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Abstract—With electric power infrastructure posing an in-
creasing risk of igniting wildfires under continuing climate
change, utilities are frequently de-energizing power lines to
mitigate wildfire ignition risk, which can cause load shedding.
Recent research advocates for installing battery energy storage
systems as well as undergrounding risky overhead lines to reduce
the load shedding during such de-energizations. Since wildfire
ignition risk can exhibit substantial geographic and temporal
variations, it is important to plan battery installation and line
undergrounding investments while considering multiple possible
scenarios. This paper presents a scenario-based framework for
optimizing battery installation and line undergrounding invest-
ments while considering many scenarios, each consisting of a day-
long time series of uncertain parameters for the load demand,
renewable generation, and wildfire ignition risks. This problem
is difficult to solve due to a large number of scenarios and
binary variables associated with the battery placements as well
as the lines to be undergrounded. To address the computational
challenges, we decompose the problem in a two-stage scheme via
a Benders decomposition approach. The first stage is a master
problem formulated as a mixed integer linear programming
(MILP) model that makes decisions on the locations and sizes of
batteries as well as the lines to be undergrounded. The second
stage consists of a linear programming model that assesses these
battery and line undergrounding decisions as modeled by a
DC OPF formulation. We demonstrate the effectiveness of the
proposed scheme on a large-scale transmission network with
real world data on wildfire ignition risks, load, and renewable
generation.

Index Terms—Wildfire risk, Benders decomposition, Battery
investment, Price arbitrage, Line undergrounding.

I. INTRODUCTION

A. Motivation

With the growing prevalence of severe wildfires, mitigating
climate change-driven natural disasters necessitates the de-
velopment of effective computational methods for planning
resilient infrastructure. Worsening climate change coupled
with aging equipment is leading to increasingly risky wildfire
conditions [1]. Wildfires started by power system infrastructure
are not uncommon [2] and tend to be more severe and expan-
sive when compared to other ignition sources [3], [4], likely
because high wind speeds and temperatures correlate with both
increased power line fault probability and fire spread.

Public Safety Power Shutoff (PSPS) events are one method
for mitigating the chance that a power line fault will ignite a
fire. During PSPS events, a utility preemptively de-energizes
certain power lines to remove their ignition risk [5]. Utilities
identify lines that are at high-risk of starting a fire based on
line factors (condition, age, capacity, etc.), environmental con-
ditions (temperature, wind velocity, humidity, etc.), wildfire
spread models, and other considerations [6]. Lines that exceed
an acceptable risk level are de-energized to prevent a fault or
sparks from this line igniting what could be a severe fire.

PSPS events offer an effective and immediate way for
utilities to temporarily remove excessively risky lines from
operation. However, as lines in a network are de-energized, the
utility’s overall ability to transmit power is reduced, leading to
power outages for consumers. Power outages, including those
caused by PSPS events, can have significant economic impacts
and negatively affect communities and consumers relying on
that power [7]. Utilities are in the process of hardening their
systems to reduce the extent of PSPS events through line
undergrounding, covered conductors, and vegetation manage-
ment [8]–[11].

Utilities like PG&E and SCE in California are currently in
the process of undergrounding portions of their transmission
network [10], [12], [13]. Line undergrounding can be an
effective long-term tool to mitigate wildfire ignition risks while
still allowing transmission lines to carry power, thus reducing
load shed. However, undergrounding lines is costly (frequently
between $5 and $10 million per mile) and lengthy timelines
are required for these projects [14]–[16].

Utilities are also investing in grid-scale battery installa-
tion [17], [18]. These can serve power to local consumers that
may be isolated during a PSPS event [19], [20]. While batteries
are helpful during these events, they can also benefit grid
operation during normal conditions with low wildfire ignition
risk (e.g., through price arbitrage or improving renewable
integration [21]).

B. Related work

Battery sizing problems need to consider multiple wildfire
scenarios, as a single scenario may lead to suboptimal deci-
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sions since locations subjected to high wildfire ignition risk
change depending on the time of year. Previous research has
looked at limited multi-scenario battery sizing, siting and op-
eration at the distribution level under periods of high wildfire
risk [22]. The authors in [23] aggregate a “worst case” wildfire
profile to plan for battery installation with a single scenario.
Given the geotemporal varying nature of wildfire ignition risk,
the differing lines that are de-energized during PSPS events
can significantly affect the distribution of the load shedding
throughout year and in different scenarios. To address this
issue, previous work in [24] considers a full year of high
and low wildfire ignition risk days when optimizing battery
placements on a small test network. The results demonstrated
the advantages of considering the full year of data and showed
that battery placements differed substantially compared to
solutions that only considered a subset of scenarios.

In this paper, we propose a scenario-based stochastic op-
timization approach where we model a fixed set of days
representative of conditions throughout the year. These days
consist of a mixture of low-risk and wildfire-prone days.
Even when attempting to solve for battery placement and
line undergrounding decisions for a fixed set of days, these
problems can quickly become intractable. Binary placement
decision variables introduce computational challenges that lead
to very slow solution times. Such computational difficulties
are often addressed by decomposition methods that facilitate
parallelization. For example, the authors in [24] propose a
Progressive Hedging technique to decompose with respect to
time. Another widely used approach is Benders decomposition
[25]–[27], which facilitates the separation of investment and
operational constraints by considering binary investment deci-
sions as complicating variables [26]. Benders decomposition
has frequently been used for battery planning problems in prior
literature. For example, references [28] and [29] use Benders
decomposition in the planning of battery storage in distribution
systems. In [30] and [31], Benders decomposition is used
for network expansion and line reinforcement in distribution
networks. These schemes have been shown to improve the
computational speed of MILP formulations that have similar
mathematical structure to our planning problem.

C. Contributions

This paper proposes a two-stage algorithm based on Benders
decomposition to solve large-scale infrastructure resilience
planning problems. The first stage optimizes the battery sizing
and siting decisions and the line undergrounding locations.
The second stage’s subproblem optimizes grid operation for
different scenarios after fixing the investment decisions from
the master planning problem. This algorithm allows for de-
composition with respect to the scenarios.

This algorithm is applied to a large-scale and realistic
synthetic transmission network, the California Test System
(CATS) [32]. This test system is augmented with real-world
hourly renewable and load information [32] as well as daily
real-world wildfire ignition risk data [33]. Figure 1 shows the
CATS network overlaid on a snapshot of risk values from

Fig. 1: California’s transmission line paths on a Wildland Fire
Potential Index map from 2020.

the United States Geological Survey’s (USGS) Wildland Fire
Potential Index (WFPI) [34]. To the best of our knowledge, this
paper presents the first solution of an infrastructure resilience
investment problem at this scale in the academic literature. Our
Benders decomposition algorithm allows for the infrastructure
decisions to be made in an optimal way for the different
scenarios at varying times of the year. We show the benefit of
optimally planning for multiple scenarios throughout the year.

The paper is organized as follows. Section II formulates the
infrastructure resilience planning problem considering the con-
straints of the transmission system. Section III describes the
decomposition approach. Section IV presents the simulation
setup. Section V demonstrates numerical results. Section VI
concludes the paper.

II. PROBLEM FORMULATION

This section describes the optimal planning problem for
battery sizing, siting, and operation with line underground-
ing to mitigate the load shedding associated with wildfire
ignition risk mitigation from transmission systems line de-
energizations. The objective function minimizes the sum of
the investment cost of battery storage and line undergrounding
as well as the cost of load shedding. The planning problem’s
decisions are the battery sizes and locations as well as the
lines that are undergrounded. These decisions are modeled
by binary variables, thus making the problem formulation a
mixed-integer problem (MIP). The constraints consist of the
power flow equations for the transmission system along with
operational limits on the voltages and power flows. Using a
nonlinear AC power flow model leads to intractable mixed-
integer nonlinear programs, so we model the power flow
constraints via the Bθ DC power flow linearization, which
is often applied when modeling transmission networks.
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In the remainder of this section, we describe the objective
function and the investment and operational constraints of the
batteries and the transmission network.

A. Objective function

The objective function consists of five terms: (i) the invest-
ment cost of the battery including a fixed installation cost
and a cost per MWh of battery capacity, (ii) cost of line
undergrounding, (iii) the cost of load shedding, (iv) the cost
of generation, and (v) a dummy cost to avoid nonphysical
simultaneous battery charging and discharging.

Let the symbols XE
i ∈ R+, XP

i ∈ R+, and XF
i ∈ {0, 1}

denote the battery decision variables for energy capacity,
power rating, and location, respectively. Let the symbols CE ,
CP , and CF denote the costs with respect to the energy
and power sizes and the fixed investment cost, respectively.
Let the symbol XUG

ij ∈ {0, 1} denote the binary decision
variable for the risky lines. Let CUG refer to the fixed cost of
undergrounding per mile of a line and Lij denote the length
of the line. We denote the sets of candidate nodes for the
battery storage, nodes with non-zero demands, and nodes with
generators as B, D, and G, respectively. The set of risky lines
is denoted by Lrisk. The sets of scenarios and timesteps in
a particular scenario are denoted by Ω and T , respectively.
For bus i, we denote the amount of load shed and generation
at time t in scenario ω by plsi,t,ω and pgi,t,ω , respectively. The
symbols clst,ω and cgt,ω denote the costs of load-shedding and
generation, respectively, at time t in scenario ω. The symbols
pb,chi,t,ω and pb,dchi,t,ω refer to the battery charge and discharge
variables for time t in scenario ω.

Then, the objective function is∑
i∈B

(CEXE
i + CPXP

i + CFXF
i )︸ ︷︷ ︸

Battery investment

+

∑
(i,j)∈Lrisk

CUGLijX
UG
ij︸ ︷︷ ︸

Line undergrouding investment

+

∑
ω∈Ω

∑
t∈T

(∑
i∈D

clst,ωp
ls
i,t,ω︸ ︷︷ ︸

Load shedding

+
∑
i∈G

cgt,ωp
g
i,t,ω︸ ︷︷ ︸

Generation

)

λ
∑
ω∈Ω

∑
t∈T

(∑
i∈B

(pb,chi,t,ω + pb,dchi,t,ω )︸ ︷︷ ︸
Battery operation cost

)
(1)

and is described as follows.
• Battery investment: This term consists of the cost per

power and energy size of the battery and a fixed installa-
tion cost per battery. The total investment cost is the sum
of all the batteries placed in the network.

• Line undergrounding investment: This term consists of
the cost of undergrounding the lines that are in areas of
high wildfire ignition risk. The cost is defined as the total

cost of undergrounding a subset of the lines within the
candidate set of risky lines contained in Lrisk. The set
of candidate lines is predetermined based on historical
wildfire ignition risk data from [33].

• Load shedding: This term refers to the penalty per MWh
of the load shed in the network caused by de-energizing
lines that are in areas of high wildfire ignition risk. The
cost of load shedding can vary greatly depending on the
affected consumers’ characteristics (e.g., residential vs.
industrial).

• Generation: This term refers to the generator operating
cost which is modeled by the cost curves from [32].

• Battery operation: This term refers to a dummy cost
that is included in the objective to prevent the battery
from being simultaneously charged and discharged for a
given time t in the scenario ω. This term is inspired by
the previous work in [35], [36] which shows that such an
objective discourages the charge and discharge variables
to be simultaneously nonzero.

B. Constraints

We next describe the planning problem’s constraints related
to the operation of the battery and the transmission grid.

1) Battery investment constraints: Constraints modeling the
batteries’ energy and power capacities are expressed as

XP ≤ XP
i ≤ X

P
i ∈ B, (2)

XE ≤ XE
i ≤ X

E
i ∈ B, (3)

XE
i ≤ X

E

i X
F
i , XF

i ∈ {0, 1}, i ∈ B. (4)

Constraints (2) and (3) limit the power and energy capacities
and constraint (4) ensures that batteries are only sized at nodes
chosen as battery installation locations.

2) Battery operational constraints: Now, we describe the
operational constraints of the battery, namely, the operating
limits on the power and energy. Denote the State-of-Energy
for the battery at bus i as SoEi,t,ω for time t and scenario
ω. The SoEi,t,ω is related to the charging and discharging
variables:

SoEi,t+1,ω = γ(SoEi,t,ω) + η
pb,chi,t,ω∆t

3600
− 1

η

pb,dchi,t,ω ∆t

3600
,

i ∈ B, t ∈ T , ω ∈ Ω,

(5)

where ∆t refers to the period between two subsequent
timesteps and the symbol γ is a parameter (close to 1)
that models the hourly self-discharge of the battery. The
expressions η and 1

η are the efficiency of battery charging
and discharging.

The constraints on the SoEi,t,ω are

αXE
i ≤ SoEi,t,ω ≤ (1− α)XE

i i ∈ B, t ∈ T , ω ∈ Ω, (6)

where α = 0.1 is a safety factor that is generally used to avoid
deep discharge or over charge of the battery storage.
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We also have limits on the battery power defined as

0 ≤ pb,chi,t,ω ≤ XP
i , i ∈ B, t ∈ T , ω ∈ Ω, (7)

0 ≤ pb,dchi,t,ω ≤ XP
i , i ∈ B, t ∈ T , ω ∈ Ω. (8)

Finally, we enforce the following constraint

0 ≤ pb,chi,t,ω + pb,dchi,t,ω ≤ XP
i i ∈ B, t ∈ T , ω ∈ Ω (9)

that also helps prevent the battery from charging and discharg-
ing simultaneously as discussed in [37], [38].

3) Transmission grid operational constraints: We model
the transmission network constraints using the DC power flow
approximation. To model the risk of wildfire ignition from the
transmission lines, we follow the approach deployed in [33]
where each transmission line in the network is assigned a
daily risk of wildfire ignition. Likewise, we consider that the
lines above a certain wildfire ignition risk are switched off
to remove the risk of wildfire ignition from those lines. Let
Lon
ω denote the lines that are safe to operate according to the

predetermined risk threshold for a scenario ω of the daily
wildfire ignition risk profile. Let f ij

t,ω denote the power flow
for (time, scenario) = (t, ω) on the line between nodes i and
j and define flow limits of [−f ij

f
ij
]. Let bij denote the line

susceptance for the line between nodes i and j. Then, the DC
power flow constraints are

− f
ij
⩽ f ij

t,ω ⩽ f
ij
, ∀(i, j) ∈ Lon

ω ,∀t ∈ T ,∀ω ∈ Ω,
(10)

f ij
t,ω = −bij(θit,ω − θjt,ω), ∀(i, j) ∈ Lon

ω ,∀t ∈ T ,∀ω ∈ Ω.
(11)

Let θnt,ω denote the voltage angle for a bus n. The angle
difference across the line from node i to node j is bounded
by the limits [δij δ

ij
]:

δij ⩽ θit,ω − θjt,ω ⩽ δ
ij
, ∀(i, j) ∈ Lon

ω ,∀t ∈ T ,∀ω ∈ Ω.
(12)

We then have constraints for the lines that are candidates for
undergrounding. We model the undergrounding decision by the
binary variables XUG

ij ∈ Lrisk, where Lrisk defines the set of
lines that are considered candidate lines for undergrounding.
This set contains the union of the risky lines for each scenario:
Lrisk =

⋂
ω∈Ω Lω \ Lon

ω . The constraints for undergrounded
lines are formulated using a big-M method since the lines to
be undergrounded are decision variables in the problem. The
big-M constant is denoted by M and is tuned according to
approach described in [33]. The constraints are

f ij
t,ω ⩾ −f ij

XUG
ij ,

∀(i, j) ∈ Lrisk \ Lon
ω ,∀t ∈ T ,∀ω ∈ Ω,

(13)

f ij
t,ω ⩽ f

ij
XUG

ij ,

∀(i, j) ∈ Lrisk \ Lon
ω ,∀t ∈ T ,∀ω ∈ Ω,

(14)

θit,ω − θjt,ω ⩽ δ
ij
+M(1−XUG

ij ),

∀(i, j) ∈ Lrisk \ Lon
ω ,∀t ∈ T ,∀ω ∈ Ω,

(15)

θit,ω − θjt,ω ⩾ δij−M(1−XUG
ij ),

∀(i, j) ∈ Lrisk \ Lon
ω ,∀t ∈ T ,∀ω ∈ Ω,

(16)

f ij
t ⩽ −bij(θit,ω−θ

j
t,ω) + |bij |M(1−XUG

ij ),

∀(i, j) ∈ Lrisk \ Lon
ω ,∀t ∈ T ,∀ω ∈ Ω,

(17)

f ij
t ⩾ −bij(θit,ω−θ

j
t,ω)− |bij |M(1−XUG

ij ),

∀(i, j) ∈ Lrisk \ Lon
ω ,∀t ∈ T ,∀ω ∈ Ω.

(18)

Generator limits are expressed as

pg
i
⩽ pgi,t,ω ⩽ pgi , ∀i ∈ G,∀t ∈ T ,∀ω ∈ Ω, (19)

and load shedding is bounded by the demand present at each
node pdn,t,ω , i.e.,

0 ⩽ plst,ω ⩽ pdn,t,ω, ∀n ∈ N ,∀t ∈ T ,∀ω ∈ Ω. (20)

Finally, the nodal active power balance constraints are∑
(i,j)∈Li,fr

f ij
t,ω −

∑
(i,j)∈Li,to

f ij
t,ω =

∑
i∈Gi

pgi,t,ω−∑
i∈Di

pdi,t,ω+
∑
i∈Di

plsi,t,ω +
∑
i∈Bi

(pb,chi,t,ω − pb,dchi,t,ω ),

∀i ∈ N , ∀t ∈ T , ω ∈ Ω.

(21)

where Li,fr and Li,to refer to the sets of lines that originate
and terminate at node i, respectively. The symbols Gi, Di,
and Bi are the sets of generator, demand, and battery indices,
respectively, at node i.

C. Optimal Planning Problem

Having defined the objective and constraints, the final
planning problem is

minimize (1)
subject to: (2)–(21).

(22)

The optimization problem in (22) is a MILP that is difficult
to solve and can be intractable due to the large number of
binary variables associated with the battery siting and line
undergrounding decisions. The time coupling constraint of
the battery model also introduces complexity in the problem
formulation. In addition, we also would like to solve the
problem with several scenarios of wildfire ignition risk defined
by the scenario set Ω, which introduces further computational
challenges.

Given the above-mentioned difficulties in the original for-
mulation of the problem (22), we propose applying the Ben-
ders decomposition approach described in the next section.
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III. REFORMULATION USING THE BENDERS
DECOMPOSITION

We formulate a scenario-based stochastic optimization prob-
lem using a Benders decomposition method where the master
problem optimally sizes and sites the battery storage and
the undergrounded lines and the subproblems evaluate the
optimality of decisions for the energy storage sizes and loca-
tions and the planned underground lines through operational
modeling. We next describe the decomposition of the planning
problem in (22) using a Benders decomposition approach [25].

We define the vectors of variables

• X = [XP
i , XE

i , XF
i ,∀i ∈ B, XUG

ij ,∀(i, j) ∈ Lrisk]

• xt,ω = [plsi,t,ω, p
g
i,t,ω, p

b,ch
i,t,ω, p

b,dch
i,t,ω ,∀i, t, ω]

which contain the investment and operational decisions, re-
spectively.

Using these vectors, the planning optimization problem in
(22) can be re-written as follows:

minimize
X,xt,ω

C⊤X︸ ︷︷ ︸
Investment cost

+
∑
ω∈Ω

∑
t∈T

c⊤t,ωxt,ω︸ ︷︷ ︸
Operation cost

(23)

subject to:

At,ωX+ at,ωxt,ω ≤ dt,ω, ∀t ∈ T , ω ∈ Ω, (24)
Et,ωX+ et,ωxt,ω = ft,ω, ∀t ∈ T , ω ∈ Ω, (25)
GX ≤ g, (26)

where C and ct,ω are the vectors for investment cost and oper-
ational cost. The symbols At,ω,Et,ω and at,ω,dt,ω, et,ω, ft,ω
are appropriate matrices and vectors for the operational con-
straints (5)–(21). Likewise, G and g are the appropriate matrix
and vector for the investment constraints (2)–(4).

We decompose the planning problem by separating the in-
vestment variables X and the operational variables xt,ω using
the Benders decomposition framework, which divides the opti-
mization problem into a single master problem that minimizes
the net investment cost as well as several subproblems that
minimize operational costs in various uncertain scenarios. This
decomposition facilitates the scalability of the optimization
problem as the sub-problems are decomposed with respect to
the scenario ω and can be solved in parallel. The Benders
decomposition framework is shown schematically in Fig. 2.
The master problem passes the investment decisions to the
subproblem. The subproblems then evaluate those decisions (in
parallel across scenarios) and pass back the duals correspond-
ing to the constraints imposed for the investment decisions in
the subproblems. This process is repeated until convergence.
We next detail the subproblems and the master problem.

A. Subproblems

For each scenario ω ∈ Ω, we solve an operational problem,
referred to as a subproblem, which evaluates the investment
decisions provided by the master problem (defined in the next

Master Problem 
(Battery and Line undergrounding 

planning) 

Scenario 1, 2, …, Ω

Battery and line 
undergrounding 
decisions

Duals

Transmission systems 
operation under wildfire 

scenarios

Converged Stop

Fig. 2: Schematic flow diagram for the Benders decomposition
based planning problem.

subsection). The subproblem for scenario ω and for iteration
k is formulated as

minimize
X,xt,ω

∑
t∈T

c⊤t,ωxt,ω (27a)

subject to:

At,ωX+ at,ωxt,ω ≤ dt,ω, ∀t ∈ T , (27b)
Et,ωX+ et,ωxt,ω = ft,ω, ∀t ∈ T , (27c)

X = X̂(k − 1) : (νω(k)). (27d)

Here, X represents the continuous relaxed form of the invest-
ment decision variables X. This relaxation is implemented to
make the subproblem a linear program (LP) by modeling the
binary decision variables within X (such as XF

i and XUG
ij ) as

continuous in the subproblem. The condition in (27d) ensures
that these binary variables ultimately take values of 0 or 1,
as dictated by the master solutions. This decomposition into
a master problem and subproblems provides the benefit of
this relaxation. Additionally, this decomposition allows the
subproblems to be solved in parallel for each scenario ω ∈ Ω.

As illustrated, we included an extra constraint X = X̂(k−1)
to enforce the decisions from the master problem at the (k −
1)th iteration. Here, X̂(k−1) pertains to optimizing the battery
storage size and location, along with determining which lines
should be placed underground. Notably, due to the DC power
flow yielding linear grid constraints and the absence of binary
variables, the sub-problem in (27) is linear.

B. Master problem

The master problem minimizes the net investment cost
of installing batteries and line undergrounding represented
by C⊤X and an auxiliary cost

∑
ω∈ΩZω representing the

subproblem cost. Here, Zω are auxiliary variables which refer
to the lower bound of the solution of the subproblem for
scenario ω. Following Benders decomposition, the variable Zω

is used to express the Benders cut utilizing the duals of the
linking constraint in the subproblem. The master problem is

X̂(k + 1) = arg min
X

C⊤X+
∑
ω∈Ω

Zω (28a)
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subject to:

GX ≤ g, (28b)

Zω ≥ ν̂ω(k)
⊤(X− X̂(k)

)
, ∀ω ∈ Ω. (28c)

Here, (28b) expresses the investment constraint linked to the
battery storage and (28c) expresses the Benders optimality cut
for each scenario ω. The symbol1 ν̂ω(k) refers to the duals
obtained from the k–th iteration of the subproblem and for the
subproblem associated with scenario ω ∈ Ω.

C. Convergence

The master and subproblems are solved iteratively until
convergence is attained. The convergence criterion is that the
relative difference between the upper and lower bounds on the
cost is below a tolerance limit, ϵ. Formally, the upper bound
(UB) and the lower bound (LB) on the cost at iteration k are:

LBk = C⊤X̂(k − 1) +
∑
ω∈Ω

Ẑω(k − 1), (29a)

UBk = C⊤X̂(k − 1) +
∑
ω∈Ω

∑
t∈T

c⊤t,ωx̂t,ω(k). (29b)

The Benders decomposition algorithm is summarized in
Algorithm 1.

Algorithm 1 Benders Decomposition Algorithm

1: Iteration index, k = 1
2: Solve the master problem (28) without Benders cut, i.e.,

excluding (28c)
3: repeat
4: if (k > 1) then
5: Solve the master problem (28) including a Benders

cut constructed using the duals (νω) from the previous
iteration of the subproblem.

6: end if
7: for each scenario ω ∈ Ω do
8: Using the optimized (X̂(k)) from the master problem,

solve the subproblem (27) for each scenario ω ∈ Ω and
compute the duals νω(k).

9: end for
10: k ← k + 1
11: until UBk−LBk

UBk
≤ ϵ

12: return

IV. CASE STUDY

For the numerical results in this paper, we evaluate the
proposed planning framework on the CATS network [32]. As
described in Section I-C, CATS is a large-scale and realistic
synthetic representation of the power transmission network for
the state of California. This synthetic transmission network
consists of 8870 buses and 10823 lines. The load demanded
and renewable generation available at each bus are updated in
each scenario based on daily real-world data [32].

1Symbols with ·̂ refer to the optimized values.

Transmission lines are assigned a unitless risk value and
de-energized based on the threshold method discussed in [33].
Specifically, we use the high-risk cumulative method from this
paper to assign risks to transmission lines. De-energization
decisions are made based on the 95th percentile from the same
paper. Note that this means the line energization statuses, Lrisk,
is a parameter and Lon

ω is a parameter in each scenario.2 All
wildfire ignition risk data used for the results in this paper are
from 2020.

We set the cost of load shed at ct,ω = $20,000 per MWh
based on lower values for the cost of load shed in industrial
markets and upper values for cost of load shed in private
consumer markets from the values in [40]. We assume that
the cost of load shed does not vary during the day or across
scenarios. The cost for undergrounding a transmission line is
set at CUG = $7,000,000 per mile [41]. The fixed cost for
a battery installation is CF = $100,000 per node where a
battery is placed with a cost of CE = $1,000,000 per MWh
and CP = $1,000,000 per MW of installed capacity [42].

To account for the battery losses, we consider efficiency η =
0.95 and an hourly self-discharge coefficient γ = 0.999958.
These values are derived from [43]. For the simulations, we
impose the power and energy sizes to be equal (XE

i = XP
i )

which means that the battery can be charged from empty to
full in an hour. For the limits on the power/energy sizes per
node, we consider 4.0 p.u. corresponding to a maximum size
battery of 400MWh/400MW at a given node.

V. RESULTS

We run the planning problem across representative seasons,
each containing three representative days, each from a different
month. In addition, we run a planning problem across the full
year, consisting of 12 representative days from each month.
We consider the following seasonal breakdown:

• Spring: March, April, May
• Summer: June, July, August
• Fall: September, October, November
• Winter: January, February, December
We next present the results considering two planning

schemes:
• Scheme 1: Batteries are the only options considered. All

nodes in the network are considered potential candidates
for battery placement.

• Scheme 2: Both batteries and lines undergrounding
are considered as investment options. All nodes in the
network are considered potential candidates for battery
placement, and a set of risky lines is defined to indicate
potential candidates for line undergrounding. We let any
line ij be in the set Lrisk if it has a non-zero risk value
for any of the scenarios within a considered season as
described in Section IV. Specifically, the candidates for
line undergrounding are obtained by the union of risky

2Past work has looked at line undergrounding planning problem in con-
junction with daily optimal de-energization decisions but this leads to greatly
increased computation time [39]
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(a) Battery-only placement results (scheme 1) for the spring
season. The size of the circle corresponds to the capacity
of the installed battery with the largest circle equating to
400 MWh of installed capacity.

(b) Battery and undergrounding placement results (scheme 2)
for the spring season. Here, no batteries are installed. Thicker
lines correspond to transmission lines that have been selected
for undergrounding.

Fig. 3: Optimal battery placements on the CATS network in Spring. Red circles are sized proportionally to the number
of batteries placed at that bus with the largest circle representing 400 MWh of installed capacity. Thicker lines represent
undergrounded transmission lines. Black lines represent transmission lines that always have zero risk values during the simulated
scenarios within the season. All remaining lines have a color representing their maximum risk across the scenarios, with green
lines representing lower risk and red lines representing higher risk.

lines in all scenarios (Lrisk =
⋂

ω∈Ω Lω \Lon
ω ). According

to this criterion, we obtain |Lrisk| = 2103, or 2103 line
undergrounding candidates for the year round scenario.

Each problem is run until it converges or until a 72-hour
computational time limit.

A. Seasonal results

The optimized results (battery sizes and number of under-
ground lines) are summarized in Table I. This table presents
the results for four different seasons. As shown in the table, we
observe substantial battery placement in the case of Scheme 1
and note that the Spring season scenario sites the highest total
battery size.

Comparing the results between the two planning schemes
(Schemes 1 and 2) in Table I, we observe that the planning
scheme prefers line undergrounding over battery installation,
as in Scheme 2, we observe that battery sizes are zero in most
seasons compared to the results of Scheme 1. The authors
found a similar preference for line undergrounding in [23].

The corresponding results for load shedding with and with-
out planning are summarized in Table II. As can be observed,
the algorithm achieves a better reduction in the load shedding
in Scheme 2, i.e., when we allow line undergrounding. This
suggests that only considering battery placement planning may

TABLE I: Optimized battery size (in p.u.) and number of lines
undergrounded for different seasons (1 p.u. = 100 MWh).

Scheme 1 Scheme 2
(Battery only) (Battery + undergrounding)
Battery [p.u.] Battery [p.u.] # Lines undergrounded

Spring 26.8 0.0 39
Summer 1.48 0.0 4

Fall 5.79 4.0 63
Winter 8.01 0.0 43

Full Year 11.44 28.56 84

be insufficient for reducing the load shedding due to PSPS
events.

The corresponding placement decisions of the batteries and
underground lines are shown in Figs. 3, 4, 5, and 6 for
Schemes 1 (left) and 2 (right). As can be seen in Fig. 3a,
the spring season installs the most batteries when compared
to the summer (Fig. 4a), fall (Fig. 5a), and winter (Fig. 6a)
scenarios where only batteries can be placed. When we look
at the results where both batteries can be installed and the
lines can be underground, we observe that the fall season
is the only one where both occur simultaneously, as can be
seen in Fig. 5b and Table I. The summer season installs
very few batteries (in the battery only case, Fig 4a) and
undergrounds very few lines with no batteries (in the battery
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(a) Battery only placement results (Scheme 1) for the summer
season. The size of the circle corresponds to the capacity
of the installed battery with the largest circle equating to
400 MWh of installed capacity.

(b) Battery and undergrounding placement results (Scheme 2)
for the summer season. Here, no batteries are installed.
Thicker lines correspond to transmission lines that have been
selected for undergrounding.

Fig. 4: Optimal battery placements on the CATS network in Summer. Red circles are sized proportionally to the number
of batteries placed at that bus with the largest circle representing 400 MWh of installed capacity. Thicker lines represent
undergrounded transmission lines. Black lines represent transmission lines that always have zero risk values during the simulated
scenarios within the season. All remaining lines have a color representing their maximum risk across the scenarios, with green
lines representing lower risk and red lines representing higher risk.

and undergrounding case, Fig 4b). In Table II, we can see
that the summer season has the largest amount of load shed.
However, the Benders decomposition algorithm did not find
a cost-effective investment outcome to reduce this load shed
through battery installations or line undergrounding. In each
of the four seasons, we do see very different investment
decisions, motivating the need to plan more comprehensively
with scenarios from all times of the year.

The State of Energy (SoE) for the sized batteries is shown
in Fig. 7 for the four seasons. These results correspond to
Scheme 1 (battery only). Given the lack of batteries placed
in most seasonal scenarios in Scheme 2, we do not show
SoE results from those installed batteries. As can be seen,
the batteries mostly discharge during the day in the summer
and fall seasons, seasons with relatively high wildfire ignition
risk. During the spring and winter seasons, we observe that the
batteries also charge during the day, which reflects a benefit for
energy arbitrage purposes. Note, the days within each season
are not linked together (i.e., the final time period of the first
scenario does not have a state-of-energy constraint related to
the starting time period of the second scenario). Accordingly,
we show only the SoE results from the first scenario of each
season.

B. Yearly results

We also run a case for the full year, using the 12 days
from each of the seasonal cases. The optimized result de-
cisions (battery sizes and number of underground lines) are
summarized in Table I. As with the seasonal scenarios, we
again see a greater reduction in load shed when considering
both batteries and line undergrounding, as can be observed in
Table II. While any investment serves to reduce load shed, the
combination of line undergrounding and batteries achieves an
additional reduction of 1530 MWh in daily average load shed
in the full year compared to installing batteries alone.

The corresponding placement decisions of batteries and
undergrounded lines are shown in Fig. 8 and Fig. 9 for
Schemes 1 and 2, respectively. Comparing the results be-
tween the seasonal and yearly simulations, we observe that
the battery and line undergrounding placements are more
geographically varied in the yearly results compared to the
seasonal ones. Specifically, under investment Scheme 1, while
there is some minor overlap between the full year results
and spring/winter results, the full year result finds optimal
placements not selected in any of the seasonal results. Under
Scheme 2, we see that the full year results install multiple
batteries in addition to undergrounding transmission lines,
something not seen in the seasonal results. This is expected
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(a) Battery-only placement results (Scheme 1) for the fall
season. The size of the circle corresponds to the capacity
of the installed battery with the largest circle equating to
400 MWh of installed capacity.

(b) Battery and undergrounding placement results (Scheme 2)
for the fall season. Thicker lines correspond to transmission
lines that have been selected for undergrounding.

Fig. 5: Optimal battery placements on the CATS network in Fall. Red circles are sized proportionally to the number of batteries
placed at that bus with the largest circle representing 400 MWh of installed capacity. Thicker lines represent undergrounded
transmission lines. Black lines represent transmission lines that always have zero risk values during the simulated scenarios
within the season. All remaining lines have a color representing their maximum risk across the scenarios, with green lines
representing lower risk and red lines representing higher risk.

TABLE II: Per scenario mean load shedding (in p.u.) without and with planning for different seasons.

Load shedding mean per daily scenario
Scenarios Average Daily Base case Scheme 1 Scheme 2

Load (p.u.) Absolute (p.u.) Percentage Absolute (p.u.) Percentage Absolute (p.u.) Percentage
Spring 2572.1 33.92 1.31 31.59 1.23 29.50 1.15

Summer 2851.9 398.86 13.99 398.08 13.96 397.65 13.94
Fall 2727.4 320.30 11.74 318.13 11.66 311.66 11.43

Winter 2555.4 185.50 7.26 182.03 7.12 172.68 6.76
Full Year 2676.8 234.65 8.76 230.39 8.61 215.09 8.03

as seasonal scenarios may not adequately capture the wildfire
ignition risk across transmission network’s entire geographic
region. This highlights the significance of incorporating many
representative scenarios across the year into the planning
process.

The State of Energy for the batteries sized for yearly
scenarios are shown in Fig. 10 for Schemes 1 and 2. The plots
are shown for the 12 scenarios, where each 24-hour SoE profile
is independent from the next 24-hour profile as the yearly
scenario are modeled by distinct daily scenario representing
each month (i.e. the final time period of scenario ω does not
influence the first time period of ω+1). Similar to the earlier
SoE plots for the seasonal results, we observe that the batteries
mostly discharge during the day in the summer and fall seasons
(hours 120-263), seasons with relatively high wildfire ignition

risk. During the spring and winter seasons (hours 0-119, 264-
280), we observe that the batteries also charge during the day,
which reflects a benefit for energy arbitrage purposes.

We also present the operational and investment costs for
the yearly scenario for Schemes 1 and 2 in Table III. While
the costs for batteries and undergrounding are large, these are
upfront costs. The battery systems are modeled with a lifespan
of 10 years [44] and the undergrounded lines are modeled with
a lifespan of 40 years [45]. By dividing the upfront cost by the
lifetime of the investment in days, we can look at a “daily”
cost in Table IV. Here, we see an additional daily investment
of 0.63 million USD in batteries saves 8 million USD in the
cost of load shed from the results produced by Scheme 1.
Likewise, a total average daily investment of 1.84 million in
batteries and line undergrounding saves nearly 50 million in
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(a) Battery-only placement results (Scheme 1) for the winter
season. The size of the circle corresponds to the capacity
of the installed battery with the largest circle equating to
400 MWh of installed capacity.

(b) Battery and undergrounding placement results (Scheme 2)
for the winter season. Here, no batteries are installed. Thicker
lines correspond to transmission lines that have been selected
for undergrounding.

Fig. 6: Optimal battery placements on the CATS network in Winter. Red circles are sized proportionally to the number
of batteries placed at that bus with the largest circle representing 400 MWh of installed capacity. Thicker lines represent
undergrounded transmission lines. Black lines represent transmission lines that always have zero risk values during the simulated
scenarios within the season. All remaining lines have a color representing their maximum risk across the scenarios, with green
lines representing lower risk and red lines representing higher risk.

the daily average cost of load shed under Scheme 2.

TABLE III: Total operational and investment cost for the 12-
scenario yearly results (in millions US dollars).

Baseline Scheme 1 Scheme 2
(Battery only) (Battery +

undergrounding)
Load shedding 5630 5532 5040

Generation 144 144 144
Battery n.a. 2289 5720

Undergrounding n.a. n.a. 3910

TABLE IV: Operational and Investment cost from yearly sce-
nario results, based on daily average (in millions US dollars).

Baseline Scheme 1 Scheme 2
(Battery only) (Battery +

undergrounding)
Load shedding 469 461 420

Generation 12 12 12
Battery n.a. 0.63 1.57

Undergrounding n.a. n.a. 0.27

VI. CONCLUSION

In this paper, we implement a Benders decomposition algo-
rithm to solve the battery sizing, siting, and operation problem,

independently, and in tandem with line undergrounding invest-
ment decisions. This method allows for optimal investment
decisions informed by the operation of the power grid from
multiple scenarios with different associated real-world wildfire
ignition risk, load demand, and renewable generation data. By
incorporating scenarios from different times of the year, the
investment decisions can aid in both load shed minimization
as well as benefit the grid during nominal operations via
actions like price arbitrage with the battery systems. Different
scenarios provide greatly varying outcomes, as conditions shift
throughout the year. By expanding the set of scenarios, we can
install infrastructure to benefit operations throughout the year.

We found that when investments could contain both batter-
ies and undergrounding, there was a preference to underground
transmission lines. This could be due to the construction of the
problem where large numbers of transmission lines are de-
energized in PSPS events, incentivizing undergrounding lines
so that they remain operational across multiple scenarios.

While this method allows for an effective and scalable
way to plan investments across multiple scenarios, further
computational speed ups are possible. Future work will allow
for the parallelization of the operational subproblem scenarios
themselves, further decreasing the computation time. With
this extension, more scenarios can be considered to allow
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(a) SoE of batteries placed at the bus numbers indicated for
the battery-only scheme in the spring season.

(b) SoE of batteries placed at the bus numbers indicated for
the battery-only scheme in the summer season.

(c) SoE of batteries placed at the bus numbers indicated for
the battery-only scheme in the fall season.

(d) SoE of batteries placed at the bus numbers indicated for
the battery-only scheme in the winter season.

Fig. 7: State of Energy (SoE) of the batteries placed within the Battery-only scheme for the first 24 hour period of each season.
Each line plot represented in the legend refer to the node index within the CATS network.

infrastructure planning to more comprehensively take in to ac-
count the varying conditions throughout the year. In addition,
including more climate impact data can allow infrastructure
investments to aid during other types of climate change driven
natural disasters.
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Fig. 8: Optimal battery placements results (Scheme 1) on the CATS network for the full year, one scenario from each month.
Red circles are sized proportionally to the number of batteries placed at that bus with the largest circle representing 400 MWh
of installed capacity. Black lines represent transmission lines that always have zero risk values during the simulated scenarios
within the year. All remaining lines have a color representing their maximum risk across the scenarios, with green lines
representing lower risk and red lines representing higher risk.
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Fig. 9: Optimal battery placements and line undergrounding decisions results (Scheme 2) on the CATS network for the full
year, one scenario from each month. Red circles are sized proportionally to the number of batteries placed at that bus with the
largest circle representing 400 MWh of installed capacity. Thicker lines represent undergrounded transmission lines. Black lines
represent transmission lines that always have zero risk values during the simulated scenarios within the year. All remaining
lines have a color representing their maximum risk across the scenarios, with green lines representing lower risk and red lines
representing higher risk.
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(a) SoE of batteries placed at the bus numbers indicated for the battery-only scheme for year-round scenarios.

(b) SoE of batteries placed at the bus numbers indicated for the battery + undergrounding scheme for year-round scenarios.

Fig. 10: State of Energy (SoE) of the batteries placed within the Battery-only (Scheme 1) and battery + undergrounding
(Scheme 2) schemes for the year round scenarios. The plots are shown for the 12 scenarios, where each 24-hour SoE profile
is independent from the next 24-hour profile as the yearly scenario are modeled by distinct daily scenario representing each
month (i.e. the final time period of scenario ω does not influence the first time period of ω+1). Each line plot represented in
the legend refer to the node index within the CATS network.
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