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Abstract

Faults on power lines and other electric equipment
are known to cause wildfire ignitions. To mitigate
the threat of wildfire ignitions from electric power
infrastructure, many utilities preemptively de-energize
power lines, which may result in power shutoffs.
Data regarding wildfire ignition risks are key inputs
for effective planning of power line de-energizations.
However, there are multiple ways to formulate risk
metrics that spatially aggregate wildfire risk map data,
and there are different ways of leveraging this data to
make decisions. The key contribution of this paper is to
define and compare the results of employing six metrics
for quantifying the wildfire ignition risks of power
lines from risk maps, considering both threshold- and
optimization-based methods for planning power line
de-energizations. The numeric results use the California
Test System (CATS), a large-scale synthetic grid model
with power line corridors accurately representing
California infrastructure, in combination with real
Wildland Fire Potential Index data for a full year. This
is the first application of optimal power shutoff planning
on such a large and realistic test case. Our results
show that the choice of risk metric significantly impacts
the lines that are de-energized and the resulting load
shed. We find that the optimization-based method results
in significantly less load shed than the threshold-based
method while achieving the same risk reduction.

Keywords: Optimization, power shutoff, wildfire
ignition risk.

1. Introduction

Power systems operators are increasingly concerned
with the potential for electrical faults to ignite wildfires.

In addition to an aging electric grid, both organic
material buildup due to decades of fire suppression and
climate change are intensifying fire risk conditions. In
California, the land area burned due to wildfires is
predicted to increase between 3% and 52% by 2050
based on a climate model ensemble [1]. Fires ignited
from power equipment are common [2] and tend to burn
more area than wildfires ignited from other sources [3],
likely because high winds and temperatures increase
both fault probability and fire spread rate.

To mitigate the risk of wildfire ignitions from
power line faults, many utilities implement preemptive
power shutoffs—called “Public Safety Power Shutoffs”
(PSPS)—which involve selectively de-energizing
certain power lines (via switching) to eliminate the
possibility of these lines igniting fires. While this is
an effective fire risk reduction strategy, it concurrently
can lead to customer outages. Thus, operators face a
complex environment in which they must avoid igniting
wildfires by de-energizing lines while simultaneously
ensuring reliable access to electricity. To better inform
line de-energization planning, this paper characterizes
how differences in wildfire ignition risk quantification
can impact decisions in power grid operations.

To prioritize risk mitigation actions, many utilities
use threshold-based methods that de-energize lines
whose associated risk values exceed a pre-determined
threshold [4]. Recently, researchers have proposed
algorithms to better manage these trade-offs by
considering both wildfire ignition risk and load shed
due to power shutoffs when determining which
lines to de-energize. Reference [5] proposes an
optimization model, referred to as the “Optimal Power
Shutoff” (OPS) problem, to balance wildfire risk
and load shed. Similar works and extensions are
proposed for multi-period shutoff scheduling [6], [7],
security-constrained optimal power flow [8], stochastic



unit commitment [9], alternative mitigation actions
such as dynamic line ratings [10] and microgrid
formation [11], power restoration [12], social equity
considerations [13], and long-term investment planning
[14]–[16]. Machine learning techniques have also been
applied to predict ignitions from power lines [17] and
to relate input wildfire scenarios and output mitigation
strategies [18]. All of these models are sensitive to the
specifics of wildfire risk parameters. Therefore, it is
important to carefully consider how wildfire risk metrics
for individual power lines are formulated.

As we will discuss in Section 2, we define wildfire
risk based on wildfire potential, or the likelihood for
an ignition to spread into a large and devastating
wildfire. Numerous approaches are available to quantify
wildfire potential, leveraging a combination of surface
meteorological measurements and satellite data. This
includes “Fire Weather Watch” and “Red Flag Warning”
areas [19], Significant Fire Potential Outlooks [20],
and the Wildland Fire Potential Index (WFPI) [21].
Other tools simulate fire spread, such as FSim [22] and
FlamMap [23]. Another tool, Pyrecast, aggregates fire
simulation results from millions of simulated ignition
points to produce static maps of burned area risk [24].

Figure 1. California’s transmission line paths on a

Wildland Fire Potential Index map for Oct. 26, 2020.

We leverage the availability of high-fidelity,
real-world wildfire risk maps to characterize the risk
of energized lines. WFPI and Pyrecast risk maps are
good candidates for quantifying wildfire ignition risk
from power equipment failure because of their temporal
granularity (published daily and hourly, respectively),
fine spatial granularity (1 square kilometer and 30
square meters, respectively), and the use of a range of
potential levels (indices from 0 to 247 and the number
of times each land area “pixel” is burned in the Monte

Carlo sample set, respectively) rather than a binary
“threat” categorization. Researchers commonly overlay
geospatial power grid data on top of such risk maps to
obtain wildfire ignition risk values for individual power
lines. Fig. 1 show California’s transmission system
superimposed on a WFPI map.

As seen in Fig. 1, power lines generally intersect
multiple wildfire potential pixels or values, thus raising
the question of how to appropriately aggregate risk
values along the length of a line to obtain a single risk
value for the line. Past works have used the maximum
intersecting risk value [9], [11], [12], [25] or a sum
of intersecting risk values (i.e., a cumulative metric)
[13], [14], [26]. However, it is not clear whether the
maximum value accurately captures the risk of the entire
line, as two lines with the same point-wise maximum
value may have vastly different risk at other points;
a decision-maker may be interested in prioritizing
mitigation for the line with high risk along a significant
fraction of the line length. Cumulative metrics, on the
other hand, may not capture points of extreme risk, as
the maximum value would. This motivates alternate
strategies of aggregating risk, such as computing the
mean of all intersecting values or thresholding out low
intersecting risk values. A comparison of maximum and
cumulative wildfire risk metrics in [25] demonstrates
that different risk metrics produce significantly different
optimal capital investments for long-term wildfire risk
mitigation. We note that the analysis in [25] has
some limitations: the optimal investment model does
not include a power flow model and the test network
(RTS-GMLC [27]) is relatively small and does not have
realistic power line paths.

This paper addresses these limitations while also
analyzing additional risk metrics. We focus on two
challenges: (1) how to leverage wildfire risk maps to
define the wildfire risk of power lines, and (2) how to
leverage those metrics in power shutoff decision making
for risk mitigation. We compare the performance of six
different risk metrics in two methods for determining
line de-energizations to limit the wildfire risk in a
power system: a threshold-based approach and an
optimal power shutoff problem. We demonstrate
results on the California Test System (CATS) [28], a
∼9000-bus synthetic test system with transmission line
paths that represent the actual geographical locations of
transmission lines in California (as shown in Fig. 1).

Our primary contributions are as follows:
• We compare the impacts of six different wildfire

risk aggregation metrics on the resulting power
shutoff plans. We find that these metrics result
in significant differences among de-energization
plans and load shed outcomes. To conduct



this analysis, we processed two years of
real-world wildfire potential maps to compute
risk parameters for the transmission lines in the
California Test System. This dataset is publicly
available upon request.

• We apply threshold- and optimization-based
power shutoff planning to the California Test
System, a synthetic yet highly realistic grid model
with power line paths accurately representing
California infrastructure. We utilize demand and
renewable generation availability profiles based
on real hourly time-series data from the California
Independent System Operator (CAISO) to
simulate varying operating conditions[28]. This
is the first application of the optimal power
shutoff problem to such a large and realistic test
case in the academic literature.

• We find the that the optimization-based power
shutoff method results in an approximately 80%
reduction of the load shed compared to the
threshold-based method while maintaining the
same overall wildfire ignition risk.

The remainder of the paper is organized as follows.
Section 2 introduces the six risk metrics we consider.
Section 3 details the methods for planning power grid
shutoffs. Section 4 describes our case study and presents
computational results. Section 5 concludes the paper.

2. Wildfire Risk Metrics

In this section, we present six metrics that quantify
the wildfire risk of individual power lines based on
wildfire potential maps. To do this, we first discuss our
definition of wildfire risk.

2.1. Wildfire Risk Definition

Consistent with the definitions in [25] and [29], we
consider wildfire risk from power lines in terms of two
components: fault probability and wildfire potential. An
electrical fault occurs when an abnormal event (e.g.,
contact with vegetation or animals, conductor clashing,
or downed power lines) results in current flow outside
of a power line conductor. These events might involve
arcing, sparks, and burning equipment or vegetation.
Fault probability is influenced by factors specific to
power systems in addition to weather conditions (e.g.,
wind) and vegetation factors. The likelihood of a fault
is a function of the age and condition of infrastructure,
right-of-way, line loading and sagging, and voltage
level. The energy release associated with a fault can
ignite a wildfire. Wildfire potential, on the other
hand, captures an ignition’s impact, i.e., the subsequent
potential for fire spread and intensity. This potential

is dependent on factors that are not specific to power
systems but rather is due to weather and vegetation
conditions in the region surrounding an ignition.

While many faults occur, the probability of a fault
occurring at any particular time and place is small and
difficult to assess. Reference [30] proposes a risk metric
that includes both fault probability and fire potential
factors. Reference [31] analyzes fault probability
due to conductor clashing, comparing the use of a
nonlinear model of conductor vibrational physics under
wind forces with machine learning methods for fault
prediction. Among other data requirements, these
studies require information about distances between
conductors and vegetation, the ground, and other
conductors, which is not commonly available in models
of real or synthetic power systems. Even utilities
may not have this data, as line inspections are costly
and time-consuming. Thus, consistent with much of
the literature on wildfire risk mitigation, in this paper
we assume that the probability of a fault occurring
is constant throughout the power system and define
wildfire ignition risk based on wildfire potential only.

2.2. Aggregating Wildfire Potential Data

We derive our risk metrics from publicly available,
real-world wildfire risk maps. We use WFPI maps
from the U.S. Geological Survey [21]. The WFPI
geographically represents the relative potential for large
fires and fire spread, and is published daily. The index
is calculated at a spatial granularity of 1 km2 with a
nominal range of 0-150. The index is enhanced by wind
speed and can exceed 150 with very high wind speeds.
Some land types such as desert and marshland do not
have an associated value because they are considered
“unburnable”. Agricultural land also does not have
a risk value because the vegetation type and moisture
levels change often and are not readily available.

The wildfire risk metric for a power line is derived
from the pixels of a wildfire risk map that a power line
intersects. Lines typically cross many 1 km grid squares
with potentially high variance in risk values, as shown in
Fig. 1. Grid operators want to mitigate the risk of lines
igniting fires, but are not able to de-energize just the
high-risk segments of power lines. To assess the need for
de-energization, we must aggregate the risk values that
a power line passes through to obtain a single risk value
for the entire line. Our primary objective is to analyze
how the choice of risk aggregation metric impacts line
de-energization decision-making.

We next define six power line wildfire risk metrics.
The first three metrics are based on the mean, maximum,
and cumulative values of the pixels the power lines
intersect, respectively. The last three metrics use



an additional pre-processing step to only consider the
pixels whose risk values are above a particular threshold.
Sections 2.3 and 2.4 mathematically define the six risk
metrics, while Section 2.5 discusses the intuition and
real-world significance of the metrics.

2.3. Baseline Wildfire Risk Metrics

For a power line ℓ, let Pℓ denote the set of pixel
indices p that the power line intersects. Let Rℓ,d,p

denote the set of pixel risk values on day d for line ℓ. For
each line and on each day, we aggregate these values as
the maximum, mean, or cumulative value. The formal
definitions for each metric are provided below.

Maximum (MA) Metric assigns a risk value for each
line equivalent to the maximum risk of any pixel that the
line intersects:

RMA
ℓ,d = max

p∈Pℓ

Rℓ,d,p. (1)

Mean (ME) Metric assigns a risk value that is the
average of the pixels that the line intersects:

RME
ℓ,d =

∑
p∈Pℓ

Rℓ,d,p

|Pℓ|
. (2)

Cumulative (CU) Metric assigns a risk that is the
sum of the pixels that the line intersects:

RCU
ℓ,d =

∑
p∈Pℓ

Rℓ,d,p. (3)

2.4. Pre-Processing Wildfire Risk

We now describe a method of pre-processing
wildfire risk data to better identify the highest risk pixels
before aggregating the risk values into a metric. This
method, adapted from [26], uses a risk threshold, where
pixel p is removed from the set of pixels that a line
traverses if it’s risk Rℓdp is below the threshold.1 The
purpose of this processing is to ignore sections of lines
where the risk is low, and only keep pixel risk values that
are above this threshold.2

While there are many possible ways to compute the
threshold value, we determine a value based on statistics
of the wildfire risk values of a historical year. We take
the set of all risk values Rℓ,d,p for all lines ℓ ∈ L, for
all days d ∈ D, and for all pixel indices p ∈ Pℓ. We
find the average risk value r and the standard deviation

1We define this new set of pixels rather than set pixel values to
zero for pixels below the threshold to better capture the intent of the
high-risk mean metric. With this definition, we will average only
high-risk pixels rather than include zero values.

2We note this pre-processing threshold is separate from the
threshold-based de–energization method discussed in Section 3.1.

of risk values σ of this set. We define our threshold
of interest as any risk value greater than one standard
deviation above the mean. The set of pixels above the
threshold for each line on each day is defined as

Ph
ℓ,d = {p ∈ Pℓ|Rℓ,d,p ≥ r̄ + σ}, ∀ℓ ∈ L,∀d ∈ D.

(4)
We recompute the aggregation metrics with the
high-risk thresholded risk values.

High-Risk Maximum (HRMA) Metric assigns a
risk value equal to the maximum risk a line intersects
in the high-risk pixel set:

RMA
ℓ,d = max

p∈Ph
ℓ,d

Rℓ,d,p. (5)

High-Risk Mean (HRME) Metric assigns a risk
value equal to the mean of the high-risk pixels that a
line intersects:

RME
ℓ,d =

∑
p∈Ph

ℓ,d
Rℓ,d,p

|Ph
ℓ,d|

. (6)

High-Risk Cumulative (HRCU) Metric assigns a
risk value equal to the sum of the high risk pixels that
a line intersects:

RCU
ℓ,d =

∑
p∈Ph

ℓ,d

Rℓ,d,p. (7)

2.5. Risk Metric Discussion

The six risk metrics (MA, ME, CU, HRMA, HRME,
and HRCU) each provide different incentives in a
de-energization strategy, e.g. by focusing more or
less on high versus average risk. We next provide a
discussion and an illustrative example to demonstrate
the similarities and differences between the metrics.

Fig. 2 shows three example lines of different length,
traversing areas with different wildfire risk. Table 1
summarizes the wildfire risk metrics for each line.

Figure 2. A conceptual example of three

transmission lines. Boxes represent pixels that lines

intersect, with their risk values shown above. Red

pixels represent high-risk pixels in the set Ph
ℓ,d.

Selecting the maximum (MA) metric directly
emphasizes the worst-case risk of a wildfire ignition



MA HRMA ME HRME CU HRCU
ℓ1 100 100 50 100 150 100
ℓ2 100 100 67 95 330 285
ℓ3 100 100 60 100 420 200

Table 1. The risk values for the three lines in Fig. 2

based on the six different risk metrics.

along a corridor. This metric ignores the length of a
power line, and therefore how many pixels it traverses
and the variance of those risk values. For instance, the
shorter line ℓ1 in Fig. 2 is treated the same as the longer
line ℓ3, as both have a maximum intersecting risk value
of 100.

The mean (ME) metric averages risk values across
the length of a line. While the MA metric is concerned
with only the point of worst-case risk, the ME metric
considers the likelihood of any potential points of failure
along a power line. This helps to identify lines that have
a greater proportion of their length in high-risk areas.
For example, line ℓ2 in Fig. 2 has a relatively high mean
risk value, as a relatively high proportion of this line
intersects high-risk pixels. Like MA, the ME metric
does not capture the length factor of a power line’s risk.

The cumulative (CU) metric sums all of the risk
values along the length of the power line, thus
accounting for more possible instances of failures
occurring along longer lines. This captures the intuition
that a long line is more likely to start a fire than a short
line (e.g., line ℓ3 is relatively long and has the highest
CU risk of the lines in Fig. 2). One limitation of this
metric is that there may be cases where long lines pass
through predominantly low-risk areas but nevertheless
have high CU-based risk due to their long length.

The high-risk metrics (HRMA, HRME, and HRCU)
threshold out low-risk pixel values. These reflect the
intuition that wildfire ignitions at relatively low-risk
locations are not likely to spread into devastating fires.
The high-risk maximum risk (HRMA) metric is the
same as the baseline maximum for any line that has a
risk value above the risk threshold (e.g., we can see that
all three lines in Fig. 2 have equivalent MA and HRMA
values). For any line whose maximum risk is below
the risk threshold, the maximum value is zero rather
than its baseline value. This removes any incentive to
de-energize low- or moderate-risk power lines.

The high-risk mean (HRME) metric only averages
the values above the threshold. Compared to the
baseline mean metric, this metric removes the “penalty”
to risk values that occurs for long lines with large
sections in low-risk regions (e.g., observe that line ℓ3
in Fig. 2 has a significantly greater HRME than ME).

The high-risk cumulative (HRCU) metric sums all
risk values above the threshold. Under this metric, a

long line through a low-risk region will not be assigned
a high risk value (note the lower HRCU than CU for
line ℓ3), but lines with long stretches through high-risk
regions will still have higher risk values compared to
short lines through these regions.

In general, for each metric, a higher metric value
for a line indicates that a fault-induced ignition on
that line has a higher potential to spread into a large
fire. Importantly, we can see that the method of risk
aggregation (i.e., the choice of risk metric) significantly
impacts which line(s) are considered to have the greatest
wildfire potential. For example, in Fig. 2, line ℓ2 is
riskiest based on the ME and HRCU metrics, but line ℓ3
is riskiest based on the CU metric. For each metric, we
expect that lines with high risk values would be better
candidates for de-energization. In the remainder of this
paper, we show how selecting different risk metrics
impacts power shutoff planning decisions.

3. Power Shutoff Decision-Making

Given risk values for all lines in a power system,
an operator can make a decision concerning which
lines should be de-energized in order to decrease
the overall potential for power infrastructure to ignite
wildfires. We now assess two common analytic methods
for determining how to implement power shutoffs:
thresholding and optimal power shutoffs.

3.1. Thresholding

Our first approach to planning PSPS events
de-energizes any line that is considered “risky”, i.e.,
any line that has a risk value that exceeds some
predetermined level or threshold. This approach
requires selection of a risk threshold that is low
enough to turn off lines that are likely to ignite
dangerous wildfires, yet high enough to avoid excessive
de-energization and associated power outages.

We choose a threshold for each metric using
statistical measures, specifically the 95th-percentile of
risk values (across all lines and all scenarios). We
de-energize lines that have risk values above this
threshold on each day. To determine how load is served
under this shutoff plan, we solve a modified version of
the optimization problem in Model 1, which is described
in detail below. Specifically, we fix the line status binary
decision variables, zℓ, to 0 for any de-energized line ℓ.
The selected threshold results in lines being aggressively
de-energized, one to two orders of magnitude more than
seen historically. This leads to large quantities of load
shed, allowing for clear comparison of our metrics and
de-energization methods.



Model 1 Optimal Power Shutoff (OPS)

min
∑
t∈T

∑
n∈N

pnls,t + ϵswitch

∑
ℓ∈Lswitch

(1− zℓ) (8a)

s.t. ∀t ∈ T ,

pi
g
⩽ pig,t ⩽ pig ∀i ∈ G (8b)

0 ⩽ pnls,t ⩽ pnd,t ∀n ∈ N (8c)

− f
ℓ
zℓ ⩽ f ℓ

t ⩽ f
ℓ
zℓ ∀ℓ ∈ Lswitch (8d)

− f
ℓ
⩽ f ℓ

t ⩽ f
ℓ ∀ℓ ∈ L \ Lswitch (8e)

θn
ℓ,fr

t − θn
ℓ,to

t ⩾ δℓzℓ+M(1−zℓ) ∀ℓ ∈ Lswitch (8f)

θn
ℓ,fr

t − θn
ℓ,to

t ⩽ δ
ℓ
zℓ+M(1−zℓ) ∀ℓ ∈ Lswitch (8g)

δℓ ⩽ θn
ℓ,fr

t − θn
ℓ,to

t ⩽ δ
ℓ ∀ℓ ∈ L \ Lswitch (8h)

f ℓ
t ⩾−bℓ(θn

ℓ,fr

t − θn
ℓ,to

t )+|bℓ|M(1−zℓ) ∀ℓ ∈ Lswitch (8i)

f ℓ
t ⩽−bℓ(θn

ℓ,fr

t − θn
ℓ,to

t )+|bℓ|M(1−zℓ) ∀ℓ ∈ Lswitch (8j)

f ℓ
t ⩾ −bℓ(θn

ℓ,fr

t − θn
ℓ,to

t ) ∀ℓ ∈ L \ Lswitch (8k)

f ℓ
t ⩽ −bℓ(θn

ℓ,fr

t − θn
ℓ,to

t ) ∀ℓ ∈ L \ Lswitch (8l)∑
ℓ∈Ln,fr

f ℓ
t −

∑
ℓ∈Ln,to

f ℓ
t =

∑
i∈Gn

pig,t−pnd,t+pnls,t ∀n ∈ N (8m)

∑
ℓ∈Lswitch

zℓRℓ,d ≤ RPSPS
d ∀ℓ ∈ Lswitch. (8n)

3.2. Optimal Power Shutoff

The optimal power shutoff (OPS) problem is
an optimization problem that determines steady-state
operations decisions (including generator outputs, line
flows, loads served, and voltage angles) as well as binary
line de-energization decisions in a way that balances
wildfire risk mitigation with load that is shed due to
those de-energizations. The OPS was first proposed in
[5] and is studied and extended in [6]–[16], [26].

There are several ways to formulate the risk and
load shed mitigation strategies in the OPS problem. For
example, we can formulate a multi-objective problem
that minimizes wildfire risk and load shed, as in [5],
[13], [14], or we can minimize wildfire risk while
constraining load shed to some acceptable level as in
[8] (or vice versa as in [26]). In this paper, given
we are interested in comparing risk metrics, we choose
to minimize load shed while constraining wildfire risk.
This allows us to maintain a safe level of wildfire risk in
the network while optimizing to reduce negative impact
on loads. The OPS formulation is outlined in Model 1.

Equation (8b) enforces lower (pi
g
) and upper (pig)

generation limits for power generation (pig,t) at all
generators i ∈ G at all times t ∈ T . Equation (8c)
constrains any load shedding (pnls,t) to be nonnegative
and less than the power demand (pnd,t) at that time at
each bus n ∈ N . Equations (8d) and (8e) enforce

line flow (f ℓ
t ) to be within lower and upper limits (f

ℓ
)

in accordance with the energization status, zℓ, for lines
ℓ ∈ L. For lines not in the switchable set Lswitch, note
that zℓ is required to be set to one (indicating that the line
is energized) instead of being a binary decision variable,
thus reducing (8d) to (8e). Lines with zero risk are
excluded from the switchable set Lswitch.

Equations (8f), (8g), and (8h) constrain the
difference in voltage angle across a line ℓ from the
from-bus nℓ,fr to the to-bus nℓ,to at each time step to be

within the lower (δℓ) and upper (δ
ℓ
) limits in accordance

with the line energization status. Again, if a line is not
considered switchable, the energization status zℓ is set
to one, thus reducing (8f) and (8g) to (8h).

Equations (8i), (8j), (8k), and (8l) model the
DC power flow approximation with line energization
status. Equations (8f), (8g), (8i), and (8j) utilize big-M
constants to allow for voltage angle differences to be
unconstrained across de-energized lines, with M and
M set to 2π and −2π respectively for results shown in
this paper. Note that more sophisticated methods for
selecting big-M values could be used, such as those in
[32]. Equation (8m) ensures power balance at all buses
in the network. Equation (8n) restricts the total risk on
the network to be below a value, RPSPS , defined by
the total remaining risk on the network resulting from
the thresholded lines on the same day (see Section 3.1).
Here, Rℓ,d represents the risk on line ℓ based on the
given metric. The objective (8a) minimizes total load
shed in the network with an associated penalty term on
the number of de-energized lines. For the numerical
results in Section 4, ϵswitch is set to 0.01 to avoid the line
switching decisions dominating the objective.

4. Test Case Results

We compare the performance of the six wildfire risk
metrics and two shutoff methods utilizing CATS [28], a
∼9000-bus, ∼11000-line test system with transmission
line corridors that reflect the actual grid in California,
but with synthetic parameters so as not to reveal any
critical information about the real grid. The geographic
realism and large scale of CATS make it a compelling
test case. However, we note that the results derived here
are not necessarily an indication of how California’s
actual power grid operates. We use 2019 WFPI daily
risk data to determine high-risk pixel thresholds, and



study de-energization plans using 2020 WFPI data. All
models were implemented using Julia 1.9.2 [33] and
solved using Gurobi 10.0.1 [34].

To reduce solve times (due to the scale of CATS),
we take a number of approaches. First, when finding
optimal switching decisions, we warm-start the binary
variables in the problem with the status of lines
de-energized under the corresponding thresholded case.
We also reduce the number of binary variables by only
allowing lines with non-zero wildfire risk to be included
in the switchable line set, Lswitch. Additionally, we relax
the lower bound of generators to be 0 p.u. to avoid
binary decision variables associated with generator
on/off statuses. Finally, to reduce the problem size,
we make optimal switching decisions for the entire day
based on the worst-case hour of the day. We define the
worst-case hour as the hour with the most load shed from
thresholded de-energization decisions from the same
day with the same metric. After optimal de-energization
decisions are made on the given hour, these decisions are
fixed for the full 24-hour period, with hourly load shed
and operational decisions found for the full day.

4.1. De-energization Decisions based on
Thresholding

Thresholding decisions differ between the normal
and high-risk methodologies. As shown in Fig. 3, each
method provides different line de-energization outcomes
throughout the year. Both the CU and HRCU see a
more uniform number of de-energized lines throughout
the year while MA, ME, HRMA, and HRME all see
more variation in numbers of de-energized lines. Fig. 3
also shows that the the number of de-energized lines
resulting from metrics with the high-risk pixel threshold
(HRMA, HRME, HRCU) are more closely aligned
throughout the year than those from the metrics which
use the raw wildfire data (MA, ME, CU).

The first row of Table 2 shows the number of unique
lines de-energized by the thresholded method in 2020.
We note that while the MA and ME metrics de-energize
nearly the same number of unique lines as the HRMA
and HRME metrics, the HRCU metric de-energizes
nearly twice as many unique lines as the CU metric over
the span of the year. The resulting daily load shed for
each metric is shown in Fig. 4. While the HRCU metric
de-energizes fewer lines than the max- or mean- derived
metrics, it results in the most load shed throughout the
year. We also note that the MA and HRMA metrics
de-energize the same number of unique lines (and the
most by the thresholding method) but result in less load
shed compared to other metrics for most of the year.

Figure 3. The number of lines de-energized daily by

metric under the 95th-percentile thresholding method.

4.2. De-energization Decisions based on OPS

When looking at the number of optimally
de-energized lines in Fig. 5, we see that the overall
quantity of lines being de-energized is similar to
the thresholded method. However, the optimal case
de-energizes slightly more lines across all metrics.
This is likely due to more lower-risk lines being
de-energized to allow energization of some high-risk
lines that are crucial for power delivery. By strategically
de-energizing more low-risk lines, the overall risk in
the network can be maintained while reducing the
amount of load shed. Fig. 6 shows that the optimal
line switching decisions achieve approximately 20% of
the load shed resulting from the thresholded method.
We note that the scale of the y-axis differs from that
in Fig. 4 to allow for variations in the load shed to be
visible. Similar to the thresholded method, we again see
that the CU and HRCU methods, while de-energizing
fewer lines, result in larger amounts of load shed.

4.3. Comparing Thresholding and Optimal
Decisions

While both thresholded and optimal de-energization
decisions result in a similar number of lines being
switched off, they do not select the same lines
to be turned off throughout the year. Fig. 7



Figure 4. Seven-day rolling average load shed from

thresholded line de-energizations.

shows the similarity between decisions made by each
method/metric pairing. For each method/metric pair,
we sum the number of times each individual line is
de-energized. We then normalize each of these vectors
and take the dot product. Thus, a value of 1.0 in the heat
map indicates that each line ℓ was de-energized the same
number of times throughout the year.

Fig. 7 shows that thresholded MA and HRMA
metrics produce the same results, and that the optimal
MA and HRMA metrics produce nearly identical
results. We also see that the decisions made by the
ME or HRME metrics have very weak correlations with
those made by the CU or HRCU metrics. Also note that
the CU and HRCU metrics result in dissimilardecisions
and optimal load shed. This might be caused by the
HRCU method de-energizing nearly 60% more lines
compared to the CU method in the optimal case (as
shown in Table 2).

MA HRMA ME HRME CU HRCU
Threshold 6376 6376 5204 5005 1206 2505
OPS 6276 6398 5564 5859 3568 5649

Table 2. The number of unique lines de-energized in

2020 for each metric in the threshold- and

optimization-based methods.

5. Conclusions

This paper characterizes the impacts of different
approaches to aggregating wildfire risk data for power
lines using a realistic large-scale synthetic power
system. We define and compare six wildfire risk
aggregation metrics using two methods for making
line de-energization decisions, thresholding and the
optimal power shutoff. We find that, compared to
thresholding, the optimal power shutoff formulation
drastically reduces load shed, despite a similar extent

Figure 5. The number of lines de-energized daily, by

metric, under the optimal power shutoff method.

of line de-energizations and similar overall network
risk. The numerical results also clearly show that the
choice of metric significantly alters the de-energization
decisions and associated load shed. If we had found that
all six metrics produced similar de-energization results,
then the choice of risk quantification metric in future
analyses would not matter. However, since the results
significantly differ, modelers and decision-makers
should be careful when choosing how to aggregate risk.

Based on our results alone, it is not clear which risk
metric or method is the most effective or fair to use
in planning pre-emptive deenergizations. To determine
this, more research is needed. For example, high-fidelity
fire simulations could achieve a thorough analysis of the
impact of ignitions that would occur (or be avoided),
which could help determine if focusing on high risk
locations or average risk across the line span is more
important. Further, while optimization-based methods
achieve lower load shed at comparable wildfire risk
compared with the threshold-based method, they may
leave certain high risk areas unaddressed to avoid load
shedding in further away locations. Understanding
the effects of trade-offs and metrics on both local
communities and the overall grid is a topic that deserves
more attention in future work.

Future work will also compare modeled
de-energization decisions with those made historically.
In addition, extensions to consider alternative



Figure 6. Seven-day rolling average load shed from

optimal power shutoff line de-energization decisions.

Figure 7. This heatmap shows how similar the line

de-energization decisions are between the thresholded

method and optimal methods with each metric over

the full year. A value of 1.0 (yellow) indicates each

line was de-energized the same number of times over

the year while a value of 0.0 (black) indicates none of

the same lines were de-energized over the year.

modeling formulations would be valuable, such as
a security-constrained optimal power shutoff, AC
optimal power shutoff, and multi-period optimization.
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