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Abstract—Battery sizing and siting problems are computation-
ally challenging due to the need to make long-term planning
decisions that are cognizant of short-term operational decisions.
This paper considers sizing, siting, and operating batteries in a
power grid to maximize their benefits, including price arbitrage
and load shed mitigation, during both normal operations and
periods with high wildfire ignition risk. We formulate a multi-
scenario optimization problem for long duration battery storage
while considering the possibility of load shedding during Public
Safety Power Shutoff (PSPS) events that de-energize lines to
mitigate severe wildfire ignition risk. To enable a computation-
ally scalable solution of this problem with many scenarios of
wildfire risk and power injection variability, we develop a cus-
tomized temporal decomposition method based on a progressive
hedging framework. Extending traditional progressive hedging
techniques, we consider coupling in both placement variables
across all scenarios and state-of-charge variables at temporal
boundaries. This enforces consistency across scenarios while
enabling parallel computations despite both spatial and temporal
coupling. The proposed decomposition facilitates efficient and
scalable modeling of a full year of hourly operational decisions to
inform the sizing and siting of batteries. With this decomposition,
we model a year of hourly operational decisions to inform optimal
battery placement for a 240-bus WECC model in under 19
minutes of wall-clock computing time.

Index Terms—Batteries, Investments, Progressive Hedging,
PSPS, Wildfires

I. INTRODUCTION

Wildfires pose a growing threat due to accelerating climate
change [1]. While power system infrastructure is only respon-
sible for a small fraction of wildfire ignitions, these often
lead to more severe and expansive fires compared to other
ignition sources [2]. In parts of the Western United States
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during periods of elevated wildfire threat, system operators
proactively de-energize power lines with the goal of reducing
the risk of wildfire ignition. These de-energization events
are referred to as “Public Safety Power Shutoff” (PSPS)
events [3]. When a PSPS event is invoked, system operators
identify power lines to de-energize that pose a high ignition
risk. These are lines are selected using information about the
lines (e.g., condition, age, routing), environmental factors (e.g.,
humidity, wind, temperature), wildfire spread models, etc. [4].

Although PSPS events can mitigate acute ignition risk, they
also can result in load shedding as de-energized portions of
the grid cannot serve all load demands. Furthermore, power
outages can have significant negative economic and societal
impacts [5]. To aid in reducing the impact or extent of PSPS
events, utilities are investing in various types of infrastructure,
like undergrounded lines [6], microgrids [7], covered conduc-
tors [8], and vegetation management [8]. Utility-scale battery
energy storage systems [9], [10] are another investment that
can help mitigate the impact of PSPS events on customers
during wildfire season [11], [12]. However, unlike some of
these other investment options, utility-scale batteries can also
be beneficial during periods without wildfire ignition threats
to improve system operations and renewable integration [13].
This leads to the following question: How do we optimally
size, site, and operate utility-scale batteries on a transmission
network considering both high wildfire-risk periods during
which PSPS events are enacted and also normal operations?

During normal operations, we may aim to locate batteries
in congested areas of the network or near large concentra-
tions of renewables [14]. During high wildfire-risk conditions,
the topology of the network will change due to PSPS de-
energization events. Therefore, congested areas of the network
may shift and some parts of the network may experience load
shedding. These seasonal changes make it difficult to identify
appropriate sizing and siting decisions without considering
long, multi-month time horizons. Simultaneously, to properly
evaluate the benefits of battery systems, one must consider
decisions at the operational time scale, such as hourly charging
and discharging behavior. This paper proposes a method to



take into account a full year of hourly operation decisions
spanning both wildfire and non-wildfire threat time periods.

Finding the optimal locations to place utility-scale batteries
on a large power grid is a computationally challenging prob-
lem [13]–[15]; see [9], [10] for literature reviews. Given the
need to consider detailed operational decisions across multiple
scenarios, the tractability of this problem scales poorly in
both the number of scenarios and grid size. Prior work has
developed algorithms using smaller test systems, shorter time
horizons, or larger operational time steps [13], [15]. Work
has also been done to model batteries using an AC power
flow representation, but again, on smaller test networks [14].
Stochastic programming techniques have been used for siz-
ing and siting problems to consider variability in renewable
forecasts [16]. Similarly, a decomposition method based on
progressive hedging has been used for problems related to
wildfire operational problems that optimize line switching
decisions [17], but these problems did consider batteries. The
need to model both extreme wildfire conditions with PSPS
events and normal operations requires a level of temporal
granularity and length that further challenges the optimization
of battery sizing and siting.

In this paper, we propose a method for optimally sizing,
siting, and operating long duration utility-scale battery systems
considering both PSPS events and normal operations. To
enable computational tractability, we employ a progressive
hedging (PH) algorithm, which is a scenario-based decompo-
sition technique originally developed for stochastic program-
ming [18]. Traditionally, to model uncertainties, PH algorithms
consider many scenarios that are all coupled by one set
of common variables. In contrast, since our setting instead
considers a temporal decomposition which represents a year of
hourly operations via week-long scenarios, our algorithm must
consider both coupling with a common set of variables and
coupling between scenarios at temporal boundaries. Specifi-
cally, these scenarios must agree on (1) the sizing and siting
of utility-scale batteries, and (2) the state-of-charge values
at temporal boundaries. This setting thus requires non-trivial
modifications to standard progressive hedging algorithms to
account for this additional temporal coupling.

For week-long scenarios representing periods during wild-
fire season, sufficiently high wildfire risks result in line de-
energizations. We model the wildfire risk posed by each line
using real wildfire risk data from United States Geological
Survey (USGS). Our approach allows us to model long-
duration energy storage while capturing the different wildfire
and load conditions at various times over the year.

The optimization model for the placement problem con-
sidering multiple scenarios is defined in Section II, while
our solution approach using a customized progressive hedging
algorithm is detailed in Section III. Our experimental method-
ology is described in Section IV followed by discussions of
specific case studies and results in Section V. We conclude
in Section VI with a summary of our contributions and a
discussion of future work.

II. OPTIMIZATION MODEL

We now describe our multi-scenario long duration battery
sizing, siting, and operational optimization model.

A. Network, Demand, and Generator Variables

We define index sets over a transmission network as follows:
• N , the set of buses
• L, the set of transmission lines
• G, the set of generators
• T = {1, . . . , T}, the (ordered) set of time periods

For each line ℓ ∈ L, we specify the following parameters:
• bℓ, the line susceptance in p.u.
• pℓ, the power flow limit in p.u.
• rℓt , the unitless wildfire risk associated with line ℓ being

energized at time t
• nℓ,fr and nℓ,to, to and from buses, respectively, where

positive power flows from the from bus to the to bus
• δ

ℓ
and δℓ, upper and lower voltage angle difference limits

in radians, respectively
• ℓ ∈ Loff

t ⊆ L, a subset of lines that are de-energized
(switched off) during time t. Note: the line’s energization
state is dictated by the wildfire risk on a given day and
is thus not constant for all t ∈ T

For each generator i ∈ G, we specify the following parameters:
• gi and gi, upper and lower generation limits, respectively,

in p.u.
• ni, bus n at which generator i is located
• cij , the jth order cost term for generator i with j ∈
{1, 2, ..., J} for a provided J th degree polynomial cost
function

For each bus n ∈ N , we specify the following parameters:
• pnd,t, power demand at time t ∈ T in p.u.
• Gn, the set of generators located at bus n
• Ln,to and Ln,fr, the subset of lines ℓ ∈ L with bus n as

the designated to bus, and bus n as the designated from
bus, respectively

We model the operational problem for each time period using
a B-θ DC optimal power flow representation, necessitating the
following variables:

• pig,t, output of generator i ∈ G at time t ∈ T in p.u.
• θnt , voltage angle, in radians, at bus n ∈ N at time t ∈ T
• pnls,t, load shedding at bus n ∈ N at time t ∈ T in p.u.
• pℓt , power flow from bus nℓ,fr to bus nℓ,to on line ℓ ∈ L

at time t ∈ T in p.u.

B. Network Operational Bounds and Constraints

We bound the output of each generator i ∈ G based on its
physical limits, as follows:

gi ⩽ pig,t ⩽ gi, ∀i ∈ G, ∀t ∈ T . (1)

We constrain the load shed at each bus as follows:

0 ⩽ pnls,t ⩽ pnd,t, ∀n ∈ N , ∀t ∈ T . (2)



Power flow on each line is bi-directional with the thermal limit
set as a bound, unless the line is de-energized, in which case
the power flow is set to 0:

pℓt = 0, ∀ℓ ∈ Loff
t , ∀t ∈ T , (3)

−pℓ ⩽ pℓt ⩽ pℓ, ∀ℓ ∈ L \ Loff
t , ∀t ∈ T . (4)

Note that the line de-energizations are based solely on the
wildfire risks and are not decision variables in the optimization
formulation.

For all energized lines, voltage angle differences are
bounded as follows:

δℓ ⩽ θn
ℓ,fr

t − θn
ℓ,to

t ⩽ δ
ℓ
, ∀ℓ ∈ L \ Loff, ∀t ∈ T . (5)

We model the power flow on an energized line ℓ ∈ L using
the B-θ DC approximation:

− bℓ(θn
ℓ,fr
− θn

ℓ,to
) ⩽ pℓt ⩽ −bℓ(θn

ℓ,fr
− θn

ℓ,to
),

∀ℓ ∈ L \ Loff
t , ∀t ∈ T . (6)

Finally, power balance is enforced across all buses at all times:∑
ℓ∈Ln,fr

pℓt −
∑

ℓ∈Ln,to

pℓt =
∑
i∈Gn

pig,t − pnd,t + pnls,t,

∀n ∈ N , ∀t ∈ T . (7)

C. Grid-Scale Battery Modeling

We allow batteries to be placed at a subset of buses
N batt ⊆ N . This allows for flexibility in large systems were a
heuristic needs to be used to identify a subset of candidate
battery locations to improve tractability. Unless otherwise
specified, N batt = N .

Individual and system-wide battery parameters are defined as:

• E and E, the upper and lower energy storage limits of
the battery, respectively, in p.u.

• En
0 , the initial charge of batteries at bus n ∈ N batt in p.u.

• pc and p
c
, the upper and lower charge rate limits for a

single battery, respectively, in p.u. in a single time interval
• Xmax, the maximum number of batteries allowed at a

single bus
• Xtotal, the total number of batteries allowed across the

entire network

For each bus n ∈ N batt, we introduce the following variables:

• xn ∈ R+, number of batteries placed at bus n
• pnb,t, charging or discharging rate at bus n at time t ∈ T

in p.u.

Limits are imposed on the number of batteries introduced to
the network and the amount placed at each bus:

0 ≤ xn ≤ Xmax, ∀n ∈ N batt, (8)∑
n∈N batt

xn ≤ Xtotal. (9)

TABLE I: Battery Parameters
Parameter Value

minimum storage limit E 0 p.u.
maximum storage limit E 1.0 p.u.

minimum charge rate p
c

0 p.u./hour
maximum charge rate pc 1.0 p.u./hour

maximum batteries Xmax 4 batteries
total batteries Xtotal 10 batteries

Let En
t (·) be the total energy, or state-of-charge (SOC), stored

in all batteries placed at bus n ∈ N batt at time t ∈ T . The
stored energy changes as the batteries charge and discharge:

En
t+1(x, pb) = xnEn

0 +

t∑
τ=1

pnb,τ , ∀n ∈ N batt, ∀t ∈ T . (10)

The energy stored in the set of batteries at bus n ∈ N batt must
abide by lower and upper storage bounds:

xnE ⩽ En
t+1(x, pb) ⩽ xnE, ∀n ∈ N batt, ∀t ∈ T . (11)

Here, charging and discharging are indicated by the sign of
pnb,t, with a negative number indicating discharging and a
positive number indicating charging. Charging and discharging
is enforced via lower and upper rate limits:

p
c
⩽ pnb,t ⩽ pc, ∀n ∈ N batt, ∀t ∈ T . (12)

Consistent with the scale of ongoing battery installa-
tions [19], Table I summarizes the battery parameters used in
our numerical tests. Batteries are modeled to have a capacity
of 1.0 p.u. (100 MWh) in our problem formulation [20].
This is consistent with utility-scale lithium-ion battery instal-
lations [21]. Here we model a simple “bucket” model of a
battery where any energy put in to a battery can be extracted
with no losses to inefficiency. Generalizations can be made
to introduce losses, such as a formulation in [22], or multiple
types of batteries with distinct characteristics.

With the inclusion of grid-scale batteries, (7) becomes∑
ℓ∈Ln,fr

pℓt −
∑

ℓ∈Ln,to

pℓt =
∑
i∈Gn

pig,t − pnd,t + pnls,t − pnb,t,

∀n ∈ N , ∀t ∈ T . (13)

D. Objective Function

A specified number of batteries are placed in the system
with no associated cost. This allows for the optimization to fo-
cus on minimizing operational costs over the time horizon, T .
Modeled costs include production for power generation and
penalties imposed for unserved load, as follows:

Cgen =
∑
t∈T

∑
i∈Gn

J−1∑
j=0

cji · (p
i
g,t)

j , (14)

Cloadshed =
∑
t∈T

∑
n∈N

Kls · pnls,t. (15)



Here, Kls represents the cost per p.u. of demand not served,
in this model set to be $20, 000/p.u. The total system opera-
tioning cost is then given by:

Ctot = Cgen + Cloadshed. (16)

The optimization problem we formulate for sizing, siting, and
operating systems with long duration energy storage is thus:

min
pg,θ,pℓ,pls,x,pb,rg,rb

(16)

s.t. (1)–(6), (8)–(13).
(17)

Note that this problem takes the form of a linear program (LP).

E. Optimal Power Flow with Line Switching and Investments

Our operations model is related to the DC-OPF multi-
time period switching formulation described in our prior
work [23]. In this paper, we focus solely on infrastructure
upgrades that install and operate grid-scale batteries as dis-
cussed in Section II-C. Unlike in the previous work [23],
line de-energization decisions are predetermined by a risk
threshold instead of a binary decision variable embedded in
the optimization problem. In a similar manner to [23], each
transmission line in the network is assigned a daily risk of
wildfire ignition. In this paper, lines above a set threshold
on a given day are de-energized and thus included in Loff

t .
Accordingly, the line energization status on a given day is a
parameter rather than a decision variable such as in, e.g., [7],
[23]–[25]. Extensions to simultaneously consider long duration
battery sizing, siting, and operation along with optimizing line
de-energization decisions is a topic of our ongoing work.

III. DECOMPOSITION VIA PROGRESSIVE HEDGING

Stochastic programs are often employed to enable power
grid optimization models to hedge against the prevalence of
uncertainties such as load and renewables production, and
ultimately make more informed and reliable decisions [26].
The block-angular structure in deterministic multi-scenario
planning problems considering large numbers of time periods
(including the model we propose in Section II) is identical to
that of a stochastic program, and we can thus leverage math-
ematical machinery from stochastic programming to address
our deterministic problem (17). In practice, such problems are
typically too large to solve directly without tailored optimiza-
tion approaches. The Progressive Hedging (PH) algorithm, first
proposed in [27], was developed to handle this challenge. PH
exploits the structure of stochastic programs by breaking the
larger problem into multiple smaller, more computationally
tractable sub-problems that can be solved in parallel.

The primary input to a stochastic program is a set of
representative scenarios, which we denote S={1, ..., S}. In
our battery optimization model, scenarios correspond to oper-
ational time periods. Scenario data in a stochastic program is
partitioned into multiple stages, J = {2, ..., J}. Typically,
stage indexes start at j = 2 because constant, scenario-
independent data is given at stage j = 1. Across all stages
and scenarios are realizations of random variables, stored in

Fig. 1: Two-stage stochastic program representation

ξ, drawn from the discrete probability space Ξ. A stage j∈J
represents a point in time across the scenarios where uncertain
parameters up to and including stage j, which corresponds to
the vector ξ⃗j(s), become known and specified decisions must
be made. A scenario s∈S contains a full set of realized random
variables ξ(s) for all stages j∈J and is weighted by the
probability of that realization occurring, P(s). In the context
of our deterministic battery sizing and siting formulation, we
could use P(s) to weight each time period by its frequency
of occurrence if we employed representative weeks to model
longer periods. However, in our implementation, we model
each week individually and thus weight each period the same.

Here, we consider a two-stage problem (J={2}) in which
first-stage decisions (storage sizing and siting) are made before
the random variables (wildfire risk and load vectors) are
realized or observable; all operational decisions are second-
stage. While we only consider two-stage problems, we note
that the modeling approach and solution approach based on
PH can easily be extended to the multi-stage case. This could
allow for modeling of uncertainties in load and risk profiles
within each scenario (week) of the simulation, which is a
subject of our future work.

We denote first- and second-stage variables generally as
x∈Rn and y∈RS×m, respectively. In a solution to a two-
stage stochastic program, first-stage variables are identical
across scenarios, while second-stage variables are scenario-
dependent. We will denote a scenario-specific set of second-
stage variables as ys∈Rm. First-stage variables must be in-
dexed over the stage at which they are made. Let xj denote
the decision vector for stage j, x⃗j hold all decision for stages
up to and including stage j, and x refer to decisions made
for all stages in J . This first- and second-stage relationship is
shown graphically in Figure 1.

The general formulation of a stochastic program is:

min
x,ys

∑
s∈S

P(s)
[
f1
(
x1

)
+

J∑
j=2

fj

(
xj ; x⃗j−1, ξ⃗j(s)

)]
x ∈ Xξ, ξ ∈ Ξ,

(18)

where fi, i = 1, ..., J , are generic functions associated with
each stage. For a two-stage stochastic program, J={2} and x2

maps directly to y. The optimization objective in a two-stage
stochastic program generally is a function of both first- and
second-stage variables. However, PH-based solution methods
apply in situations where dependence of cost for one class of
variables may be absent.



The first term in (18) represents the costs associated only
with the first stage, and thus f1 is a function of the first-
stage decisions x1. The second term in (18) represents the
expected costs associated with subsequent stages j∈J . For
this term, fj is a function of all j − 1 stage decisions x⃗j−1

and sampled random realizations for all scenarios s∈S. For a
two-stage program, this is just a function of x and ys for each
scenario. A feasible solution requires all j-stage variables to be
the same across all scenarios s∈S, so we can only select first-
stage variables x that are feasible for all random parameters
considered. For a two-stage program, second-stage variables
ys must be feasible for their associated scenario s and the
random variables realized for that scenario ξ(s).

PH decomposes problem (18) by scenario, in contrast to
stage-based decomposition approaches such as the L-shaped
method [28]. In a two-stage program, first-stage variables
are decoupled, which effectively creates independent sub-
problems corresponding to the individual scenarios; we de-
note the resulting scenario-specific first-stage variables as xs.
This yields an alternative version of an extensive form of a
stochastic program, as follows:

min
x,ys

∑
s∈S

P(s)
[
f1
(
x1
s

)
+

J∑
j=2

fj

(
xj
s; x⃗s

j−1, ξ⃗j(s)
)]

(19a)

x = xs, ∀s ∈ S, x ∈ Xξ, ξ ∈ Ξ. (19b)

Recall that a valid solution to the overall problem is contin-
gent on the first-stage variables agreeing across all scenarios
s∈S. To ensure the optimization does not make decisions
based on knowledge of the future, all scenario-specific first-
stage variables must be linked together via non-anticipativity
constraints to ensure x = x1 = ... = xs, as shown in (19b).

To solve this problem, PH iteratively reaches a solution
that satisfies all non-anticipativity constraints and scenario-
specific constraints. Let us refer to the iteration number as v.
PH drops the non-anticipativity constraints (19b) and solves
each scenario-based sub-problems independently. This step
becomes trivially parallelizable since each sub-problem is
separable from each other. The objective of each decomposed
problem is appended with a proximal term, as shown in (20):

ρ

2
||x− x̄(v)||2. (20)

This term penalizes the objectives based on the magnitude of
disagreement between all first stage variable values and also
generally prohibits unbounded sub-problems. Here, ρ is the
quadratic penalty parameter.

The general PH algorithm for a two-stage stochastic pro-
gram is outlined in Algorithm 1. PH employs and updates
scenario-specific weight vectors w

(j,v)
s at each iteration v

of the algorithm. These vectors function similarly to dual
weights, with the overall goal of pushing each sub-problem
to optimality while simultaneously encouraging agreement of
first-stage variable values across all scenarios s∈S. After
solving the decomposed sub-problems, the aggregated first-
stage variables x̄(j,v+1) are calculated. These are used as a

measure of consensus among all of the disaggregated first-
stage variables xs. Next, PH updates the price vector w(j,v+1)

s

for all scenarios s∈S. This weighting factor encourages first-
stage variables that are far from the average of all scenario
first-stage variables x̄ to move closer to the average when
solving the next iteration’s sub-problems. There are certain
properties of the price vectors that must be ensured to maintain
algorithmic guarantees. PH maintains these requirements by
the way price vectors are initialized and updated [27]. Sub-
problems are solved again, and the iterative process continues
until a specified convergence criteria is met. For example,
this could be when the deviations between the dis-aggregated
first stage variable and their averages falls below a specified
tolerance.

IV. APPLICATION OF PROGRESSIVE HEDGING TO
BATTERY SIZING, SITING, AND OPERATING PROBLEMS

We use PH, as described in Section III, to solve the battery
sizing, siting, and operation optimization problem introduced
in Section II. We leverage the capabilities of the open-source
Python package mpi-sppy [29], which is built on (1) the
algebraic modeling language Pyomo [30] to specify optimiza-
tion sub-problems and (2) MPI (Message Passing Interface) –
specifically, mpi4py – to efficiently execute PH in parallel.

We adapt the scenario-based approach of PH to allow for
decomposition by time periods T , in addition to allowing
for first-stage variables (relating to state-of-charge variables)
that do not appear in every time period’s sub-problem. We
emphasize that this is a key modification relative to traditional
progressive hedging algorithms to account for the temporal
decomposition necessary to model batteries’ states-of-charge.
We begin by decomposing the optimization model into a set
of sub-problems P={1, ..., P}, each representing a contiguous
period of time from the full time horizon T . In the WECC-
240 case study described subsequently, we assign groups of

Algorithm 1 Progressive Hedging Algorithm for Optimizing
Battery Sizing, Siting, and Operation

1: Initialize: v ← 0 and w
(j,v+1)
s ← 0, ∀s ∈ S, j ∈ J

Compute ∀s ∈ S

x
(v+1)
s ∈ argmin

xs

f1
(
x1
s

)
+

J∑
j=2

ft

(
xj
s; x⃗

j−1
s , ξ⃗j(s)

)
2: Iteration Update: v ← v + 1
3: Aggregation: x̄(v+1) ←

∑
s∈S

P(s)x(v)
s

4: Price Update: w(j,v+1)
s ← w

(j,v)
s + ρ

(
x
(j,v)
s − x̄(j,v)

)
5: Decomposition:

Compute ∀s ∈ S

x
(v+1)
s ∈ argmin

xs

f1
(
x1
s

)
+

J∑
j=2

ft

(
xj
s; x⃗

j−1
s , ξ⃗j(s)

)
+

J−1∑
j=1

[
w

(j,v+1)⊤
s xj

s +
ρ
2 ||x

j
s − x̄(j,v+1)||2

]
6: Termination: If criterion met, Stop. Otherwise→ Step 2.



Fig. 2: Time-period decomposition structure of battery sizing,
siting, and operation model.

contiguous days to form a total of P = 50 time periods for
roughly week-long subproblems. Each individual time t within
a time period p represents a single hour.

The resulting decomposition structure is depicted in Fig-
ure 2, and is mathematically identical to a two-stage stochastic
program decomposition by scenario. In the first stage, we have
battery placement and sizing decisions, xn; these must be non-
anticipative relative to all time periods in P . The first-stage
cost f1 is Cgen, per (17). All operational decisions (including
load shedding, generator outputs, power flow, voltage angles,
and states-of-charge) are second-stage variables that can vary
by sub-problem.

The decomposition discussed so far addresses all aspects
of our optimization model with the exception of battery state-
of-charge variables that couple time periods of adjacent sub-
problems. We must ensure the states-of-charge of every placed
battery are consistent at the start and end of temporally adja-
cent sub-problems. These additional complicating constraints
are absent in traditional stochastic programming contexts. To
address this final aspect of our optimization model in the con-
text of PH-based decomposition, we extend the index set for all
state-of-charge variables En

t (·) for each time period p∈P by
including the last unit of time in the immediately preceding
time period p − 1. (No such modification is performed for
the first time period.) This structure is depicted graphically in
Figure 3. These shared variables between temporally adjacent
sub-problems are treated as additional first-stage variables.
However, these variables do not appear in all sub-problems,
requiring introduction of corresponding variable-specific prob-
abilities (i.e., scenario weights in the context of the battery
sizing, siting, and operation problem) – specifically equal
to 0.5 for sub-problems with the variable and 0 otherwise.
Finally, we note that the state-of-charge variables are not
referenced in the objective function (state-of-the-charge is
not explicitly costed), such that determination of PH penalty
parameters ρ for such variables is more challenging [18].

Fig. 3: Battery state-of-charge decomposition structure in the
battery sizing, siting, and operation model.

V. CASE STUDIES

To demonstrate the capabilities of our algorithm, we first
consider a synthetic test network geolocated in the western
United States with 240 buses (WECC-240) [31], for which
we associate temporally and spatially varying wildfire risk
data from the USGS Wind-Enhanced Fire Potential Index [32].
Wildfire data is defined for May through November. The net-
work topology and electrical parameters are adopted from [33]
augmented with data originating from [34] and [35]. To avoid
infeasibility, power inputs represented as DC lines modeled
as negative loads were deactivated for these simulations. The
geo-located structure of the WECC-240 network topology is
provided in Figure 4. We next consider both direct solution
of the optimization model described in Section II and solution
using PH-based decomposition (per Sections III and IV).

Fig. 4: Geo-location of the WECC-240 system network.

A. Solution of the Extensive Form

We first conduct tests on the WECC-240 case using the
full extensive form model outlined in Section II, i.e., con-
sidering direct solution of (18) without decomposition as in
Algorithm 1. The corresponding models were solved using
Gurobi 10.0.0 [36]. To implement the optimization formu-
lations, we used Julia 1.8.0 [37] with JuMP v1.11.1 [38]
along with the data input functionality of PowerModels.jl
v0.19.8 [39]. Computations were conducted on the Partnership
for an Advanced Computing Environment (PACE) at the
Georgia Institute of Technology [40]. Each case was run on
one node with 12 cores with 24 GiB of memory. Each node
has Dual Intel Xeon Gold 6226 CPUs @ 2.7 GHz.

Figure 5 shows the resulting battery locations during nom-
inal operation (for a month in April of 2021) and during a
period of high wildfire risk (for a month in June of 2021).
From these tests, we observe that optimal placement location
varies based on the time of year. As can be seen in Figure
6, during the month of June, there is considerable load
shedding during days with many lines de-energized. Given
the computational difficulties with long time horizons, the
deterministic model cannot be used to find optimal placement
values over the span of a full year. The longest extensive form
successfully run represented one month of operation. For the



(a) April 2021

(b) June 2021

Fig. 5: Optimal battery placements for the WECC network in
April 2021 (top) and in June 2021 (bottom). Red circles are
sized proportionally to the number of batteries placed at that
bus.

one-month extensive form in June 2021, the model contains
over 1.5 million constraints, 1.1 million variables, and 4.3
million nonzero values. Instead, we turn to the PH algorithm
described in Sections III and IV. Results from the temporally
decomposed problem are discussed next.

B. Decomposition Results

For PH, we decompose the full one-year time horizon into
50 time periods, with either 168 or 192 hours per period. We
report PH solutions that are fully non-anticipative, i.e., are
valid incumbents for the extensive form optimization model.
Following the methodology outlined in Section IV, we solved
a decomposed, one-year horizon battery sizing, siting, and op-
erating problem for the WECC-240 network. We used Gurobi
v10.0.2 [36] to solve this problem in Python v3.9.12 and
modeled the optimization formulation in Pyomo v6.6.1 [30].
We employed mpi-sppy v0.12 [29] to execute PH in parallel,
as outlined in Section III. This was executed on the quartz HPC
at Lawrence Livermore National Laboratory. We executed this

Fig. 6: Load shedding and battery discharge for the WECC-
240 network in June of 2021. Note that only battery discharg-
ing decisions are shown in the plot.

problem using 20 nodes of the HPC. Each node has two 18-
core Xeon E5-2695 processors (2.1 GHz) and 128 GiB of
memory. Furthermore, we decomposed the problem into 50
scenarios. We used 100 MPI ranks to solve the problem, with
50 dedicated to running the PH algorithm on each sub-problem
and 50 dedicated to executing an asychronous incumbent-
finder. (A rank is a unique number that identifies each parallel
process.) Each Gurobi solve was limited to four threads, and
the ρ parameter was set to a constant value of 0.001.

For the decomposed problem, a solution was found after
only two iterations of the PH algorithm and incumbent finders.
We reached a relative optimality gap of 0.023% and an
absolute gap of 0.0714% in under 19 minutes. In contrast,
the one-month results shown in Section V-A took roughly
4 minutes to solve after a build time on the order of 30
minutes. A full-year deterministic test was run as well which
was terminated without a solution after a 24-hour build time.

Comparing the placement locations from the full-year de-
composition, seen in Figure 7, to the the month-based place-
ments in Figure 5, we observe that the final sites have some
overlap with decisions from the extensive model of April
but are largely different the placement decisions in June.
Battery operation at bus 6401 in the WECC-240 can be seen
in Figure 8. Results from April and June are shown as a
subset of the results of the full year. It is interesting to note
that there is very minimal difference in the operation of the
batteries between April and June in these results. This might
be explained by the placements from the full-year run aligning
more closely with the optimal placements for April from the
extensive form tests. As seen in Figure 5, batteries are most
helpful in the southwestern US for the June 2021 wildfire
risk profile. Given that no batteries were placed here during
the full-year decomposition, it is reasonable that the batteries
operate similarly during both April and June of 2021 in the
full-year results.

VI. CONCLUSION

We have introduced a new approach to solving utility-scale
battery sizing, siting, and operations optimization problems,



Fig. 7: Placement decisions on the WECC-240 network from
the full-year simulation decomposed in to 50 time periods.
Red circles are sized proportionally to the number of batteries
placed at that bus.

Fig. 8: State-of-Charge of batteries at bus 6401 on the WECC-
240 network in April 2021 (top) and in June 2021 (bottom)
with red bars showing the number of de-energized transmis-
sion lines on each day.

considering the mitigation of wildfire risk and associated load
shedding. Direct approaches to solving an extensive form
of the optimization model fail to scale to significant time
horizons, e.g., on the order of a year. Large time horizons
are critical to capture operations in both nominal and wildfire
seasons. We introduce a decomposition approach based on a

progressive hedging (PH) algorithm. Our approach allows us
to capture both a standard planning/operations decomposition
structure, but also non-anticipative variables (state-of-charge
in our model) that couple sub-problems representing tempo-
rally adjacent operational periods. Implemented in a scalable
open-source stochastic programming library (mpi-sppy) and
executed using parallel computing clusters, our PH-based
decomposition yields near-optimal battery placements across
a year-long time horizon in tractable run times. The ability
to consider long time horizons is shown to be critical, in that
the resulting battery placements can be counter-intuitive, and
differ from placements obtained using shorter time horizons.

To augment the results for the WECC-240 network pre-
sented here, we are performing further simulations on a 6717-
bus network geo-located in Texas. Initial results suggest the
scalability of the proposed PH algorithm to this system.

In addition, these tools can be used for other forms of
infrastructure upgrades such as line undergrounding. Similarly,
longer time scales could be considered. Instead of making
investment decisions based on one year, a rolling-budget
schedule could be introduced that allows infrastructure to be
placed over multiple years with changing load demand and
varying wildfire risk. Given the nature of the progressive
hedging algorithm, this formulation could also be extended to
consider multiple wildfire risk profiles and other uncertainties
within each time period.
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