and bus voltages from the grid, (ii) the commu-
nication sublayer, where control agents communicate prob-
lem variables (Lagrange multipliers or power system states)
with neighboring agents, and (iii) the computation sublayer,
where optimal active and reactive power setpoints (p∗i , q

∗
i )

are computed using both the shared and local variables.
These setpoints are input to fast-acting DER controllers which
change system states in the physical grid.

Although distributed algorithms have certain advantages
with respect to both centralized and purely local strategies,
distributed algorithms may encounter errors in all three sub-
layers, potentially leading to non-optimal or even infeasible
solutions. Possible source of these errors include:

• Noisy or incomplete data from sensors in the measure-
ment layer.

• Failures transmitting data among neighboring agents in
the communication layer.
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• Modeling errors or inaccurate choices of algorithm pa-
rameters in the computation layer.

• Cyberattacks from malicious agents that compromise
one or more of the measurement, communication, and
computation layers.

Future research needs include both the theoretical founda-
tions and practical considerations of implementing distributed
algorithms:

• Practical implementations of distributed algorithms need
to be robust to noise as well as communication and
computation failures in order to ensure reliable operation.

• Distributed algorithms must be fast enough to cope with
rapid changes in power grid conditions. Many existing
algorithms can require thousands of iterations to converge
to acceptable accuracy, suggesting that further improve-
ments in convergence rates are needed.

• Distributed algorithms must be robust to failures and
errors in the measurement layer, the communication layer,
and the computation layer.

• Communication requirements should be simple and lim-
ited enough to be implemented via existing communica-
tion channels, such as power line communication [26].

• Methods for appropriately selecting algorithm parameters
require more thorough study.

• The scalability of distributed algorithms needs to be
demonstrated using increasingly large test cases with
many DERs under diverse operational conditions and
realistic communication infrastructures.

• Operation resulting from distributed algorithms should
avoid implementing excessive switching and control ac-
tions. This is particularly important for dynamic dis-
tributed optimization algorithms.

• Theory regarding convergence guarantees withing reason-
able timeframes is needed to provide mathematical rigor.

• The computational requirements for supporting federated
or P2P optimization while meeting privacy, communica-
tion, and hardware controller requirements need further
investigation.

• Modeling, analysis, and mitigation techniques for cyber
attacks are needed to ensure acceptable operation of
power systems managed using distributed algorithms.

VI. CONCLUSIONS

Distributed control algorithms provide multiple complemen-
tary advantages relative to traditional centralized and local
control approaches in terms of computation, communication,
privacy, flexibility, and scalability with increasing DERs at
the edge. However, distributed control approaches often re-
quire several iterations and communication rounds to reach
convergence, which can make them unsuitable for practical
implementations in a federated or P2P manner. Existing work
also lack a thorough analysis of parametric sensitivity towards
algorithm performance and communication requirements for
practical implementation. This paper presents a review of
distributed algorithms found in the literature, a new taxonomy
using key attributes, and a comparison of some use cases.
Finally, future research needs for practical implementation of
such distributed algorithms are also discussed.
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