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DC Optimal Power Flow with
Joint Chance Constraints

Alejandra Peña-Ordieres, Daniel K. Molzahn, Line A. Roald, and Andreas Wächter

Abstract—Managing uncertainty and variability in power in-
jections has become a major concern for power system operators
due to increasing levels of fluctuating renewable energy connected
to the grid. This work addresses this uncertainty via a joint
chance-constrained formulation of the DC optimal power flow
(OPF) problem, which satisfies all the constraints jointly with
a pre-determined probability. The few existing approaches for
solving joint chance-constrained OPF problems are typically
either computationally intractable for large-scale problems or
give overly conservative solutions that satisfy the constraints
far more often than required, resulting in excessively costly
operation. This paper proposes an algorithm for solving joint
chance-constrained DC OPF problems by adopting an S`1QP-
type trust-region algorithm. This algorithm uses a sample-based
approach that avoids making strong assumptions on the distri-
bution of the uncertainties, scales favorably to large problems,
and can be tuned to obtain less conservative results. We illustrate
the performance of our method using several IEEE test cases.
The results demonstrate the proposed algorithm’s advantages in
computational times and limited conservativeness of the solutions
relative to other joint chance-constrained DC OPF algorithms.

Index Terms—joint chance constraints, nonlinear optimization,
optimal power flow, sample average approximation

I. INTRODUCTION

OPTIMAL power flow (OPF) is a fundamental problem
in power systems operations that is used for real-time

operations, markets, long-term planning, and many other ap-
plications. In its classical form, OPF determines the minimum
cost generation dispatch that satisfies the demand for power
while adhering to network constraints and engineering limits.

Growing quantities of renewable energy are increasing the
variability and uncertainty inherent to power system oper-
ations. Many new methods account for and mitigate this
uncertainty and variability [1], including two- and multi-
stage stochastic programming [2]–[4], robust and worst-case
optimization [5]–[8], and chance constraints [9]–[14]. These
methods attempt to ensure secure and economical operations
despite power injection uncertainty. Defining “security” is an
important modelling question that dictates the formulation and
solution algorithm. For example, robust optimization defines
“secure” as ensuring feasibility for all realizations within a
pre-specified uncertainty set, while chance-constrained opti-
mization seeks to satisfy the constraints with a high probability
1−α, where α is a specified acceptable violation probability.
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We propose a formulation and solution algorithm to solve
OPF problems with joint chance constraints (JCC), which
require that all engineering limits, including both generation
and line flow constraints, are satisfied simultaneously with
probability 1 − α. This contrasts with formulations based on
single chance constraints (SCC), which split the line flow and
generation limits into separate chance constraints (for each line
and generator) with individual risk levels, 1−αj , for each of
those constraints. Allocation of risk to individual components
is more straightforward in problems with SCCs, while JCCs
give much stronger guarantees on overall system security.
Generally, SCCs are much easier to solve [15]. For example,
linear SCCs with elliptical symmetric uncertainty distributions
can be expressed as second-order cone programs that can be
efficiently solved [16, Lemma 2.2].

Most chance-constrained OPF formulations have considered
SCCs (e.g., [9], [11], [12]), while a limited number have
attempted to solve JCC formulations [10]. In [14], a JCC
problem is solved by decomposing the JCC into SCCs, which
is challenging due to the difficulty in selecting the risk level for
each individual constraint. Usually, the Boole or Bonferroni
inequality is used to approximate the JCC. Reference [17]
observes that even if the individual risk levels are selected
optimally, the solution obtained from the SCC formulation
can be suboptimal. Some efforts have been made to reduce
the conservativeness of using Boole’s inequality (e.g., [14]),
and it has been observed that the SCC formulation leads to
a low joint violation probability due to the structure of the
OPF problem [18]. However, in general, the SCC formulation
has the following drawbacks: (1) enforcing the chance con-
straints individually does not give strong guarantees on the
feasibility probability of the entire system, and (2) solutions
that are adapted to guarantee joint feasibility can be overly
conservative and costly.

The most common methods for directly solving JCCs are
based on scenario approximation (SA) (e.g., [19]–[21]), which
has been applied to the OPF problem in, e.g., [10], and mixed-
integer programming (MIP) (e.g., [22]). Both the SA and
the MIP methods provide guarantees on the quality of the
solution and are sample-based approximations, meaning that
they do not make assumptions on the uncertainty distributions.
However, solutions from SA are often highly conservative
with much lower violation probabilities than what would
be acceptable and, consequently, these solutions are more
costly [10], [23], [24]. While MIP methods converge to the
desired solution with increasing sample size, the complexity of
the algorithm also increases, which can result in intractability.

This paper’s main contribution is a joint chance-constrained
formulation and algorithm to solve the DC OPF problem.
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The formulation is based on a sample average approximation
(SAA) which gives rise to a continuous non-linear program-
ming (NLP) problem. The algorithm is an adaptation of the
JCC algorithm presented in [25]. Making this algorithm appli-
cable to electric power systems requires careful consideration
of the formulation and several non-trivial modifications to
the algorithm. To improve computational performance, we
(1) select a DC OPF formulation that avoids the need to
replicate certain variables for each scenario, (2) approximate
the Hessian of the quantile function defined in [25] in order
to solve a more tractable convex problem at each iteration of
the algorithm, and (3) develop a lazy constraint generation
algorithm to exploit the observation that a small number of
line flow limits are binding at the solutions to typical DC OPF
problems [26]. To improve the solution quality relative to a
naı̈eve application of [25], we propose methods for adaptively
tuning the key parameters introduced in the quantile approxi-
mation. This tuning improves the out-of-sample feasibility of
the resulting solutions.

The NLP approach has several advantages: (1) Sample-
based: Similar to the SA and MIP methods, we use a
sample-based approach that does not rely on distributional
assumptions. (2) Scalable: The method is scalable to large
systems with many uncertain power injections where SA may
be impractical due to the need for a very large sample size
and MIP methods may be numerically intractable due to the
introduction of binary variables. (3) Tunable: The chance
constraint approximation presented in [25] depends on certain
parameters that impact the conservativeness of the solution.
We propose two methods that adaptively and automatically
tune these parameters such that the resulting solution accu-
rately satisfies the prescribed probability. Hence, the proposed
method does not render an excessively conservative feasible
region, which is an advantage over the SA method.

The remainder of this paper is organized as follows. Sec-
tion II describes the JCC-OPF formulation. Section III pro-
poses a smooth sample-based approximation of the proba-
bilistic constraint in the JCC-OPF formulation. Section IV
presents our solution algorithm. Section V discusses the tuning
parameters. Section VI numerically demonstrates our method,
benchmarked against SA. Section VII concludes the paper.

II. JOINT CHANCE-CONSTRAINED OPTIMAL POWER FLOW

We aim to minimize the expected generation cost while
satisfying all engineering limits with a high probability via a
joint chance-constrained OPF problem (JCC-OPF). The user
expresses an acceptable risk as the joint violation probability,
i.e., the probability that any of the constraints are violated. This
section formulates the JCC-OPF. This formulation is closely
related to those previously presented in [10]–[12], but differs
in the handling of the forecasted operating point.

1) Notation: Consider a power system where the sets of
buses, lines, and generators are denoted by B, L, and G,
respectively. To simplify notation, we assume that there is one
generator with active power generation g(ω) and one uncertain
load d(ω), where ω is a random variable, at every bus. Then,
g(ω), d(ω) ∈ R|B|. If a bus i does not have a generator or
load, we set gi(ω) = 0 or di(ω) = 0, respectively, whereas
multiple loads or generators are handled through summation.

We use the linearized DC approximation of the active
power flows which makes the following assumptions that
are standard to all DC power flow formulations [27]: (1) all
voltage magnitudes are 1 per unit, (2) neighboring buses have
small angle differences, and (3) the system is lossless.

2) Uncertain loads: All uncertain loads can be represented
as d(ω) = d+ω, where ω is a random variable with zero mean;
this can be interpreted as the sum of the forecasted value d and
its fluctuation ω. Due to the nature of the renewable energy
uncertainty, we model ω as a continuous random variable. We
note that the random variable ω models the uncertainty in the
net load, i.e., the load demands minus the outputs of stochastic
renewable generators.

3) Generators: We model the active power generation g(ω)
using an affine control policy, resembling the actions of the au-
tomatic generation control (AGC) [10]. Each generator adjusts
its output to satisfy a fraction of the total load imbalance,

gi(ω) = gi − βiΩ, ∀i ∈ G, (1)

where Ω =
∑
i∈B ωi and βi is the so-called participation

factor of generator i. Our formulation’s optimization variables
include the generation g and the participation factors β.

4) Power Balance: With the lossless system representation,
maintaining power balance is equivalent to ensuring that the
total power generation equals the total demand,∑

i∈G
gi(ω) +

∑
j∈B

dj(ω) = 0, ∀ω. (2)

By substituting the expressions for g(ω) and d(ω) from above,
we observe that (2) is equivalent to enforcing∑

i∈G
gi +

∑
j∈B

dj = 0 and
∑
i∈G

βi = 1.

Here, the first equation guarantees power balance without
fluctuations ω = 0, while the second equation ensures system
balance during fluctuations ω 6= 0.

If g(ω) did not follow the affine functional form in (1), a
copy of the variable g(ω) would need to be introduced for each
realization of ω to satisfy (2). For a sample-based approach,
this implies that the number of variables in the problem would
depend on the number of scenarios considered in the sample.
Thus, the choice of the functional form of g(ω) is relevant to
decreasing the complexity of the JCC-OPF problem.

5) Power flows: We denote the line connecting buses i and
j as ij ∈ L. The power flow on the line ij, fij(ω), is a linear
function of the power injections p(ω) = g(ω)− d(ω):

fij(ω) = Φ(·,ij)p(ω). (3)

The matrix Φ denotes the DC power transfer distribution
factors (DC-PTDFs) [28], with Φ(·,ij) referring to the row of
Φ corresponding to the line ij. We note that the DC-PTDF
formulation of the DC power flow equations, i.e., the com-
bination of (2) and (3), implicitly ensures power balance at
every bus in the system [12]. The DC-PTDF formulation of the
DC OPF problem used in this paper is equivalent to alternative
formulations that explicitly include variables for the voltage
angles at every bus.
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6) Cost function: The generators have a quadratic cost
function in terms of active power generation:

Cost(x) = 1
2x

TMx+ vTx+ k0, (4)

where M is a diagonal matrix with non-negative entries.
We minimize the expected generation cost E [Cost(g(ω))].
Substituting (1) and taking the expectation in (4), we obtain

E [Cost(g(ω))]

= E
[
1
2 (g − βΩ)TM(g − βΩ) + vT (g − βΩ) + k0

]
= Cost(g) + E[Ω]

(
gTMβ − vTβ

)
+ 1

2 E[Ω2]βTMβ

= Cost(g) + 1
2 V(Ω)βTMβ,

7) JCC-OPF: With these modelling considerations, we
formulate the JCC-OPF as

min
g,β

Cost(g) + 1
2 V(Ω)βTMβ (5a)

s. t.
∑
i∈G

gi −
∑
i∈B

di = 0, (5b)∑
i∈G

βi = 1, (5c)

P
(

fLBij ≤ Φp(ω) ≤ fUB
ij , ∀ij ∈ L

gLBi ≤ gi − βiΩ ≤ gUB
i , ∀i ∈ G

)
≥ 1− α. (5d)

The objective (5a) minimizes the expected cost. The deter-
ministic constraints (5b), (5c) ensure power balance. The JCC
(5d) enforces bounds on the line flows and generator outputs,
fLBij , f

UB
ij and gLBi , gUB

i , with probability 1 − α. Here, α
represents the acceptable violation probability.

III. REPRESENTATION OF CHANCE CONSTRAINTS

Constraint (5d) results in a conventional nonlinear inequality
ϑ(g, β) ≥ 1−α. Problems with smooth nonlinear inequalities
can be efficiently solved if one can compute the values of
the inequalities as well as their gradients. In [25], the authors
propose a smooth sample-based approximation of chance
constraints to efficiently solve chance-constrained problems.
This section summarizes the method from [25] and discusses
modifications needed to address (5). We refer to one realization
of ω as a “scenario” and a set of scenarios as a “sample”.

We begin by defining the (1 − α)-quantile of a generic
random variable Y , denoted by Q1−α(Y ):

Q1−α(Y ) = inf{y ∈ R | P(Y ≤ y) ≥ 1− α}.

From the above definition, we know that P(Y ≤ 0) ≥ 1 − α
is equivalent to Q1−α(Y ) ≤ 0, where Y is a random variable
taking values in R. This definition can be extended to random
variables Y ∈ Rm, m > 1, if we let Ŷ = maxj=1,...,m{Yj}
and consider Q1−α(Ŷ ) instead.

We denote the probabilistic constraint (5d) as P(c(g, β;ω) ≤
0) ≥ 1 − α, where the random constraint vector c(g, β;ω) is
defined by

c(g, β;ω) =


Φp(ω)− fUB

fLB − Φp(ω)
g − Ωβ − gUB

gLB − g + Ωβ

 .

Then, c(g, β;ω) ∈ Rm, where m = 2| L |+ 2| G |. Since
constraints cj(g, β;ω) ≤ 0 for j = 1, . . . ,m are equivalent

to C(g, β;ω) = max
j=1,...,m

{cj(g, β;ω)} ≤ 0, the single chance

constraint P(C(g, β;ω) ≤ 0) ≥ 1−α is equivalent to the joint
chance constraint P(cj(g, β;ω) ≤ 0, j = 1, . . . ,m) ≥ 1 − α.
Reformulating (5) yields

min
g,β

Cost(g) + 1
2 V(Ω)βTMβ (6)

s. t. Q1−α (C(g, β;ω)) ≤ 0,

Eqns. (5b), (5c).

For continuous random variables, the (1 − α)-quantile is
obtained by inverting the cumulative density function (cdf)
at the (1 − α)-level. Thus, whenever C(g, β;ω) defines a
continuous random variable for any fixed value of (g, β),
an approximation of the quantile can be obtained from an
approximation of the cdf.

For the rest of Section III, we assume that C(g, β;ω)
defines a smooth function. This is clearly not the case because
C(g, β;ω) is the maximum of the linear constraints given by
the vector c(g, β;ω). However, we postpone the discussion of
the non-smoothness of C(g, β;ω) to Section IV in order to
introduce the approximation of the quantile via the cdf in a
simplified manner.

One way to approximate the cdf is to consider a sample
{ω1, . . . , ωN} of the random variable ω. The empirical prob-
ability that the random variable C(g, β;ω) takes a value less
than or equal to t (i.e., the empirical cdf evaluated at t) is

FN (t; g, β) = 1
N

N∑
i=1

1(C(g, β;ωi) ≤ t), (7)

where 1 is the indicator function, i.e., 1(A) takes the value
of 1 if A occurs or zero otherwise. Note that FN is non-
smooth since the indicator function is not continuous at zero.
For t = 0, FN is equivalent to the SAA approximation used
in MIP approaches (see [22]).

To obtain a smooth approximation of the cdf at the point
(g, α), we follow an approach similar to [29], [30] by defining

FNε (t; g, β) = 1
N

N∑
i=1

Γε(C(g, β;ωi)− t), (8)

where ε > 0 is a parameter of the following smooth approxi-
mation of the indicator function

Γε(y) =

 1, y ≤ −ε
γε(y), −ε < y < ε
0, y ≥ ε

(9)

and γε : [−ε, ε]→ [0, 1] is a symmetric and strictly decreasing
function such that Γε is continuously differentiable. With this
choice of γε, FNε (t; g, β) is a differentiable approximation
of the empirical cdf, FN (t; g, β) (see Fig. 1). We use the
following γε function based on the quartic kernel [31, p. 353],
which makes (9) twice continuously differentiable:

γε(y) =
15

16

(
−1

5

(y
ε

)5
+

2

3

(y
ε

)3
−
(y
ε

)
+

8

15

)
. (10)



4

-1.5 -1 -0.5 0 0.5 1 1.5

y

0

0.2

0.4

0.6

0.8

1

Γ
ǫ

(
y
 
-
 
0
)

ǫ = 1

ǫ = 0.5

Indicator

(a) Different ε values.

-1.5 -1 -0.5 0 0.5 1 1.5

y

0

0.2

0.4

0.6

0.8

1

Γ
0
.
5
(
y
 
-
 
t
)

t = -0.5

t = 0.5

t = 0

Indicator

(b) Different t values.

Fig. 1: Function Γε(y − t).

For a fixed g and β, the approximation of Q1−α can be
computed as the inverse of FNε at 1− α. The inverse can be
obtained from the value Qε such that

N∑
i=1

Γε (C(g, α;ωi)−Qε) = N(1− α). (11)

Reference [25] shows that Qε results in an approximation of
Q1−α at (g, α). It also shows that the value Qε is unique,
under mild conditions, and that it defines a function that maps
the vector CN (g, β) = [C(g, β;ω1), . . . , C(g, β;ωN )] ∈ RN
to the root of (11). We denote this function as Qε(CN (g, β)).

Hence, we propose the following approximation to (5):

min
g,β

Cost(g) + 1
2 V(Ω)βTMβ (12a)

s. t.
∑
i∈G

gi −
∑
i∈B

di = 0, (12b)∑
i∈G

βi = 1, (12c)

Qε
(
CN (g, β)

)
≤ 0. (12d)

Notice that Qε has taken the place of the chance constraint (5d)
following the fomulation in (6). Reference [25] discusses the
convergence and feasibility of this approximation with respect
to the solutions of the original problem (5) with increasing
sample size. Section V details the choice of ε and t.

Since C(g, β;ω) is the maximum of the entries of the vector
c(g, β;ω), (12d) results in a non-smooth function; this raises
algorithmic challenges. Section IV discusses how to solve (12).

IV. SOLUTION ALGORITHM

Adopting from the approach in [25], this section proposes an
algorithm for solving (12). To avoid having a non-smooth con-
straint, namely (12d), we first reformulate (12) as an equivalent
unconstrained optimization problem in which the constraints
are added to the objective function via terms that penalize
infeasible solutions. To address the challenges arising from the
resulting non-smooth objective, we then propose an iterative
algorithm that approximates the non-smooth unconstrained
problem with a smooth constrained problem at each step of
the algorithm. Finally, to improve tractability, we propose two
modifications of this smooth constrained problem that make
standard solvers compute the updates faster.

A. `1-penalty function
Let π > 0 be a penalty parameter and [x]+ = max{0, x}.

We propose an `1-penalty function in order to solve (12):

φπ(g, β) = Cost(g) + 1
2 V(Ω)βTMβ + π‖V (g, β)‖1 (13)

where

V (g, β) =

(∑
i∈G

gi −
∑
i∈B

di,
∑
i∈G

βi − 1,
[
Qε(C

N (g, β))
]+)

is the vector of constraint violations. As shown in [25],
φπ(g, β) is an exact penalty function, meaning that if (g∗, β∗)
is a local minimizer of φπ for π > 0 and is feasible for
problem (12), then (g∗, β∗) solves (12) [32, p. 299]. Moreover,
Theorem 2.1 in [33] shows that, under standard assumptions,
there exists π∗ > 0 such that the minimization of (13) yields
a solution for (12) for all π ≥ π∗. This property makes the
performance of exact penalty methods less dependent on the
strategy for updating the penalty parameter than other penalty
methods [34, p. 507].

B. Minimizing the `1-penalty function
To minimize (13), we propose an S`1QP-type trust-region

algorithm that solves a sequence of quadratic programs (QP).
At each iteration k, φπ is approximated with a piecewise
quadratic function that depends on (g, β) at the current it-
eration. The trust region determines a region of the search
space around the current iterate where the quadratic model
provides a good approximation of the penalty function φπ . In
each iteration of the algorithm, a trial step is computed as the
minimizer of the model within the trust region. If sufficient
progress is made, the trial step is accepted. Otherwise, the trust
region radius is reduced and a new trial step is computed.

To be able to prove global convergence of the algorithm, the
model must approximate the penalty function to first order.
The following non-standard piecewise quadratic model was
developed in [25] specifically for problems such as (12) using
a chain-rule-type approach,

m(g, β,H; δ) = Cost(g) + 1
2 V(Ω)βTMβ +∇Cost(g)T δg

+ V(Ω)βTMδβ + 1
2δ
THδ + π

(∣∣∣∣∣∑
i∈G

(gi + δgi)−
∑
i∈B

di

∣∣∣∣∣
+

∣∣∣∣∣∑
i∈G

(βi + δβi)− 1

∣∣∣∣∣+
[
Q̃ε,C(g, β; δ)

]+)
, (14)

where δ = [δg; δβ ] ∈ R2| G | represents the trial step taken
from the current point (g, β), H ∈ R2| G |×2| G | is a symmetric
matrix, and

Q̃ε,C(g, β; δ) = Q̃ε(C
N (g, β); C̃N (g, β; δ)− CN (g, β)),

Q̃ε(z; p) = Qε(z) +∇Qε(z)T p,
[C̃N ]i(g, β; δ) = max

j
{cj(g, β;ωi) +∇cj(g, β;ωi)

T δ}.

Each iteration k finds a descent step, δk, for φπ by
minimizing the model m(gk, βk, Hk; δ) within a radius ∆k

for a given Hk. Minimizing m(gk, βk, Hk; δ) is challenging
due to the non-smoothness introduced by the absolute values
and the max operators that measure the infeasibility of the
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constraints. Hence, (14) is rewritten as a smooth constrained
QP by introducing slack variables u, v, and w:

min
δ,z,u,v,w

Cost(gk) + 1
2 V(Ω)(βk)TMβk +∇Cost(gk)T δg

+ V(Ω)(βk)TMδβ + 1
2δ
THkδ + π

[
(u+ v)T1112 + w

]
(15a)

s. t.
∑
i∈G

(gki + δgi)−
∑
i∈B

di = u1 − v1 (15b)∑
i∈G

(βki + δβi) = 1 + u2 − v2 (15c)

c(gk, βk;ωi) +∇c(gk, βk;ωi)
T δ ≤ zi111m, ∀i ∈ [N ]

(15d)
∇Qε(CN (gk, βk))T (z − CN (gk, βk))

+Qε(C
N (gk, βk)) ≤ w, (15e)

t, u, w ≥ 0, ‖δ‖∞ ≤ ∆k, (15f)

where 111n is the length-n vector of ones and [N ] = {1, . . . , N}.
The slack variables u, v and w ensure feasibility of the lin-
earization of (12b), (12c) and (12d), given by (15b), (15c) and
(15e), respectively. The z variable in (15d) represents the max-
imum of the linearization of c, i.e., zi = [C̃N ]i(g, β; δ). Thus,
(15) is indeed equivalent to minimizing m(gk, βk, Hk; δ) with
the addition of the trust-region constraint (15f).

A step δk obtained from solving (15) is accepted if it results
in sufficient decrease of φπ , i.e., we move in the δk direction
only if the value φπ(gk + δg, β

k + δβ) is sufficiently smaller
than φπ(gk, δk). If the step is accepted, we update gk+1 =
gk + δg , βk+1 = βk + δβ and choose ∆k+1 ≥ ∆k; otherwise,
the iterates are not accepted and we choose ∆k+1 < ∆k.

For fast local convergence, Hk is chosen as

Hk = HE (16)

+ λk∇CN (gk, βk)
[
∇2Qε(C

N (gk, βk))
] [
∇CN (gk, βk)

]T
,

where HE is the Hessian of the expected cost given by

HE =

(
M 0
0 V(Ω)M

)
,

∇CN (gk, βk) represents the transpose of the Jacobian of a
smooth approximation of CN (gk, βk) (see [25]) obtained from

[∇CN (gk, βk)]·i = ∇c(gk, βk;ωi)µ̄
k
i , ∀i ∈ [N ],

[µ̄ki ]j =
[µki ]j

λk [∇Qε(CN (gk, βk))]i
, ∀ j ∈ [m], ∀ i ∈ [N ],

and λk and µki are the multipliers corresponding to (15e)
and (15d), respectively, from the previous iteration. If λk =
0 or

[
∇Qε(CN (gk, βk))

]
i

= 0, select one j such that
cj((g

k, βk;ωi)) = C(gk, βk;ωi) and define [µ̄ki ]j = 1 and
[µ̄ki ]` = 0 if ` 6= j.

Lastly, as the stopping criterion of the algorithm, we focus
on the infinity norm of

∇L̄(gk, βk, νk, λk) = ∇CostE(gk, βk) + νk1 eG + νk2 eβ

+ λk
N∑
i=1

[
∇Qε(CN (gk, βk))

]
i
∇c(gk, βk;ωi)µ̄

k
i , (17)

where L̄ is an appropriately chosen Lagrangian function and
∇CostE(·) represents the gradient of the expected cost,

∇CostE(g, β) =

(
Mg + v
V(Ω)Mβ

)
;

ν1 and ν2 are the multipliers associated with (15b) and (15c),
respectively; λ and µ̄ are defined as before; and eI ∈ R2| G | is
a vector such that [eI ]i = 1 if i ∈ I and 0 otherwise. The func-
tion L̄ approximates the Lagrangian of a smooth optimization
problem whose KKT points coincide with KKT points of (12)
(see (5.10) in [25]). Thus, if ‖∇L̄(g∗, β∗, ν∗, λ∗)‖ is less than
a small convergence tolerance, then the point (g∗, β∗, ν∗, λ∗)
is returned as a stationary point of (13). If constraints (12b)–
(12d) are satisfied by (g∗, β∗), we conclude that (g∗, β∗) is a
stationary point of (12).

C. Improving the computation time

Directly applying the algorithm described thus far has
limited tractability since the number of constraints imposed
in large DC OPF problems with many scenarios leads to
computationally challenging instances. We next propose two
extensions that improve the algorithm’s computational scal-
ability. The first extension is a Hessian approximation that
enables application of faster convex QP solvers. The second
extension is a lazy constraint generation technique.

1) Convex Hessian approximation: Since Qε is a non-
convex function, the associated Hessian matrix Hk in (16) is
not necessarily positive semi-definite. Thus, (15) might not be
convex. In general, non-convex QPs are more challenging to
solve than convex QPs. Our experiments show that the times
for finding a global minmizer with the non-convex QP solver
in CPLEX are generally very large and that they increase with
the number of buses. To improve tractability, we replace Hk

by the positive definite approximation described next.
First, notice that if ∇2Qε(C

N (gk, βk)) is positive semi-
definite, then (16) is positive semi-definite. Thus, we replace
∇2Qε(C

N (gk, βk)) by a positive semi-definite approximation
Q̂k in which all negative eigenvalues are replaced by zero [34,
Section 3.4]. Let AΛAT denote the spectral decomposition of
∇2Qε(C

N (gk, βk)). We define Q̂k as

Q̂k = A (Λ + diag(τi))A
T ,

where

τi =

{
0, λi ≥ 0
λi, λi < 0

and λi represents the ith eigenvalue of ∇2Qε(C
N (gk, βk)).

When we replace ∇2Qε by Q̂k, the semi-definite approxima-
tion of (16) is

Ĥk = HE + λk∇CN (gk, βk)Q̂k
[
∇CN (gk, βk)

]T
. (18)

This modification ensures that Ĥk is positive semi-definite at
every iteration. Substituting Ĥk in (15) makes the optimiza-
tion problem convex and hence easier to solve. Furthermore,
according to Theorem 5.3 in [25], any choice of Hk that is
symmetric and bounded results in Algorithm 1 converging to
a stationary point of φπ . Hence, while the number of iterates
that the algorithm performs might increase, the approximation
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Hk proposed in (18) does not affect the convergence of the
algorithm to a stationary point. The computation time of the
extra iterates is offset by the time saved at each iterate by
solving a convex QP instead of a nonconvex model.

2) Lazy constraint generation: To further improve tractabil-
ity, we utilize a lazy constraint generation technique. Mo-
tivated by the observation that only a small fraction of the
inequality constraints in the QP (15) are active at the optimal
solution [26], we first solve a version of (15) that only
includes those inequalities that are either infeasible or within
a certain threshold of becoming infeasible for the solution of
the deterministic problem with ω = 0. In an iterative fashion,
we check which of the original inequalities are violated by
the optimal solution of the reduced QP, add those to the QP,
and solve the augmented problem until all of the original
constraints are satisfied. For the next instance of (15), we start
with the most recent set of inequalities. This procedure results
in a reduction of up to 57% of the total computation time for
the test cases we considered.

To summarize, Algorithm 1 describes our proposed ap-
proach for solving (12) for a given smoothing parameter
ε > 0. In Algorithm 1 we represent the standard trust-region
parameters by ∆̂ > 0, the maximum trust-region radius;
∆0 ∈ (0, ∆̂), the initial trust-region radius; η ∈ (0, 1),
the actual reduction ratio; and τ1 ∈ (0, 1) and τ2 > 1,
the contraction and expansion coefficients of the trust-region
radius. For the experiments in Section VI, we set the values of
these parameters to standard values of trust-region algorithms
(see, e.g., [34, Chapter 4]). The tolerances κ1 > 0 and κ2 > 0
represent the numerical accuracy for which we consider the
problem optimal and feasible, respectively.

V. SELECTING THE SMOOTH-QUANTILE PARAMETERS

The smooth approximation of the quantile Qε is motivated
by a kernel estimation of the cdf resulting in (10) [35, p.
256]. The properties of the kernel approximation of the cdf
can be extended to those of the quantile [36]. These properties
imply that large values of the smoothing parameter, ε, reduce
the variance among the estimators obtained from different
samples, but can lead to biased estimators that are either
consistently infeasible or consistently conservative.

To illustrate this, consider the following example in R2,

c(x1, x2;ω1, ω2) = x1ω1 + x2ω2 − 1, (19)

where ωi ∼ N(0, 1) are independent random variables. The
true feasible region of constraint P (c(x1, x2;ω1, ω2) ≤ 0) ≥
0.95 as well as its empirical and smooth approximations for
a sample of size N = 100 are shown in Fig. 2.

Fig. 2 illustrates how the feasible region changes for differ-
ent ε. We observe that large values of ε introduce a bias in the
feasible region of the smooth approximation by making it more
conservative than the true feasible region. However, increasing
the value of ε also decreases the existence of spurious “non-
convexities” in the feasible region. These “non-convexities”
are not inherent to the problem but introduced by the discrete
nature of the sample approximation, and they may cause local
optimization algorithms (such as ours) to converge to local
optima with worse objective values. To avoid local optima
and to increase the consistency of the solutions over different

Algorithm 1 S`1QP trust-region algorithm for CC DC-OPF

Inputs: π > 0 (penalty parameter); ∆̂ > 0, ∆0 ∈ (0, ∆̂),
η ∈ (0, 1), τ1 ∈ (0, 1), and τ2 > 1 such that 1/τ2 ≤ τ1
(trust region parameters); κ1 > 0 and κ2 > 0 (optimality
and feasibility tolerance); (g0, β0, ν0, λ0, µ̄0) (initial point and
multipliers); set k ← 0

1: Let J = {(j, i) | cj(g0, β0;ωi) > −κ2}.
2: while ‖∇L̄(gk, βk, νk, λk)‖∞ > κ1 or ‖V (gk, βk)‖∞ >
κ1 do

3: Set CN (gk, βk;ωi) = maxj=1,...,m{cj(gk, βk;ωi)}
for all scenarios, compute Qε(C

N (gk, βk)),
∇Qε(CN (gk, βk)), and Ĥk.

4: Obtain (δ, ν, µ, λ) by solving (15) with the constraints
of the type (15d) given in J (if δk = 0 stop, stationary
point of φπ reached).

5: while There exists (j, i) such that cj(gk + δg, β
k +

δβ ;ωi) > −κ2 do
6: J = J ∪ {(j, i) | cj(gk + δg, β

k + δβ ;ωi) > −κ2}
7: Resolve (15) with the constraints of the type (15d)

given in J .
8: end while
9: Compute the ratio ρk =

φπ(g
k,βk)−φπ(gk+δg,βk+δβ)

m(gk,βk,Ĥk;0)−m(gk,βk,Ĥk;δk)

10: if ρk < η then
11: ∆k+1 = τ1 min{∆k, ‖dk‖∞}
12: gk+1 = gk; βk+1 = βk

13: νk+1 = νk; λk+1 = λk; µ̄k+1 = µ̄k

14: else
15: gk+1 = gk + δg; βk+1 = βk + δβ
16: Set µ̄i = µi

λ[∇Qε(CN (gk,βk))]i
, for all i = [N ].

17: νk+1 = ν; λk+1 = λ; µ̄k+1 = µ̄
18: if ρk ≥ η and ‖dk‖∞ = ∆k then
19: ∆k+1 = min{τ2∆k, ∆̂}
20: else
21: ∆k+1 = ∆k

22: end if
23: end if
24: k = k + 1
25: end while
Return: (gk, βk, νk, λk, µ̄k), optimal solution and multipliers.

samples, using larger values of ε is advantageous. However,
it is important to consider how the bias introduced by a large
choice of ε can be counteracted.

To counteract the bias introduced by our choice of ε, we
propose to relax or strengthen the quantile constraint (12d) by
adjusting the right-hand side by t ∈ R as follows:

Qε(C
N (g, β)) ≤ t. (20)

If t < 0, (20) is more restrictive than (12d); if t > 0, (12d)
is relaxed. Hence, the feasible region of the approximated
problem (12) gets smaller as the right-hand side t decreases
(see Fig. 3), which implies that the optimal objective value
will increase as t decreases. Given this monotone behavior of
the approximated problem with respect to the right-hand side
of (20), we propose a binary search method in order to find
a value of t such that the solution of (12) attains an out-of-
sample probability of 1− α for a given ε and N .
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Fig. 2: Comparison of different values of the smoothing
parameter ε.
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Fig. 3: Comparison of different values of t.

In Fig. 3, it can be seen that for N = 100 and ε = 1.1,
the smooth quantile (blue dashed line) is slightly more con-
servative than the true quantile (black pointed line). However,
if we keep ε = 1.1 and adjust the right-hand side to t = 0.05,
the smooth approximation is still conservative, in the sense
that all feasible solutions for the approximated problem are
feasible for the true problem, but now the bias is reduced.

Our previous work in [25] did not consider adjustments
to t. Here, we propose a new strategy that exploits the
flexibility provided by the parameter t in combination with
the parameter ε in order to better tune the performance of
our algorithm. We determine appropriate values for ε and t
in two stages. First, for a given problem class (i.e., a certain
network), we empirically determine a suitable value of ε for a
particular sample size. This value is then adjusted to different
sample sizes using a statistical result obtained from the theory
of kernel estimators [36] (see Section V-A). After this, for
each particular instance, we tune the value of t to obtain the
best feasible point (see Section V-B).

A. Procedure for choosing the value of ε

For a given sample size N̂ , we want to select a value ε̂ that
eliminates spurious “non-convexities” in the feasible region,
while making sure that the bias introduced by this choice of

the smoothing parameter is not too large (see Fig. 2). We
propose Algorithm 2 in order to select an appropriate ε̂ value.

Algorithm 2 Binary search for the smoothing parameter ε̂

Inputs: N̂ ∈ N; ε̂0 > 0; τε > 0; M̂ ∈ N
for m = 1, . . . , M̂ do

Set ε0 = ε̂0, εLB = 0, εUB =∞, and ` = 0.
repeat

Obtain (g∗, β∗) by solving (12) with N̂ samples, t = 0,
and ε`.
Approximate p` ≈ P(C(g∗, β∗;ω) ≤ 0).
if p` > 1− α then
εUB = ε`
ε`+1 = (εLB + ε`)/2

else
εLB = ε`
if εUB =∞ then ε`+1 = 2ε`
else ε`+1 = (εUB + ε`)/2 end if

end if
until |p` − (1− α)| ≤ τε or εUB − εLB ≤ τε
ε̄m = ε`

end for
ε̂ = max

m=1,...,M̂
{ε̄m}

Return: ε̂.

The goal of Algorithm 2 is to choose the most conservative
approximation of the smoothing parameter ε from a set of M̂
samples. This value is obtained by running M̂ replications of
the binary search algorithm described in [25] for a sample of
size N̂ each. Then, since we have observed empirically that
larger values of ε result in a more conservative approxima-
tion, we choose the maximum value of ε observed from the
replications above in order to obtain the most conservative
approximation of this parameter. In this paper, we choose
N̂ = 100 scenarios per sample and M̂ = 10 samples.

To avoid repeating Algorithm 2 for different sample sizes N ,
we use a result from [36] that approximates ε for different
sample sizes. Reference [36] proves that, asymptotically, the
optimal choice of ε that minimizes the mean square error
between the true quantile and the approximated quantile is
O(N−1/3). This can be used to estimate appropriate smooth-
ing parameter values for sample sizes other than N̂ . Thus, for
a given sample size N , we consider ε = (N̂1/3)ε̂

N1/3 .

B. Binary search to determine t

After choosing the smoothing parameter ε based on N ,
as described in Section V-A, we tune the parameter t using
the binary search described in Algorithm 3 for each separate
sample. The parameter τt > 0 in this algorithm determines the
maximum difference allowed between the probability attained
by the solution (g∗, β∗) and the target probability 1− α.

When implementing Algorithm 3, we use the optimal so-
lution and multipliers obtained when solving for the right-
hand side t` as the initial points and multipliers for solving
the problem with t`+1. Once the binary search terminates, we
select the solution from the `th right-hand side iteration that
is feasible and has the best objective value. This ensures that
we select the best of all the considered values of t.
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Algorithm 3 Binary search for the right-hand side t
Inputs: t0 = 0; tLB = −∞; tUB =∞; τt, κt > 0; ` = 0

repeat
Obtain (g∗, β∗) by solving (12) with t`.
Approximate p` ≈ P(C(g∗, β∗;ω) ≤ 0).
if p` > 1− α then
tUB = t`
if tLB = −∞ then t`+1 = t` − κt end if
if tLB > −∞ then t`+1 = (tLB + t`)/2 end if

else
tLB = t`
if tUB =∞ then t`+1 = t` + κt end if
if tUB <∞ then t`+1 = (tUB + t`)/2 end if

end if
until |p` − (1− α)| ≤ τt or tUB − tLB ≤ τt

Return: t`, (g∗, β∗), and p`.

VI. CASE STUDY

This section demonstrates our method (denoted as the “NLP
approach”) using variants of the IEEE 14-, 57-, and 118-bus
systems from pglib-opf [37]. We compare our method
against the scenario-approach [19], [21], [38] and the deter-
ministic problem with ω = 0; we refer to the solution of the
deterministic problem as the “nominal solution”. The obtained
solutions are said to be good if they are: (1) consistent over
different samples, (2) feasible for the true problem (evaluated
with an out-of-sample test), and (3) low cost.

All computations were executed on Ubuntu 16.04
with 256GB RAM and two Intel Xeon processors
each with ten 3.10GHz cores. The algorithm is imple-
mented in Matlab R2015b, using CPLEX 12.6.3 to
solve the QP in (15). We set the CPLEX parameter
barrier.colnonzeros to 1. We use the parameters π =
10, ∆̂ = 106, ∆0 = 1, η = 10−8, τ1 = 1/2, τ2 = 2,
κ1 = 10−6, κ2 = 0.1, τt = 10−4 and κt = 0.01.

To initiate the search for the right-hand side t, i.e., when
t0 = 0, we choose the initial points and multipliers for
Algorithm 1 as follows: g0 as the optimal solution of (5) for
ω = 0, β0 = 1/| G |, λ0 = 0, and µ̄0 as described in Section IV
using λ0 = 0. For subsequent values of t`, we initiate g0, β0,
λ0, and µ̄0 using the optimal solutions returned from solving
the problem with the previous right-hand side, t`−1.

A. Uncertainty modeling

The experiments in this section are based on normally
distributed loads, i.e., ω ∼ N(~0,Σ), where Σ represents
the covariance matrix. To create the convariance matrix, we
generated a | B | × | B | matrix, A, with entries taken from a
uniform random variable with support in [−1, 1]. Then, we
obtained a positive definite matrix via Â = AAT . Finally, we
scaled each entry of Â to ensure that Σii = ζdi by defining

Σij = ζ
Âij√
ÂiiÂjj

(√
didj

)
.

Here, ζ is a constant and d is the vector of forecasted demands.
We let ζ = 0.1 for cases 14 and 57; for case 118, we consider
ζ = 0.05 since the problem is infeasible for larger values of ζ.
In case 118, we also consider ζ = 0.01 to compare the quality

of the NLP solutions for different levels of variability. We aim
to satisfy the probabilistic constraint at least 95% of the time,
i.e., α = 0.05. For all solutions obtained in this section, out-of-
sample approximations of P(C(g∗, β∗;ω) ≤ 0) are computed
using the empirical cdf with N = 106 scenarios.

B. Demonstration of joint chance constraints

We first show the algorithm’s performance with different
sample sizes N . Table I presents the results of running 10
replications of the algorithm. The computation times are given
in seconds; these times include the total time for the binary
search algorithm to find the right-hand side t.

Case 14 N = 100 N = 200 N = 500 N = 1000
Min. obj ($) 2,106.2 2,120.1 2,104.6 2,105.4
Avg. obj ($) 2,127.8 2,138.4 2,117.0 2,115.5
Max. obj ($) 2,191.5 2,238.2 2,128.9 2,128.5

Min. prob 0.950 0.950 0.950 0.950
Avg. prob 0.950 0.950 0.950 0.950
Max. prob 0.950 0.950 0.950 0.950

Min. time (s) 1.6812 4.6733 6.6583 28.4767
Avg. time (s) 3.2486 5.4729 15.2696 42.0556
Max. time (s) 6.5607 6.0644 35.0050 73.0396

Avg. t (×10−3) 17.219 8.3281 3.1875 -1.7344

Case 57 N = 100 N = 200 N = 500 N = 1000
Min. obj ($) 35,342 35,318 35,327 35,307
Avg. obj ($) 35,413 35,394 35.358 35,337
Max. obj ($) 35,508 35,471 35,381 35,357

Min. prob 0.950 0.950 0.950 0.950
Avg. prob 0.950 0.950 0.950 0.950
Max. prob 0.950 0.950 0.950 0.950

Min. time (s) 2.5178 8.4458 11.586 64.078
Avg. time (s) 16.657 28.405 44.837 121.47
Max. time (s) 23.800 52.813 100.045 199.53

Avg. t (×10−2) 4.0375 2.7172 1.5625 0.9938

Case 118 (ζ=0.01) N = 100 N = 200 N = 500 N = 1000
Min. obj ($) 112,346 112,231 112,131 111,979
Avg. obj ($) 112,594 112,469 112,231 112,038
Max. obj ($) 112,891 112,626 112,453 112,160

Min. prob 0.950 0.950 0.950 0.950
Avg. prob 0.950 0.950 0.950 0.950
Max. prob 0.950 0.950 0.950 0.950

Min. time (s) 13.143 45.256 268.08 658.34
Avg. time (s) 46.460 84.236 470.45 1127.1
Max. time (s) 86.017 181.70 879.82 1801.1

Avg. t (×10−3) 7.5234 3.9297 2.5156 4.7109

Case 118 (ζ=0.05) N = 100∗ N = 200 N = 500 N = 1000
Min. obj ($) 116,257 116,178 116,092 116,074
Avg. obj ($) 116,615 116,315 116,138 116,107
Max. obj ($) 117,183 116,670 116,168 116,165

Min. prob 0.950 0.950 0.950 0.950
Avg. prob 0.950 0.950 0.950 0.950
Max. prob 0.950 0.950 0.950 0.950

Min. time (s) 26.842 104.34 581.31 1618.3
Avg. time (s) 50.336 142.75 867.83 2172.8
Max. time (s) 60.821 179.73 1925.9 3585.8

Avg. t (×10−2) 6.4642 5.1920 3.2102 2.0457

TABLE I: Results from Algorithm 1 using ε̂14 = 6.7(10)−2;
ε̂57 = 1.9(10)−1; ε̂118 = 7.(10)−2 (ζ = 0.01); ε̂118 =
1.9(10)−1 (ζ = 0.05). *: Statistics of feasible instances.

Notice that the variability in the objective value decreases
with increasing sample size. For example, in case 118 with
ζ = 0.05, the difference between the maximum and minimum
costs decreases from 926 for sample size N = 100 to 76 for
N = 1, 000 scenarios, a 90% decrease on the variability with
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respect to the sample size. However, even for N = 100, the
variability between samples is no greater than 5.6% for case
14 and 0.8% for the rest of the cases. This indicates that the
NLP approach performs favourably even when using a small
number of scenarios. Furthermore, the solutions returned for
cases 14, 57 and 118 (with ζ = 0.01) are always feasible for
the true problem and accurately achieve the prescribed risk
level of 95%. For case 118 with ζ = 0.05, all solutions are
feasible for a sample size of at least 200. For N = 100, the
solution obtained by the NLP approach on one instance is
not feasible for the out-of-sample approximation of (5d). The
achieved risk level is 92.1% for this instance. We believe that
this happens because the number of scenarios is insufficient
for the level of variability.

For larger sample sizes, N = 500 and N = 1, 000, the
computation times can be improved by setting the CPLEX
parameter barrier.colnonzeros = 0. This has shown
a decrease of up to 55% in the computation times. How-
ever, Tables I and II only show the times obtained using
barrier.colnonzeros = 1 for consistency in the paper.

C. Comparison of the NLP and scenario approaches
This section compares our solutions to those obtained from

the scenario approach (SA) [19], which approximates (5) as

min
g,α

c(g) (21a)

s. t. fLBij ≤ Φp̂(ωs) ≤ fUB
ij , ∀ ij ∈ L, ∀s ∈ [NSA] (21b)

gLBi ≤ gi − βiΩs ≤ gUB
i , ∀ i ∈ G, ∀s ∈ [NSA] (21c)

Eqns. (5b), (5c). (21d)

where NSA is a pre-specified number of scenarios. SA
specifies a minimum number of scenarios NSA such that a
solution to (21), which is feasible for all NSA scenarios, is also
feasible for the probabilistic constraint (5d) with a probability
of at least 1− σ. An attractive feature of SA is that it results
in a large-scale convex optimization problem, yet it tends to
produce conservative results [39].

We use the sample size given in [38] to select NSA,

NSA ≥ 2
α

(
ln
(
1
σ

)
+ n

)
,

for n = 2| G |, in this case. We select σ = 10−4.
Comparisons between the solutions obtained from the SA

and NLP methods are presented in Table II. The SA problem
is solved for 10 different samples. We report the minimum,
average, and maximum values of the objective and the out-
of-sample probability of the returned solutions. If at least
one of the instances is infeasible, the minimum probability
is considered to be zero and the maximum objective function
is marked as Inf. The average reported in the table does not
consider the instances where the problem is infeasible. The
number of infeasible instances using the SA approach for the
different cases are: (1) Case 14: 7, (2) Case 57: 1, (3) Case
118 (ζ = 0.01): 0, and (4) Case 118 (ζ = 0.05): 3. We note
that, since SA is a conservative approach, an infeasible SA
instance does not indicate that the JCC problem is infeasible.

First, observe that while the nominal solution is the least
expensive, the solutions obtained when ignoring uncertainty
are far from being feasible for cases 57 and 118; for these
two cases, the nominal solution is feasible at most 38% of the
time. In addition, there are many instances for which the SA

algorithm cannot obtain a feasible solution to the approximated
problem (21), even though the solutions obtained for the other
samples clearly indicate that the problem is feasible. Of the 40
instances shown in the table, the SA approach was only able
to return a solution for 29 of them. On the other hand, the
NLP approach can always find a solution to the approximated
problem (12), and out-of-sample testing verifies feasibility of
the solutions to almost all of the problems we considered. The
sole exception is one instance of case 118, with ζ = 0.05 and
N = 100, that is infeasible with respect to the true problem;
the out-of-sample risk level attained for this sample is 92.1%.

Table II shows that the best solution from the SA can be
up to 10% more expensive than the worst NLP solution. For
example, in case 14 the worst solution obtained by the NLP is
2, 238.2, while the best solution for the SA is 2, 461.5. This
demonstrates that the NLP approach provides solutions that
are feasible without being overly conservative.

As several specific comparisons, the results for case 118
with ζ = 0.01 and N = 100 show that the slowest compu-
tation time of the NLP method is faster than the fastest time
of the SA, and that the average objective value from the NLP
method is better. The results for case 118 with ζ = 0.05 and
N = 100 show that the best objective value from the SA is
more expensive than the worst objective value from the NLP,
and that the average computation time of the NLP is faster
than that of the SA. Hence, there are instances for which the
NLP method returns better solutions in less time than the SA.

Finally, as the number of generators increases, the SA
method prescribes a larger number of scenarios, NSA, to be
satisfied in order to guarantee feasibility. This significantly
impacts the size of the SA problem and, as a consequence, the
solution time of the SA method may become worse than the
NLP (see case 118, ζ = 0.01). For that reason, the advantages
of the NLP method relative to the SA method are expected to
be particularly pronounced for systems with many generators.

VII. CONCLUSIONS AND OUTLOOK

This paper has developed a sample-based NLP algorithm
for solving DC-OPF problems with JCC. By tuning two pa-
rameters in this algorithm using a proposed heuristic approach,
the solutions obtained via this algorithm balance feasibility of
the chance constraints and operational costs. Empirical results
on several IEEE test cases demonstrate the algorithm’s ability
to jointly enforce chance constraints while being significantly
less conservative with respect to operational costs than the
alternative “scenario approach” proposed in prior literature.
Our ongoing work is extending this approach to AC-OPF
problems with JCC as well as contingency constraints to model
the possibility of component failures.
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Case 14 Nominal SA NLP(100) NLP(200)
Min. obj ($) - 2,461.5 2,106.2 2,120.1
Avg. obj ($) 2,051.5 2,489.0 2,127.8 2,138.4
Max. obj ($) - Inf 2,191.5 2,238.2

Min. prob - 0 0.950 0.950
Avg. prob 0.939 0.993 0.950 0.950
Max. prob - 0.994 0.950 0.950

Min. time (s) - 0.0325 1.6812 4.6733
Avg. time (s) 0.0036 0.0425 3.2486 5.4729
Max. time (s) - 0.0492 6.5607 6.0644
NSA/Avg. t 1 516 0.0172 0.0083

Case 57 Nominal SA NLP(100) NLP(200)
Min. obj ($) - 35,493 35,342 35,318
Avg. obj ($) 34,773 35,625 35,413 35,394
Max. obj ($) - Inf 35,508 35,471

Min. prob - 0 0.950 0.950
Avg. prob 0.382 0.995 0.950 0.950
Max. prob - 0.999 0.950 0.950

Min. time (s) - 0.2228 2.5178 8.4458
Avg. time (s) 0.0041 0.2776 16.657 28.405
Max. time (s) - 0.3761 23.800 52.813
NSA/Avg. t 1 637 0.0404 0.0272

Case 118 (ζ = 0.01) Nominal SA NLP(100) NLP(200)
Min. obj ($) - 112,496 112,346 112,231
Avg. obj ($) 109,791 112,824 112,594 112,469
Max. obj ($) - 113,118 112,891 112,626

Min. prob - 0.996 0.950 0.950
Avg. prob 0.114 0.997 0.950 0.950
Max. prob - 0.999 0.950 0.950

Min. time (s) - 86.022 13.143 45.256
Avg. time (s) 0.0071 88.546 46.460 84.236
Max. time (s) - 94.845 86.017 181.70
NSA/Avg. t 1 2998 0.0075 0.0039

Case 118 (ζ = 0.05) Nominal SA NLP(100)∗ NLP(200)
Min. obj ($) - 118,304 116,257 116,178
Avg. obj ($) 109,791 122,553 116,615 116,315
Max. obj ($) - Inf 117,183 116,670

Min. prob - 0 0.950 0.950
Avg. prob 0.057 0.996 0.950 0.950
Max. prob - 0.997 0.950 0.950

Min. time (s) - 21.222 26.842 104.34
Avg. time (s) 0.0071 77.609 50.336 142.75
Max. time (s) - 94.166 60.821 179.73
NSA/Avg. t 1 2998 0.0646 0.0519

TABLE II: Nominal: Solution of (5) for ω = 0. SA: SA with
σ = 10−4. NLP(100): Algorithm 1 with N = 100. NLP(200):
Algorithm 1 with N = 200. *: Statistics of feasible instances.
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Andreas Wächter is a Professor at the Industrial
Engineering and Management Sciences Department
at Northwestern University. He obtained his master’s
degree in Mathematics at the University of Cologne,
Germany, in 1997, and this Ph.D. in Chemical
Engineering at Carnegie Mellon University in 2002.
Before joining Northwestern University in 2011, he
was a Research Staff Member in the Department of
Mathematical Sciences at IBM Research in York-
town Heights, NY. His research interests include the
design, analysis, implementation and application of

numerical algorithms for nonlinear continuous and mixed-integer optimiza-
tion. He is a recipient of the 2011 Wilkinson Prize for Numerical Software
and the 2009 Informs Computing Society Prize for his work on the open-
source optimization package Ipopt. He is currently spending a year at Los
Alamos National Laboratory as the Ulam Fellow.


	Introduction
	Joint Chance-Constrained Optimal Power Flow
	Notation
	Uncertain loads
	Generators
	Power Balance
	Power flows
	Cost function
	JCC-OPF


	Representation of Chance Constraints
	Solution Algorithm
	1-penalty function
	Minimizing the 1-penalty function
	Improving the computation time
	Convex Hessian approximation
	Lazy constraint generation


	Selecting the Smooth-Quantile Parameters
	Procedure for choosing the value of 
	Binary search to determine t

	Case Study
	Uncertainty modeling
	Demonstration of joint chance constraints
	Comparison of the NLP and scenario approaches

	Conclusions and Outlook
	References
	Biographies
	Alejandra Peña-Ordieres
	Daniel K. Molzahn
	Line Roald
	Andreas Wächter


