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Abstract

Wildfires ignited by power systems infrastructure are among the most destructive
wildfires; hence some utility companies in wildfire-prone regions have pursued a proac-
tive policy of emergency power shutoffs. These shutoffs, while mitigating the risk of dis-
astrous ignition events, result in power outages that could negatively impacts vulnerable
communities. In this paper, we consider how to equitably allocate funds to underground
and effectively de-risk power lines in transmission networks. We explore the impact of
the 2021 White House resource allocation policy called the Justice40 initiative, which
states that 40% of the benefits of federally-funded climate-related investments should go
to socially vulnerable communities. The definition of what constitutes a “vulnerable”
community varies by organization, and we consider two major recently proposed vulner-
ability indices: the Justice40 index created under the 2021 White House and the Social
Vulnerability Index (SVI) developed by the Center for Disease Control and Prevention
(CDC). We show that allocating budget according to these two indices fails to reduce
power outages for indigenous communities and those subject to high wildfire ignition
risk using a high-fidelity synthetic power grid dataset that matches the key features of
the Texas transmission system. We discuss how aggregation of communities and “one
size fits all” vulnerability indices might be the reasons for the misalignment between
the goals of vulnerability indices and their realized impact in this particular case study.
We provide a method of achieving an equitable investment plan by adding group-level
protections on percentage of load that is shed across each population group of interest.

The increased frequency and severity of wildfires across the United States in the 21st century
necessitates policy and infrastructure change to mitigate property damage, environmental
impacts, and loss of life from these extreme events [1]. While power line-sparked ignitions
account for a small fraction of the total number of wildfires in the United States, the en-
vironmental conditions that can prompt power line faulting can lead to catastrophic burn
rates and spread, making them more destructive than wildfire ignitions attributable to other
causes [2]. Furthermore, climate change is increasing the risk of these ignitions. For exam-
ple, recent wildfires like the Smokehouse Creek (Texas), Maui Morning Fire (the ignition
sources of the larger Lahaina, Hawaii fires are contested), Echo Mountain (Oregon), and
Camp (California) fires have been linked to ignitions from power infrastructure [3]. To pre-
vent such wildfires, high wildfire-risk states like California, Washington, and Oregon employ
emergency public safety power shutoff (PSPS) events, in which power lines are proactively
de-energized during high wildfire-risk1 conditions. Some utility companies turn off power

1Risk is determined by a combination of environmental factors (e.g., heat, humidity, vegetation, and
wind conditions) and line characteristics (e.g., voltage level, rating, routing, and condition) [4].
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lines even in states where there is not a formalized process for planning a PSPS event,
including recent emergency power shutoffs in Colorado, Kansas, Nebraska, and Oklahoma
[5], demonstrating how valuable power shutoffs can be for mitigating wildfire ignition risks
in high-wind conditions. When many power lines, or some few key ones, in a given region
are de-energized, certain locations may experience power outages (referred to as load shed),
where the amount of power supplied does not meet the amount of load demanded, and whole
communities may lose power. Loss of power can have many negative effects on individuals
and neighborhoods; however, certain groups are more negatively impacted by power outages
than others 2[7, 8].

An alternative solution to power line de-energization is to bury or “underground” high-risk
power lines. Undergrounding largely eliminates the possibility of a wildfire, and as a result,
these lines never need to be de-energized due to wildfire concerns. Hence, the strategic un-
dergrounding of high-risk power lines would eliminate the need for emergency power shutoffs.
The main barrier towards implementing this solution is that undergrounding power lines in
transmission networks is expensive, costing anywhere from $5 to $10 million per mile [9, 10].
While many major utility companies in high wildfire-risk regions have aggressive plans to
underground power lines, the time horizons for these projects can expand over decades and
cost tens of billions of dollars [11, 12]. Given the significant cost of undergrounding, this
becomes an allocation problem under limited resources.

As with any resource allocation problem, being equitable with respect to different popu-
lations is a major concern. In particular, it is important to protect certain groups that
have been historically underserved and subject to climate risk, while simultaneously en-
suring that resources are being allocated to have maximum impact on overall wildfire risk
reduction. To answer this broad question of how to equitably allocate infrastructure invest-
ment budgets, United States Executive Order 14008 [13] established the Justice40 initiative,
which states that 40% of the benefits of federal investment in transportation, power, en-
vironmental, and other systems should flow to disadvantaged communities [14]. In fact,
the Justice40 initiative has identified certain census tracts as vulnerable, broadly based on
national percentiles of different types of climate risk (e.g., flood risk, agriculture loss rate,
wildfire spread risk) coupled with low-income statistics3. There also exist other possible
categorizations of vulnerability indices from other organizations, including the Center for
Disease Control and Prevention’s (CDC’s) Social Vulnerability Index (SVI), which focuses
on socioeconomic factors4 [15]. Furthermore, these metrics are already being used in various
domains for making equitable decisions including power systems [16, 17], healthcare [18, 19],
and disaster relief [20, 21].

In this work, we focus on understanding efficient and equitable allocations of a given budget
for mitigating high wildfire risk by either de-energizing or undergrounding high risk lines.
In particular, we explore the proposed Justice40 allocation by using constraints that either
ensure (i) 40% of the budget is spent on vulnerable census tracts as identified by Justice40
and SVI definitions, or (ii) budget is spent so that 40% of benefit in reducing load shed
due to line de-energization goes to these designated census tracts. We refer to both of these

2Poorer families are less likely to own a backup power generator, so they are much more susceptible
to food and medicine spoilage as well as loss of critical cooling in hot summer months if they lose power
[6].

3Justice40 census tracts are generally defined by being at or above the 90th percentile of one of many
climate risks (including wildfire risk, agriculture loss rate, projected flood risk, and others) as well as being
above the 65th percentile for the fraction of households which are low-income (two times the federal poverty
line) out of all households in the United States. Registered tribal lands are also automatically considered
Justice40 areas, although indigenous communities living off-reservation are not included. See Appendix C.2
for more details

4The CDC’s SVI metric considers a census tract as vulnerable if that tract is at or above the 75th
percentile of one of four themes: socioeconomic status, household characteristics, racial/ethnic minority
status, and housing type/transportation. See Appendix C.3 for more information
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(a) Risk per line in the Texas7k network (b) Cost to underground each line

(c) Percent of tract <$25k income (d) Percent of tract that is racial minority

Figure 1: This figure shows some vulnerability characteristics of the synthetic Texas7k network where
the circled regions show the overlap in vulnerabilities between these four metrics (wildfire risk, high
cost to underground, low-income status, and racial minority status). We can see that the western
and northern-most parts of Texas experience overlap in these different vulnerability characteristics,
making these areas most susceptible to power outages from PSPS events (high wildfire risk, but
lower ability to cope due to lower income) as well as lower likelihood of being selected for power line
undergrounding due to lower population density (not pictured) and the high cost to underground the
lines.

as Policy constraints. To understand the impacts of these Policy constraints, we use
a high-fidelity synthetic power grid dataset that is validated to match key features of the
Texas transmission system [22] along with actual wildfire ignition risk [23] and demographic
data.5We explore the effectiveness of Policy constraints in minimizing the load shed across
various demographic groups, while keeping the risk in the network below reasonable thresh-
olds. We perform this analysis using a mixed-integer program (MIP) optimization model,
the details of which can be found in the Methods section.

This analysis allows us to evaluate (i) the effectiveness of vulnerability indices (e.g., Justice40,
SVI) in making specific climate investment decisions, and (ii) the resultant impact of these
investments on historically burdened communities using the 6717-bus Texas Synthetic Grid.

Results

We find that by and large, generalized vulnerability indices are not necessarily suitable for
describing disadvantage in specific contexts like vulnerability to wildfires or power outages;
that is, climate vulnerability indices are not “one-size-fits-all” metrics. Furthermore, indige-

5Power systems are considered critical energy infrastructure information [24]. Given this security sensitiv-
ity, real power system information is typically classified to prevent any attacks. Synthetic networks provide
a way to evaluate decisions on realistic models. See Appendix A.1.
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nous groups are unlikely to be categorized as “disadvantaged” under these indices, despite
experiencing higher levels of poverty and higher exposure to wildfire risk, and are thus un-
likely to receive the benefit of investments in power line undergrounding. We posit that the
reasons for this may be the design of vulnerability indices and, what we call, the “curse of
aggregation”, which we describe in more detail below.

(a) Justice40 census tracts are de-
picted in green. Approximately 40% of
all Texas census tracts are Justice40
tracts, and only 37% of Texas census
tracts experiencing load shed are Jus-
tice40 tracts.

(b) Modified Justice40 census tracts are
depicted in blue. Approximately 18%
of all Texas census tracts are Modi-
fied Justice40 tracts, and only 22% of
Texas census tracts experiencing load
shed are Modified Justice40 tracts .

(c) The CDC’s SVI census tracts are
depicted in pink. Approximately 38%
of all Texas census tracts are SVI
tracts, and only 28% of Texas census
tracts experiencing load shed are SVI
tracts.

(d) Census tracts with relatively larger
(although still minority) indigenous
populations. Note that these areas
coincide with load shedding and both
high-risk, vulnerable regions 1 and 2.

Figure 2: Load shed (in the absence of undergrounding decisions and equity considerations), visual-
ized with red bubbles on the map, occurs almost exclusively in the vulnerable areas highlighted in
Figure 1. However, each of the social vulnerability indices fail to consistently capture these areas
as vulnerable; in all three cases, the percent of census tracts experiencing load shed which are cate-
gorized as “vulnerable” is either approximately as high (both Justice40 metrics, Figures 2a, 2b), or
substantially lower (SVI, Figure 2c) than the overall percentage of vulnerable tracts across the entire
state of Texas. Figure 2d shows that census tracts with larger (although still minority) indigenous
tracts exist in both vulnerable regions 1 and 2, and appear to be disproportionately subject to load
shed.

A lot of effort has gone into the design of vulnerability indices as Justice40 and SVI. How-
ever, the challenge in defining such an index is the necessary aggregation of the statistics
of a population in various census tracts. To explain this better, we first focus on Texas
and explain its socioeconomic geography and physical network characteristics that create
overlapping vulnerabilities. This overlap makes it difficult to reduce load shed from PSPS
events. Figure 1 shows how the less population dense areas of northern (Region 1) and
western (Region 2) Texas have higher concentrations of lines with higher wildfire ignition
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risk (Figure 1a), higher percentages of low-income households (Figure 1c), and higher per-
centage minority census tracts (Figure 1d); however, the cost to underground lines in central
and west Texas is also higher—in many cases surpassing $100 million per line (Figure 1b).
Furthermore, even when the budget is high enough to underground those lines, relatively
few individuals receive benefit due to the more rural location. The overlap between the lo-
cation of vulnerable communities and the cost to underground the power lines serving them
lends some intuition about why rural, low-income, minority, or high-wildfire-risk groups in
Texas may not be prioritized when allocating investments for power line undergrounding.
This is particularly harmful because, without power line undergrounding, these vulnerable
tracts are disproportionately subject to load shed. When relying only on power shutoffs
(and not undergrounding) to control wildfire ignition risk, Figure 2 shows that load is shed
predominantly in high-risk Regions 1 and 2.

Despite the fact that Regions 1 and 2 are subject to high wildfire-ignition risk, high like-
lihood of power outages in a PSPS event, and an anticipated lower likelihood of receiving
undergrounding investment, we also see in Figure 2 that the Justice40 and the CDC’s SVI
metrics do not identify these tracts experiencing power outages as being any more vulnerable
than the census tracts not experiencing power outages. A natural question is whether this is
due to 1) the fact that the Justice40 indices are nationally sorn, whereas the socioeconomic
and climate vulnerability within Texas might reflect different trends or 2) the fact that Jus-
tice40 defines general climate vulnerability as opposed to wildfire vulnerability, specifically.
To test this, we modified the Justice40 criteria to only consider Texas percentiles of wildfire
spread risk, as opposed to national percentiles of many types of climate risks (e.g. flood
risk, agriculture loss rate, wildlife loss, etc). Interestingly, even this “modified Justice40”
index fails to capture the vulnerability of the census tracts in the highlighted Regions 1 and
2 (Figure 2). Indeed, there are cumulative network effects that all three metrics (Justice40,
SVI, and modified Justice40) do not capture. In particular, we focus often in this work
on the impact on indigenous communities, since baseline models (i.e., models not including
any Policy constraints to protect vulnerable groups) for where to optimally de-energize
and underground lines result in maximum load shed on this population (Table 2a baseline
model, for more details, see Appendix D). We highlight in Figure 2d areas which bear most
of the load shed in the network, and it is clear that the vulnerability indices can only cap-
ture a part of the affected areas. In fact, indigenous populations are estimated (through our
simulations) to experience nearly twice as much load shed as the average Texas resident, yet
are no more likely to live in a Justice40, modified Justice40, or SVI tract than any other
Texas resident6. We hypothesize that this is because indigenous populations make up such
a small fraction of the total population of each census tract that their relative disadvantage7

is overlooked when other groups within the census tract are not disadvantaged.

The correlation plot shown in Figure 3 makes these observations more concrete. Figure
3 shows that while the characterization of a census tract as “vulnerable” by either the
Justice40, modified Justice40, or SVI metrics does correlate with socioeconomic notions of
vulnerability (shown in blue), in particular, the percent of the census tract that lacks health
insurance or is below the poverty line, these metrics fail to identify wildfire ignition risk
as a vulnerability metric, as well as identify minority indigenous communities within census
tracts who experience poverty at nearly twice the rate of white households in Texas as per the

6Our simulations in Table 5 of Appendix D.3 show that the indigenous groups experience approximately
2.52% of load demanded that is shed whereas the overall population experiences 1.22% of load demanded
that is shed when there is no undergrounding budget or equity objectives.

7An estimated 22.5% of indigenous American groups were below 125% of the poverty line compared to
13.3% of white and 24% of Hispanic groups, which are the other two groups prone to at- or above-average
load shed in this case. However, white and Hispanic groups made up 48% and 40% of the Texas population
respectively, and indigenous groups make up less than 1% of the Texas population. This makes aggregation a
likely explanation for the discrepancy in budget allocation and lack of characterization of indigenous groups
as belonging to Justice40 census tracts [25, 26, 27]
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GIDTR percentile below poverty line percentile indigenous percentile ignition risk

110093 65 94 88

120013 53 85 94

120013 57 94 94

220006 52 99 99

220020 52 99 99

220077 77 99 99

Table 1: A subset of census tracts categorized as “not vulnerable” for each of the three indices
(Justice40, Justice40 modified for Texas and wildfire risk, alone, and the CDC’s SVI metric).
See Table S1 in Appendix C.7 for the full list of such census tracts.

US Census Bureau’s 2022 ACS estimates [27, 25, 26]. When specifically investigating Texas
census tracts with high wildfire ignition risk as defined in the United States Geological Survey
(USGS) Wind-enhanced Fire Potential Index (WFPI), lower income, and a disproportionate
fraction of Texas’s indigenous population, we can verify that this combination is often missed
by all three indices: Justice40, modified Justice40, and the CDC’s SVI. Table 1 shows
a subset of census tracts that the Justice40, modified Justice40, and SVI criteria fail to
designate as vulnerable, despite being above the 50th percentile for low income, and at very
high percentiles for ignition risk (over 88%) and the fraction of the census tract that is
indigenous (over 85%). For the full list of these census tracts, see Appendix C.7.

To analyze the effects of an equitable resource allocation according to the Justice40 frame-
work, we solve a MIP with the objective of minimizing the total network load shed subject
to power flow constraints, budget constraints, limits on acceptable levels of wildfire ignition
risk (per line, and across the whole network), and Policy constraints. From this framework,
we want to understand three main factors:

1. Who is subject to power outages?
2. What proportion of the investment is allocated to different groups?
3. Who gets most of the benefit from the investment?

In other words, do the Policy constraints result in the intended effect?

Policy Constraints Alone Yield Little to No Improvement We find that when we
do incorporate Policy constraints either by proportionally allocating 40% of the budget or
by proportionally allocating 40% of the load shed reduction to vulnerable (e.g., Justice40,
modified Justice40 or SVI) tracts, indigenous populations see no per capita reductions in
load shed compared to the baseline case (when no Policy constraints are used). In fact,
Figure 4b shows how every racial group—including indigenous groups—experiences more
load shed after either Justice40 Policy constraint is implemented, even though the budget
allocation does becomes increasingly allocated to indigenous groups. It is likely that the
discrepancy in the allocation of budget and the corresponding benefits (in terms of alleviat-
ing power outages) stems from Policy constraints channeling funds towards census tracts
with lower population density or tracts where the cost to underground power lines is higher.
Consequently, although the per capita investment for indigenous groups may be more sub-
stantial, the per capita reduction in load shed remains unimproved. We discuss the data in
more detail in the next section.

Potential Solution using Group-Level Protections. From the above-mentioned re-
sults, it is clear that protecting indigenous populations from load shed is challenging due to
their minority status in each census tract and their residence in areas where undergrounding
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Figure 3: Vulnerability metrics (in black text labels) are positively correlated with each other, as
well as by lack of health insurance, impoverished status (blue text labels), and percentage of the
tract that is hispanic. Percentage white is negatively correlated with each of these, and percentage
indigenous and wildfire risk maintain close to no correlation. The fact that wildfire ignition risk
is not correlated with these vulnerability metrics shows a failure of these metrics to quantify this
type of climate risk. The fact that indigenous groups do not correlate with measures of vulnerability
imply a data aggregation issue, as US Census Data shows higher poverty rates among indigenous
communities [25, 26, 27].

is expensive and wildfire ignition risk is high.8 This motivates the advantage of employing
group-level protections to ensure that each population group of interest (e.g., racial groups) is
able to receive the appropriate level of resources. We can employ group-level protections by
implementing a percentage-based Min-Max Fairness (MMF) framework in the optimization
model when making undergrounding and de-energization decisions. That is, instead of using
our standard objective to minimize total load shed in the network, we can instead minimize
the maximum percentage of a group’s load that is shed, which we refer to as the Equity
objective. By using this percentage-based MMF framework, we account for the total load
demanded by each group, allowing the program to mitigate the effects of minority status on
the likelihood that a group receives relief from load shed. We summarize the results of using
any combination of Equity objective and Policy constraint for a $1 billion budget in Table
2. Table 2 shows the percent of each group’s load demanded that is shed and an “unfairness”
ratio, which is the ratio of the group’s percent load shed to the overall population’s percent
load shed.

Our baseline model (M1) in Table 2a seeks to minimize the total load shed in the network
(i.e., there is no Equity objective) subject to power flow and budget constraints only (i.e.,
there are no Policy constraints). Under this baseline for a $1 billion budget, indigenous

8Note that low income communities may be more likely to reside in high wildfire risk areas given lower
housing prices in wildfire-prone areas [28].
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(a) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under only policy constraints when there is a $1 billion budget allocated
for power line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Unfairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

Baseline - M1 None None
0.33

(1.0)

0.37

(1.12)

0.33

(1.0)

0.48

(1.45)

0.29

(0.88)

0.07

(0.21)

0.97

(2.94)

0.08

(0.24)

M2 Justice40

Proportional

Budget

Expenditure

0.35

(1.0)

0.41

(1.17)

0.34

(0.97)

0.48

(1.37)

0.34

(0.97)

0.06

(0.17)

1.07

(3.06)

0.07

(0.2)

M3 Justice40

Proportional

Load Shed

Reduction

0.45

(1.0)

0.46

(1.02)

0.4

(0.89)

0.58

(1.29)

0.47

(1.04)

0.07

(0.16)

1.41

(3.13)

0.12

(0.27)

M4
Justice40

(Modified)

Proportional

Budget

Expenditure

0.35

(1.0)

0.41

(1.17)

0.34

(0.97)

0.49

(1.4)

0.34

(0.97)

0.06

(0.17)

1.09

(3.11)

0.07

(0.2)

M5
Justice40

(Modified)

Proportional

Load Shed

Reduction

0.8

(1.0)

0.88

(1.1)

0.77

(0.96)

0.96

(1.2)

0.8

(1.0)

0.49

(0.61)

1.29

(1.61)

0.26

(0.33)

M6 SVI

Proportional

Budget

Expenditure

0.37

(1.0)

0.42

(1.14)

0.34

(0.92)

0.51

(1.38)

0.35

(0.95)

0.07

(0.19)

1.18

(3.19)

0.08

(0.22)

M7 SVI

Proportional

Load Shed

Reduction

0.37

(1.0)

0.43

(1.16)

0.37

(1.0)

0.49

(1.32)

0.37

(1.0)

0.05

(0.14)

0.88

(2.38)

0.07

(0.19)

(b) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under the Equity objective and Policy constraints when there is a $1
billion budget allocated for power line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Unfairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low

Income
Hispanic White Black Indigenous Asian

Equity - M8 None None
0.55

(1.0)

0.55

(1.0)

0.46

(0.84)

0.67

(1.22)

0.61

(1.11)

0.08

(0.15)

0.75

(1.36)

0.16

(0.29)

Equity - M9 Justice40

Proportional

Budget

Expenditure

0.51

(1.0)

0.55

(1.08)

0.45

(0.88)

0.67

(1.31)

0.52

(1.02)

0.07

(0.14)

0.75

(1.47)

0.11

(0.22)

Equity - M10 Justice40

Proportional

Load Shed

Reduction

0.72

(1.0)

0.63

(0.88)

0.62

(0.86)

0.71

(0.99)

0.71

(0.99)

0.7

(0.97)

0.79

(1.1)

0.71

(0.99)

Equity - M11
Justice40

(Modified)

Proportional

Budget

Expenditure

0.56

(1.0)

0.59

(1.05)

0.5

(0.89)

0.69

(1.23)

0.6

(1.07)

0.14

(0.25)

0.77

(1.38)

0.12

(0.21)

Equity - M12
Justice40

(Modified)

Proportional

Load Shed

Reduction

1.19

(1.0)

1.0

(0.84)

1.02

(0.86)

1.14

(0.96)

1.14

(0.96)

1.14

(0.96)

1.27

(1.07)

1.14

(0.96)

Equity - M13 SVI

Proportional

Budget

Expenditure

0.56

(1.0)

0.61

(1.09)

0.51

(0.91)

0.7

(1.25)

0.59

(1.05)

0.18

(0.32)

0.79

(1.41)

0.13

(0.23)

Equity - M14 SVI

Proportional

Load Shed

Reduction

0.57

(1.0)

0.56

(0.98)

0.46

(0.81)

0.67

(1.18)

0.66

(1.16)

0.09

(0.16)

0.75

(1.32)

0.11

(0.19)

Table 2: Percentage load shed across different groups, for all combinations of Equity objective
(group-level protections) and Policy constraints with a $1 billion budget. The red cells indicate
that the % load shed is above a threshold of 1%, and the red, bolded text indicates groups expe-
riencing over 1.1 times the percent load shed of the overall population. Note that for all models
not employing the Equity objective,indigenous populations experience both disproportionately
high load shed, as well as relatively unfair load shed. Similarly, hispanic and uninsured groups
also experience relatively unfair percentages of load shed. Incorporating the Equity objective
reduces much of this unfairness, and, with the exception of M12, leads to acceptable load shed
for each remaining group. From these two criteria, M10 has the best performance. We note
that these results were run up to at most a 5 percent optimality gap in the MIP.
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populations experience 0.97% of load shed, which is almost three times higher than that of
the overall population. Next, we test various optimization models that try to minimize the
total load shed in the network, while ensuring that 40% of the benefit goes to vulnerable
tracts (using Policy constraints), in models M2 to M7. For each of these, with the exception
of M7, Table 2a shows a consistently higher percent of load shed for indigenous populations,
thus, not having a considerable impact on protecting these vulnerable communities. Even
for model M7, the indigenous load shed reduction is minimal, with an improvement of only
0.04% over the baseline. We also observe that, in general, no group is substantially “better
off” (in terms of percent of load shed) after implementing Policy constraints—in fact, they
are usually worse off—and the modified Justice40 index type performs markedly more poorly
than the other indices, despite being more specific to Texas and focusing on wildfire hazards.

Next, we add group-level protections using Equity objectives to minimize the maximum
percentage of load shed across various groups. This model still has budget and power flow
constraints, and we also consider models with both an Equity objective and Policy con-
straints. The results for these models M8-M14 are reported in Table 2b. Indeed, we can
see that, with the exception of M12, using Equity objectives with and without policy
constraints, reduces the percentage of load shed across all populations to be within 0.80%.
While all other groups experience some increase in percent load shed, these increases are
fairly reasonable; for example, in model M10, the percent of load shed experienced by Asian
households increases from 0.08% (baseline) to 0.71%, which is a large jump nominally, but
still meets the sub-1% threshold for what we consider to be an acceptable percentage of load
shed. Furthermore, this 0.71% figure is very similar to other load shed percentages expe-
rienced by other groups in model M10. With the exception of black and Asian households
who experience disproportionately low load shed in any case, the load shed across the other
groups is fairly balanced, with differences between groups being less than 0.3% for M8-11,
M13-14. This is reflected also in the reduced unfairness scores in Table 2b. While indigenous
and Hispanic groups still face more than 1.1 times the overall load shed in many cases, these
unfairness ratios are significantly lower than those shown in Table 2a. For M10, we see that
we achieve both relative fairness and acceptable levels of load shed for all groups considered.

Overall, we show a significant benefit of using Equity objectives along with Policy con-
straints derived from Justice40 vulnerability indices, where the latter alone are unable to
provide low load shedding protections to indigenous populations. While Table 2 only shows
the results for the $1 billion budget, we note that the MMF framework which promotes the
most load shed relief for indigenous groups under the $1 billion budget also promote load
shed relief compared to the baseline at the $500 million and $750 million budgets (see the
the figures in Appendix D.2). Hence, we find that in order to see meaningful reductions in
indigenous load shed and keep the load shed of other groups below a reasonable threshold,
our study finds two requirements: 1) a sufficiently high budget, in our case, at least $500
million, and 2) a MMF framework that minimizes the maximum percentage of a group’s
load demanded that is shed. This latter requirement is necessary to place indigenous groups
on equal priority with different racial, ethnic, and other groups which make up a higher
percentage of Texas’ total population.

Discussion

In this paper, we consider how to make power line undergrounding and de-energization deci-
sions in wildfire-prone regions as a multi-criteria decision with the following considerations:
(i) we want to have minimal (or close to minimal) total load shed in the network, (ii) we
would like the total wildfire ignition risk in the network to remain within set limits, and (iii)
we would like to allocate benefits fairly across various groups. While considerations (i) and
(ii) are relatively straightforward, developing a “fair” allocation policy (iii) is significantly

9



(a) Normalized cost allocated to group in the baseline case (no equity constraints) (left), the case
when constraining 40% of the budget to go to Justice40 communities (center), and the case when
constraining 40% of load shed reduction to go to Justice40 communities (right).

(b) Percent of load demanded that is shed by racial group in the baseline case (no equity con-
straints) (left), the case when constraining 40% of the budget to go to Justice40 communities
(center), and the case when constraining 40% of load shed reduction to go to Justice40 communi-
ties (right).

Figure 4: The top row in this figure shows normalized cost allocated to each racial group. We
see that there is negligible investment differences in between the baseline case (top left) and the
case where we constrain 40% of the budget to go to Justice40 (top center). At $1 billion allocated,
the Justice40 budget constraint provides less budget than the baseline to indigenous groups. If we
constrain 40% of load shed improvement to go to Justice40 groups (top right), indigenous groups see
their investment per capita more than doubling over the baseline once a $750 million investment is
reached. However, this budget allocation increase does not translate to load shed reduction. The
bottom row of the figure shows load shed trends by racial group remain relatively consistent
across each of these constrained cases. In fact, at $750 million investment, indigenous load shed is
higher when adding the Justice40 constraint for load shed improvement than the baseline case, at
0.136 kWh shed per indigenous person versus 0.110 kWh shed per indigenous person.

more challenging. Ideally, we would like to preferentially protect populations that are both
more likely to experience emergency power shutoffs and less likely to effectively cope with
the negative impacts of power outages.

First, we analyzed Justice40 notions of fairness through Policy constraints in a MIP model
of a high-fidelity, synthetic transmission network in Texas [22] with the objective of mini-
mizing total network load shed. Specifically, we considered constraints that proportionally
allocate 40% of the total budget to vulnerable communities or proportionally allocate 40%
of the total load shed reduction to vulnerable communities as defined by three vulnerability
indices: the Justice40 index, the SVI, and a modified Justice40 index that only accounts
for Texas percentiles of wildfire risk. The optimal solution to these programs generally led
to increased load shed outcomes for all racial and socioeconomic groups. In particular,
these Policy constraints often fail to protect indigenous populations who experience nearly
double the poverty rate and double the anticipated load shed as the average Texan. We
believe the reasons for the misalignment between the intent of the Justice40 initiative with
each of the vulnerability indices and the realized benefit (or lack thereof) to indigenous and
high-risk communities after implementing Policy constraints is due to (i) information loss
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due to data aggregation, and (ii) lack of context-specific vulnerability criteria. Indeed, the
challenge of using any vulnerability index (including existing indices like the Justice40 and
SVI metrics) lies in the fact that the creating the index requires some degree of data ag-
gregation, which leads to homogenization of the population of a census tract and conceals
vulnerable minority populations. Further, since climate impact is so diverse in the factors
that result in compounded vulnerability of populations, we believe that factors such as ig-
nition risk, forest cover, humidity (i.e., wildfire risk predictors) coupled with socioeconomic
vulnerability indicators would be more appropriate to consider for mitigating wildfire risk,
although we note that the “curse of aggregation” would still apply. Indeed, we showed that
when modifying the Justice40 initiative criteria to only consider Texas wildfire spread risk
(as opposed to national percentiles of a plethora of different, often unrelated climate risks),
we had similarly poor load shed outcomes for indigenous groups.

The inability of these aggregated vulnerability indices to identify and appropriately allocate
resources to vulnerable minority populations motivates the use of explicit group protections.
Percentage-based equity objectives like the percentage-based MMF objective are group-size
conscious, which prevents minority subpopulations within census tracts from being over-
looked during the optimization routine in a way that vulnerability indices cannot. Further-
more, such an objective, by construction, balances “fair” load shed outcomes with total
load shed in the network. While group-size-conscious allocation mechanisms may not be
advantageous in certain contexts, the inability of the Justice40 and SVI metrics to identify
indigenous disadvantage makes this particular context of budget allocation for power line
undergrounding a feasible candidate for a group-size-conscious allocation policy. We note
that our results about higher indigenous load shed under emergency power shutoff policies
may not be strictly generalizable to other wildfire-prone regions with different network ge-
ometries and demographic distributions (e.g., California), but our general warning about the
possibility of overlooking vulnerable minority groups within census tracts is still applicable.

In conclusion, we showed that percentage-based, MMF-fair objectives are able to protect the
interest of vulnerable minority groups within census tracts once a sufficient budget, in this
case, at least $500 million, is allocated. This contrasts with the load shed results when using
policy constraints alone. Since data aggregation is necessary to form a vulnerability index,
disadvantaged populations can not be protected by vulnerability indices if they form a small
or negligible proportion of a census tract. Furthermore, when using policy constraints alone,
lack of context-specificity in defining who is vulnerable prevents a generalized policy from
being helpful in a specific setting.

Methods

We use a Mixed Integer Program (MIP) to simulate operation of a synthetic Texas trans-
mission network. Pre-processing steps allocate population to each node on the network and
wildfire ignition risk to each line of the network. Using a Bθ DC power flow approximation,
daily operational decisions are made to dictate generation, necessary load shed, and line
de-energization choices to meet an acceptable risk threshold. In addition, a single set of
undergrounding investment decisions are made across the simulated time periods. For these
results, we simulate a representative high-risk five-day period in July 2021. From these sim-
ulations, budget allocation and load shed can be attributable to different groups. Complete
mathematical models are defined in Appendix B.
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A Case Study

In this section, we discuss the elements of our case study. First, we discuss the synthetic
network used in our study, previewing some of the characteristics of the network that make
optimization for equity meaningful. Then, we discuss the data used to inform our models,
including how we define risk in the case study.

A.1 Synthetic Network

In this study, we use the synthetic Texas7k transmission network test case, developed by
the Texas A&M PERFORM group. This test case provides a realistic approximation of the
area covered by the Electric Reliability Council of Texas (ERCOT) [34, 22]. Synthetic grids
like Texas7k are useful because they mimic the characteristics of actual grids [22] while not
disclosing sensitive data about the properties of these grids, including locations of power
lines and generators and the amount of load. For these reasons, synthetic networks have are
frequently used in related research [35, 16, 36].

Figure 5: Population served by each bus in the
Texas7k transmission network where each dot rep-
resents a bus and each line is a transmission line.
The size of the dot corresponds to the amount of
population served at that bus.

While Texas does not currently use orga-
nized PSPS events, Texas has experienced
more than 4,000 power line-caused wildfires
from 2011-2014 [37], as well as unplanned
rolling blackouts from extreme weather [38],
making PSPS events a possible future solu-
tion. More recently, the Smokehouse Creek
fire was potentially ignited by power infras-
tructure sparking the largest wildfire in the
state of Texas [39]. Furthermore, the in-
crease in power outages due to ice storms
and other extreme weather in Texas has led
to increased popularity of line underground-
ing as a method of preventing these rolling
blackouts [40].

A.1.1 Hourly Loads

We consider time indices representing one-
hour periods and select T = 120 to model
5 days during a high wildfire risk time of
year to give a representative operational
time span. However, the Texas7k test case
[34, 22] provides a single snapshot of nom-
inal load demands. The multi-period opti-
mization problem considered in this paper
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requires extending these test cases with time-varying load profiles. For this purpose, we
modify the nominal loads according to the hourly, daily, and weekly scaling factors derived
in [41] to create hourly load curves for each day during the representative time span.

A.1.2 Demographic Data

To make generalizations about the impact of switching and line undergrounding on the
overall Texas population, the synthetic transmission network needs to be augmented with
demographic data. We use the census tract definitions that were in effect from 2010-2020.
The demographic group variables of interest include the census tracts and their associated to-
tal populations, number of individuals in each demographic group (e.g., race, below-poverty
line, insurance status, etc.). The vulnerability groups of interest are defined by the Justice40
initiative and the CDC’s SVI. While the Justice40 initiative gives us the vulnerable tracts
directly, we select vulnerable tracts from the CDC’s SVI metric by considering tracts that
are at or above the 75th percentile of at least one of four different categories of burden. For
more background on each of these metrics, as well as the datasets and data types used in
this study, see Appendix C. We attribute the demographic data from each census tract to
each load-supplying bus in the Texas7k network using the procedure outlined in Appendix
C.C.6.

B Grid and Switching Model

We first introduce the framework used to model line switching from PSPS events on an
electric power transmission network. Then, we discuss modifications to this model to incor-
porate line undergrounding and the addition of equity considerations. This section will be
fairly general and high-level, as to be applicable to other case studies. Appendix C discusses
the data sources and assumptions specific to our case study.

B.1 Network Description

Following standard modeling approaches in power engineering, we consider an electric trans-
mission network comprised of buses (nodes) connected by power lines (edges). Each line has
a rated limit indicating the capacity for power to traverse that line along with other parame-
ters to model the physical characteristics. Each bus can have an associated set of generators
that produce power and an amount of load that consumes power. As is commonly the
case in transmission planning contexts, the system is modeled using the DC power flow
approximation which is described further in Appendix BB.3.

B.2 Parameter and Variable Definitions

For a given network, let N be the set of buses, L be the set of transmission lines, and G
be the set of generators. Let T = {1, . . . , T} be the considered set of time indices over the
period of a day, where T is the final time period. Let D = {1, . . . , D} be the considered set
of days, where D is the final day. We define a 100 MVA per unit (p.u.) base power. The
following network parameters are provided for all lines ℓ ∈ L:

• bℓ, line susceptance in p.u.,

• f
ℓ
, the power flow limit in p.u.,

• rℓd, the wildfire risk incurred if line ℓ is energized on day d as a unitless non-negative
number,
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• nℓ,to and nℓ,fr, to and from buses, respectively, where positive power flows from the
from bus to the to bus,

• δ
ℓ
and δℓ, upper and lower voltage angle difference limits in radians, respectively,

• lℓ, line length in miles.

L is further divided in to Lhighd , Lmed
d , and Llowd to indicate the set of lines that have high,

medium, or low wildfire risk on day d, respectively. These categories are further described
in Appendix B.C.5. For all generators i ∈ G, define the parameters:

• pig and pi
g
, upper and lower power generation limits, respectively, in p.u.,

• ni, bus at which generator i is located.

For all buses n ∈ N , define the parameters:

• pnl,d,t, power demand (load) at bus n at time period t ∈ T on day d ∈ D in p.u.,
• Gn, the set of generators located at bus n,
• Ln,to and Ln,fr, the subset of lines ℓ ∈ L with bus n as the designated to bus and bus
n as the designated from bus, respectively.

The operation of the network during a multi-time-period PSPS event is characterized by the
following set of variables using the BΘ representation of the DC power flow model:

• pig,d,t, power generated at unit i ∈ G at time period t ∈ T on day d ∈ D in p.u.,
• θnd,t, voltage angle at bus n ∈ N at time period t ∈ T on day d ∈ D in radians,
• pnls,d,t, load shedding at bus n ∈ N at time period t ∈ T on day d ∈ D in p.u.,

• f ℓ
d,t, power flowing from bus nℓ,fr to bus nℓ,to along line ℓ ∈ L at time period t ∈ T on
day d ∈ D in p.u.,

• zℓd ∈ {0, 1}, state of energization of line ℓ ∈ Lhighd and ℓ ∈ Lmed
d on day d ∈ D. If

zℓd = 0, then line ℓ is de-energized, and if zℓd = 1, then line ℓ is energized. Note that
the line’s energization state is constant for all t ∈ T on day d ∈ D. For all ℓ ∈ Llowd ,

zℓd = 1. Let Lswitch
d = Lhighd ∪ Lmed

d

B.3 Operational and Physical Constraints

We define the following constraints for the DC Operational Transmission Switching Problem
(DC-OTS),

pi
g
⩽ pig,d,t ⩽ pig, ∀i ∈ G, ∀d ∈ D, ∀t ∈ T , (1a)

0 ⩽ pnls,d,t ⩽ pnl,d,t, ∀n ∈ N , ∀d ∈ D, ∀t ∈ T , (1b)

−f ℓ
zℓd ⩽ f ℓ

d,t ⩽ f
ℓ
zℓd, ∀ℓ ∈ Lswitch

d , ∀d ∈ D, ∀t ∈ T ,
(1c)

−f ℓ
⩽ f ℓ

d,t ⩽ f
ℓ
, ∀ℓ ∈ L \ Lswitch

d , ∀d ∈ D, ∀t ∈ T ,
(1d)

δℓzℓd +M(1− zℓd) ⩽ θn
ℓ,fr

d,t − θn
ℓ,to

d,t ⩽ δ
ℓ
zℓd +M(1− zℓd) ∀ℓ ∈ Lswitch

d , ∀d ∈ D, ∀t ∈ T ,
(1e)

δℓ ⩽ θn
ℓ,fr

d,t − θn
ℓ,to

d,t ⩽ δ
ℓ
, ∀ℓ ∈ L \ Lswitch

d , ∀d ∈ D, ∀t ∈ T ,
(1f)

−bℓ(θnℓ,fr

d,t − θn
ℓ,to

d,t ) + |bℓ|M(1− zℓd) ⩽ f ℓ
d,t ⩽ −bℓ(θn

ℓ,fr

d,t −θn
ℓ,to

d,t ) + |bℓ|M(1− zℓd),

∀ℓ ∈ Lswitch
d , ∀d ∈ D, ∀t ∈ T ,

(1g)
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−bℓ(θnℓ,fr

d,t − θn
ℓ,to

d,t ) ⩽ f ℓ
t ⩽ −bℓ(θnℓ,fr

d,t − θn
ℓ,to

d,t ), ∀ℓ ∈ L \ Lswitch
d , ∀d ∈ D, ∀t ∈ T ,

(1h)∑
ℓ∈Ln,fr

f ℓ
d,t −

∑
ℓ∈Ln,to

f ℓ
d,t =

∑
i∈Gn

pig,d,t − pnl,d,t + pnls,d,t, ∀n ∈ N , ∀d ∈ D, ∀t ∈ T . (1i)

where (1a) enforces lower and upper generation limits, (1b) constrains any load shedding
to be nonnegative and less than the load demanded at that time at that bus, (1c) and (1d)
enforce line flow limits, (1e) and (1f) constrain angle differences across lines, (1g) and (1h)
model the DC power flow approximation, and (1i) ensures power balance at all buses in
the network. In equations (1e) and (1g), M and M are big-M constants and are set to 2π
and −2π respectively for the numerical experiments in this paper. Note that when a line is
energized (i.e., zℓ = 1), (1e) simplifies to (1f) and (1g) simplifies to (1h).

We then constrain the total risk from all energized above-ground lines to be below a given
threshold, RPSPS , on each day:∑

ℓ∈L
zℓdr

ℓ
d ≤ RPSPS ∀d ∈ D. (2)

B.4 Line Undergrounding Formulation

In this paper, we discuss line undergrounding as a method of line hardening. This work could
be replicated or extended with other types of line hardening, including structural upgrades
to power infrastructure, line insulation, and cutting back vegetation surrounding power lines.
Let the subset Lharden ⊆ L be the set of lines that are candidates for hardening/maintenance

where Lharden = Lhighd

⋃
d∈D Lmed

d . We assume users have access to the following parameters:

i) β ∈ [0, 1], the proportional reduction in wildfire risk due to line hardening or mainte-
nance measures. Note: for undergrounding considered in this paper, we choose β = 1,
i.e., undergrounding a line entirely eliminates the line’s ignition risk,

ii) ϕℓ
ug, the cost of undergrounding line ℓ in millions of dollars per line.

For all ℓ ∈ Lharden, we introduce the variable yℓ ∈ {0, 1}, which indicates whether a line has
been undergrounded (yℓ = 1) or not (yℓ = 0). Note for ℓ ∈ L \ Lharden, we set yℓ = 0.

We assume that the entire length of line ℓ is undergrounded. Hardening partial segments of
lines may provide better outcomes by targeting investments in specific areas; however, this
does not change the fundamental characteristics of the problem. Extensions can be made to
consider partial undergrounding such as in [42], though this paper does not include a power
flow model.

There is no benefit to simultaneously hardening and de-energizing a line since de-energizing
a line reduces its risk to zero while hardening a line reduces the risk by β at a cost of ϕℓ

ug

per mile. Thus, we impose the following constraint to prevent simultaneous de-energizing
and hardening a line:

zℓd = yℓ, ∀ℓ ∈ Lhighd , ∀d ∈ D. (3)

(1− zℓd) + yℓ ⩽ 1, ∀ℓ ∈ Lmed
d , ∀d ∈ D. (4)

We note that (3) ensures lines in the highest-risk category are either off (de-energized) or
undergrounded, removing the risk by one method or the other. Alternatively, (4) allows
for the lines in the medium-risk category to optionally be de-energized, undergrounded, or
left above ground and energized. Regardless, in both categories, undergrounded lines will
remain energized.
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We introduce a budget, B (in millions of dollars) to limit the resources available for line
undergrounding. We use a conservative fixed cost of $7 million per mile for undergrounding
[43]. The total cost of undergrounding is precomputed as ϕℓ

ug, defined above. This introduces
the following constraint: ∑

ℓ∈Lharden

ϕℓ
ugy

ℓ ⩽ B. (5)

With the inclusion of undergrounding, we can reformulate equation (2) to∑
ℓ∈L

rℓd(z
ℓ
d − yℓ) ⩽ RPSPS , ∀d ∈ D. (6)

B.5 Equity Considerations

A set of demographic features is assigned to each bus based on the demographic features
of nearby census tracts (see Appendix C.6 for the procedure). There are two main feature
types that we consider for this study: “demographic” characteristics and “vulnerability”
characteristics. Demographic characteristics (such as income bracket or racial group), are
characteristics which partition the population, and, while possibly correlated with vulnera-
bility, do not imply vulnerability directly. Vulnerability characteristics, on the other hand, is
a binary indicator variable which assigns a 1 to census tracts that meet a given definition of
vulnerability, and otherwise assigns a 0. We consider two ways of promoting group fairness,
given these two types of features:

1. We can minimize disparate impacts of load shedding across different demographic
groups by altering the objective. In particular, we can do this by implementing group
protections by minimizing the maximum percent of a group’s load demanded that is
shed. In the study, we call these equity objectives. In general, the literature often
refers to such objectives as MMF objectives.

2. We can preferentially allocate resources to groups with vulnerability characteristics
by imposing proportionate policy-level constraints to enforce that either i) a certain
percentage of the budget must be allocated to vulnerable populations, or ii) certain
amount of mitigated load shed is attributable to vulnerable populations. To stay in
line with the Justice40 initiative, we choose this proportion to be 40% of the budget
or load shed reduction, respectively. In the study, we call these policy constraints.

The following subsections show how to modify the base model to account for the incorpora-
tion of equity into the model.

B.5.1 Fairness Parameters

To introduce equitable considerations in to our problem, we introduce the following demo-
graphic parameters for any demographic group m ∈M :

• absn,m represents the absolute population at bus n of demographic m,
• pctn,m represent the percentage of the population at bus n that belongs to demographic
m,

• vmn, the percentage of population at bus n that belongs to vulnerable populations
based on a given metric

We then have the aggregate parameters lstot,0 and lsvm,0 which represent the total load
shed seen with a budget of 0 for a given objective and the total load shed associated with
vulnerable populations with a budget of 0 for a given objective, respectively.
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From here, we can define the percentage of load demanded by each demographic group that
is shed. Note, we assume that load at a bus is allocated proportionally by the populations
present at the bus. First we define the total load shed attributable to each group, Pls,m, and
the total load demanded by each group, Pd,m:

Pls,m =
∑
d∈D

∑
t∈T

∑
n∈N

pctn,mpnls,t,d,

Pd,m =
∑
d∈D

∑
t∈T

∑
n∈N

pctn,mpnd,t,d.

B.5.2 POLICY Constraints

We introduce two constraints that serve to prioritize vulnerable populations. One emphasizes
the allocation of budget to vulnerable communities. The other ensures load shed reduction
is seen by vulnerable populations as budget is increased.

Budget Constraint We introduce a constraint that ensures 40% of the budget spent on
line undergrounding is associated with the vulnerable populations. To do this, we model the
cost of underground line ℓ, ϕℓ

ug, as being split equally between the two buses at each end of

the line, nℓ,to and nℓ,fr. We then define the budget spent on vulnerable populations as:

vmbud =
∑
ℓ∈L

yℓ
ϕℓ
ug

2
(vmnℓ,to + vmnℓ,fr) .

To ensure budget is allocated according to the vulnerable populations, we enforce:

vmbud ≥ 0.4 ∗B. (7)

Load Shed Reduction Constraint We introduce a constraint that ensures 40% of the
reduction in load shed compared to the zero-budget case within the same objective is seen
by vulnerable populations. We then define the load shed seen by vulnerable populations as:

lsvm =
∑
d∈D

∑
t∈T

∑
n∈N

pnls,d,tvmn.

Next we calculate the total load shed in the network given this combination of constraint
and budget:

lstot =
∑
d∈D

∑
t∈T

∑
n∈N

pnls,d,t.

Then to ensure load shed reduction is seen by vulnerable populations:

lsvm,0 − lsvm
lstot,0 − lstot

≥ 0.4. (8)

B.6 Objectives

We now introduce three different types of objectives. First, a baseline objective that seeks to
minimize the total load shed in the network. Then, an objective to minimize the maximum
percent of load demanded that is shed.
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B.6.1 Baseline

Our baseline objective is to minimize total load shed in the network. Let P be the total
demand in the network over all time periods and S represent the proportional load shedding
in the network over the given time periods:

P =
∑
d∈D

∑
t∈T

∑
n∈N

pnd,t,d,

S =
1

P

(∑
d∈D

∑
t∈T

∑
n∈N

pnls,t,d

)
. (9)

The objective function becomes

min
pg ,θ,f,pls,z,y

(9) s.t. (1), (3)− (6). (10)

With the inclusion of the policy constraints described in Section B.5.2, the objective be-
comes (11) or when considering budget (12):

min
pg ,θ,f,pls,z,y

(9) s.t. (1), (3)− (6), (7) (11)

min
pg ,θ,f,pls,z,y

(9) s.t. (1), (3)− (6), (8). (12)

B.6.2 EQUITY Objectives

We attempt to minimize the maximize disparity seen across a set of demographics groups,
M . We implement an equity objective that considers the percentage of load demanded that
is shed. A percentage-based MMF framework is preferable in this context because minority
groups are given more weight in the MIP objective than a nominal MMF framework. The
nominal framework would be more likely to overlook small minority groups with relatively
little load shed compared to the total load shed on the network.

Under this Equity objective, we define the auxiliary variable, auxpct, to minimize the
maximum proportional load demanded that is shed across each group:

Pls,m

Pd,m
≤ auxpct ∀m ∈M. (13)

We define the following MIP to minimize the maximum percent load shed across groups:

min
pg ,θ,f,pls,z,y

auxpct s.t. (1), (3)− (6), (13). (14)

With the inclusion of the policy constraint considering budget, the objective becomes (15)
or when considering load shed reduction, (16):

min
pg ,θ,f,pls,z,y

auxpct s.t. (1), (3)− (6), (7), (13) (15)

min
pg ,θ,f,pls,z,y

auxpct s.t. (1), (3)− (6), (8), (13). (16)

See Table 3 for a list of all models considered in this study.

C Data

In this appendix, we discuss the data sources used for this study.
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Policy Constraint
Model Objective

Vulnerability Index Constraint Type

Baseline - M1 min total load shed ((9)) N/A N/A

M2 min total load shed ((9)) Justice40
Prop. Budget Expenditure,

i.e., vmbud ≥ 0.4B (7)

M3 min total load shed ((9)) Justice40
Proportional Load Shed Reduction

i.e.,
lsvm,0−lsvm
lstot,0−lstot

(8)

M4 min total load shed ((9)) Justice40 (Mod.)
Prop. Budget Expenditure,

i.e., vmbud ≥ 0.4B (7)

M5 mine total load shed ((9)) Justice40 (Mod.)
Proportional Load Shed Reduction

i.e.,
lsvm,0−lsvm
lstot,0−lstot

(8)

M6 min total load shed ((9)) SVI
Prop. Budget Expenditure,

i.e., vmbud ≥ 0.4B (7)

M7 minimize the total load shed ((9)) SVI
Proportional Load Shed Reduction

i.e.,
lsvm,0−lsvm
lstot,0−lstot

(8)

Equity-M8 minmaxracial group g percentage load shed for group g ((13)) N/A N/A

Equity-M9 minmaxracial group g percentage load shed for group g ((13)) Justice40
Prop. Budget Expenditure,

i.e., vmbud ≥ 0.4B (7)

Equity-M10 minmaxracial group g percentage load shed for group g ((13)) Justice40
Proportional Load Shed Reduction

i.e.,
lsvm,0−lsvm
lstot,0−lstot

(8)

Equity-M11 minmaxracial group g percentage load shed for group g ((13)) Justice40 (Mod.)
Prop. Budget Expenditure,

i.e., vmbud ≥ 0.4B (7)

Equity-M12 minmaxracial group g percentage load shed for group g ((13)) Justice40 (Mod.)
Proportional Load Shed Reduction

i.e.,
lsvm,0−lsvm
lstot,0−lstot

(8)

Equity-M13 minmaxracial group g percentage load shed for group g ((13)) SVI
Prop. Budget Expenditure,

i.e., vmbud ≥ 0.4B (7)

Equity-M14 minmaxracial group g percentage load shed for group g ((13)) SVI
Proportional Load Shed Reduction

i.e.,
lsvm,0−lsvm
lstot,0−lstot

(8)

Table 3: Summary of all models considered in this work.

C.1 US Census Data

We obtained demographic data for each of the Texas census tracts whose power is supplied
by ERCOT from US Census Data. While Texas was most recently re-districted in 2021 [44],
certain important data fields were not available on these new districts, so we utilized the
old districting maps that were in place from 2010 to 2020. To obtain data by census tract
for total population, median income, and number of individuals in each racial group, we
used the 2019 Planning Database, version 2 [45]. To get the latitude and logitude of the
center of population for each census tract, we used center of population data from the 2010
Decennial census [46], which was the most recently available center of population data for
this districting.

C.2 The Justice40 Initiative

The Justice40 initiative was established in Executive Order 14008 in January 2021 by the
Biden-Harris administration. The Justice40 initiative maintains that 40% of the “benefits”
of government investment in transportation, power, environmental, and other systems should
flow to “disadvantaged communities” [13], which, at a US Census Tract level, have already
been defined on the basis of income, energy access, housing access, and environmental bur-
den. In general, according to the US Council on Environmental Quality [47], to qualify for
the Justice40-designation, a census tract must either

a) “meet the thresholds for at least one of the tool’s categories of burden,” or

b) be “within the boundaries of a federally recognized tribe.”

The former generally requires that a census tract be above the 65th percentile nationwide for
the percentage of the population which is considered low-income (below 200% of the federal
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poverty line) AND at the 90th percentile nationwide for one of the many different types of
climate burden. Different types of climate burden include wildfire risk, flood risk, agriculture
loss rate, population loss rate, and others [47]. Since the Justice40 metric considers national
percentiles and Texas has higher climate risk and poverty levels than much of the United
States, we see that nearly 50% of census tracts served by ERCOT are categorized as Justice40
tracts. Furthermore, this metric involves climate risks that are not limited to wildfire risk,
including flood risk, agriculture loss rate, and others. Because of this, in this study, we also
compute a modified Justice40 metric, which categorizes a tract as vulnerable if that tract
is above the 50th percentile of Texas census tracts for the percentage of the tract which
is low-income, and above the 75th percentile of Texas census tracts for the wildfire risk
subcategory of the Justice40 dataset. With this definition, only around 11% of census tracts
are considered vulnerable. It is also worth noting that the way that the Justice40 initiative
designates wildfire risk in each census tract is different from the USGS WFPI data [23] that
we use to assign wildfire risk to power lines. The WFPI data computes risk of wildfire ignition
from present conditions, described further in Appendix C.C.4. The Justice40 calculation
comes from 30-year projections of wildfire spread models to compute the projected wildfire
risk to properties over that 30-year horizon [47, 48]. Since we are modeling daily operational
de-energization decisions, and investing in infrastructure to support these PSPS events, we
model acute ignition risk instead of long-term, long-duration spread models.

The other criterion that results in immediate selection as a Justice40 census tract is whether
a census tract is “within the boundaries of a federally recognized tribe.” This criterion
is meant to capture the disproportionately high rate of poverty experienced by indigenous
Americans [49]; however, this criterion only accounts for tribes with a designated land area.
Importantly, this criterion does not account for indigenous populations that live outside of
these designated areas or indigenous populations that do not have such a designated area.
Hence, the Justice40 initiative may not truly capture indigenous poverty from groups not
living on reservations.

C.3 The CDC/ATSDR Social Vulnerability Index

The Center for Disease Control and Prevention (CDC) and Agency for Toxic Substances
and Disease Registry (ATSDR) have a joint metric of social vulnerability given in terms of
an SVI [15]. The goal of this SVI is to designate communities which may have additional
difficulty coping with a disaster event. This SVI considers four main “themes” of risk: so-
cioeconomic status, household characteristics, racial and ethnic minority status, and housing
type/transportation. In this study, we classify a census tract as vulnerable if that census
tract is is at or above the 75th percentile of burden out of all the census tracts in Texas for
at least one of these four themes. We use the 2010 SVI dataset to remain consistent with
the 2010 census tracts [15].

C.4 USGS Wildland Fire Potential Index

The USGS WFPI is a data set compromised of unitless risk values ranging from 0 to 247 for
each 1km by 1km “pixel” of the United States. These values are updated daily along with
a 7-day forecast of expected risk values. The USGS bases this data on the following [23]:

• Maximum Live Ratio,
• Dead Fuel Moisture,
• Fuel Model,
• Wind Reduction Factor,
• Normalized Difference Vegetation In-
dex,

• Relative Greenness,
• 10-hour Dead Fuel Moisture,
• Wind Speed,
• Rain,
• Dry Bulb Temperature.
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The USGS WFPI provides a proxy for the risk of ignition from electric infrastructure since
higher WFPI values have, historically, correlated to larger fires and fires that have spread
to burn more area [23].

C.5 Wildfire Risk Values

The wildfire ignition risk posed by an energized power line depends on a number of factors
involving the environmental conditions around the line and the line’s physical characteristics.
Translating these factors into numeric risk values is challenging (see, e.g., [50]) and requires
detailed data that are not available for our test cases. In place of more targeted data, we
use the USGS WFPI as mentioned in Section C.C.4.

Historically, wildfire season in the western United States typically spans from late summer
to early fall; however, recent wildfire seasons have been lengthening [51]. Therefore, our
analyses use data from June 1 to October 31, which we will refer to as the wildfire season.

We assign a unitless wildfire risk value rℓd for each line ℓ ∈ L for each day d ∈ D in the
considered network in the wildfire season over three years (2019, 2020, and 2021). To find
this value, we find the average pixel risk, r̄p by taking the mean of all pixel values on all
lines from the data used. We find the standard deviation on this data as well, σp. We then
define a high-risk pixel to be an pixel with a value more than one standard deviation above
the mean:

rhp,l,d =

{
rp,l,d, if rp,l,d ≥ r̄p + σp
0, if rp,l,d < r̄p + σp

}
. (17)

We calculate the risk value rℓd by integrating the high-risk pixel values along each line. This
method balances the risk contributions from both long line lengths and underlying risk of
the terrain. “Line length” is a characteristic that has been correlated with higher ignition
risk [50] but this processing avoids a situation where a long line with relatively low risks
along the entire length appears much riskier than a shorter line with points of much higher
ignition risks.

For each day simulated, we first determine if the wildfire threat is high enough to necessitate
de-energizing lines via a threshold on the total risk during that day. Let Rd be the total
wildfire risk the network poses if all lines ℓ ∈ L are energized on day d, i.e.:

Rd =
∑
ℓ∈L

rℓd.

In our assessment methodology, operators are required to reduce the total risk of the network
by making line de-energization decisions during any day for which Rd ⩾ RPSPS, where RPSPS

is a specified system-wide de-energization threshold. Conversely, if Rd < RPSPS, then the
risk the network poses is not great enough to require the widespread de-energization of lines.
For the purposes of this paper, RPSPS is set to 6 × 108. Results and figures will indicate
what overall threshold was applied to the network.

Two more thresholds are used for the network to split Ld in to Lhighd , Lmed
d , and Llowd . These

thresholds, Rhigh and Rlow, are used to indicate the highest acceptable risk before lines must
be de-energized or undergrounded and the lowest risk below which lines are not considered
for undergrounding or de-energization:

∀ℓ ∈ L,

 ℓ ∈ Lhighd , if rld ≥ Rhigh

ℓ ∈ Lmed
d , if Rlow ≤ rld < Rhigh

ℓ ∈ Llowd , if rld < Rlow

 . (18)

For the results in this paper, Rhigh and Rlow are set to 1×106 and 1, respectively. Note, this
means all lines with nonzero risk are allowed to be de-energized or undergrounded. These
values were chosen to allow enough lines to be candidates for undergrounding such that the
MIP produces non-trivial solutions.
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C.6 Mapping Demographic Features to Buses

A challenge arises in associating each census tract to one or more load-supplying buses in
the synthetic network, or, equivalently, assigning all or some fraction of the population at
a census tract to each load-supplying bus in the network. Matching the population data
to the transmission bus would require models of the distribution systems, which are not
available. We therefore make the modeling decision to match census tracts to buses based
on the distance between the bus and the population center of the census tract, that is, we
assume the closer a bus is to a census tract’s center of population, the more likely the census
tract has its power supplied, at least in part, by that bus. Hence, the goal is to find a
reasonable edge cover of the bipartite graph consisting of the set of load-supplying buses
and the set of census tracts. We use the following algorithm to assign tracts to buses.

Let C denote the set of census tracts and N represent the set of buses. Let dcn represent the
distance between the center of population of census tract c and bus n. Each census tract
c ∈ C has a feature vector fc. Our goal is to map these census tract features onto the set
of load-supplying buses in the transmission network to obtain a feature vector on each of
the buses, fn for all n ∈ N . Also helpful to us is the construction of an |C| × |N | matrix A
where entry aij tells us the fraction of census tract i ∈ C which is assigned to bus j ∈ N .
We take a three-pass approach.

1. For every census tract c ∈ C, we initialize the radius rc as the minimum distance from
c to any other bus in the transmission network. If a bus n is within the radius rc for
any c ∈ C, we say that the bus has been assigned.

2. For any bus n that has not yet been assigned, we find the closest census tract c to n.
Let this closest distance be given by rn. We then update rc ← max{rc, rn}. Now, bus
n has been assigned.

3. For every tract c ∈ C, we consider the subset of buses N c
rc within a distance rc from c.

We divide the population of c between each bus n ∈ N c
rc proportionally based on their

relative distance from c. That is, the fraction of fc that is assigned to bus n′ ∈ N c
rc is

acn′ =
dcn′∑

i∈N c
rc
dci

. (19)

At the termination of this algorithm, we have a sparse matrix, A, where the columns repre-
sent the load-supplying buses, the rows represent each applicable census tract in Texas, and
each entry aij is the “fraction” of each census tract i that is assigned to each bus j. Finally,
we have that the demographic feature vector for bus n ∈ N is given by fn =

∑
c∈C fc · acn

Mapping wildfire ignition risk to census tracts When we consider the wildfire ig-
nition risk at each census tract, we use the following rough heuristic. For every line, we
compute the line risk using the high risk integral method described in Appendix CC.5. We
then ascribe half of the wildfire risk to each terminating bus of the line. Each census tract
is served by at least one bus, so the ignition risk at every census tract is the sum of the risks
of each of the buses serving load to that census tract where we use the procedure outlined
in Appendix CC.6 to estimate which buses serve which census tracts.

C.7 “Missed” Vulnerable Tracts

Table 4 gives the set of Texas census tracts which are above the 75th percentile for the
fraction of the population that is indigenous, above the 75th percentile for wildfire ignition
risk (derived from WFPI data described in Appendix C.C.5), and above the 50th percentile
for number of people below the poverty line, but that were not characterized as vulnerable
by the Justice40, modified Justice40, and SVI criteria. We also show the percentile without

25



Table 4: List of disadvantaged census tracts that every vulnerability index categorized as not
vulnerable.

GIDTR percentile uninsured percentile impoverished percentile indigenous percentile ignition risk

110093 69.8 64.8 94.5 88.3

110965 73.9 51.0 76.9 75.1

120013 32.9 52.7 84.9 95.7

120063 32.9 52.7 84.9 84.3

120112 52.8 76.2 94.4 89.6

120171 55.7 66.5 90.4 83.9

140066 9.2 80.1 75.1 82.5

210028 20.3 58.4 97.5 89.6

210029 50.0 56.8 94.2 94.4

210030 69.4 62.2 93.2 91.7

210053 50.5 62.4 96.2 78.3

210075 30.7 61.2 77.5 80.4

210207 25.7 59.4 89.6 84.2

210293 59.8 61.0 94.5 88.7

220006 78.5 52.4 100.0 99.3

220020 78.5 52.4 100.0 99.7

220026 54.6 56.5 95.7 95.7

220057 29.9 57.9 98.0 97.2

220077 25.5 76.7 99.4 99.3

220109 38.0 52.9 92.0 95.4

240084 44.4 64.3 75.3 94.7

240121 67.0 64.5 86.4 93.7

240148 67.0 64.5 86.4 91.8

240160 54.1 62.8 86.9 84.8

240162 12.3 74.4 98.1 93.2

240193 18.7 51.6 91.2 84.7

health insurance for reference. One might note from Table 4 that the impoverished percentile
is not often too high; indeed, the maximum percentile impoverished in the table is 80.1 for
GIDTR 140066, and most values are between the 50th and 60th percentiles. Given that
indigenous poverty rates are nearly double that of the overall population [25, 26, 27], this
indicates that indigenous populations are almost always the minority of the census tract
that they live in, and the majority population of those tracts is not disadvantaged. Hence,
these lower poverty percentiles do not indicate that these indigenous populations are not
statistically poorer (we know that they are from the data), but rather, they indicate that
these groups tend to live in areas where the majority population is less disadvantaged on
average than the indigenous population.

D Optimization Results

D.1 Optimization Software, Set Up, and Solve Time

Optimization problems were solved using Gurobi 10.0.0 [30]. To implement the optimization
formulations, we used Julia 1.8.0 [31] with JuMP 1.18.1 [32] along with the data input func-
tionality of PowerModels.jl 0.21.0 [33]. Simulations were completed on the Partnership for
an Advanced Computing Environment (PACE) at the Georgia Institute of Technology [29]
using the framework and parameters described by Appendix B and C, respectively. For
nonzero budgets, we warm-started the simulation with the results from the same model on
the previous budget. All simulations are run to for 5 days of a MIP gap of 1%. Any simula-
tions that are outside the 1% MIP gap are run for an additional 5 days with a warm-start of
the last found incumbent. Both of these 5-day computation times are done with MIP focus
set to 2. Any simulations that are still outside the 1% MIP gap are run for an additional 10
days, again warm-started from the last found incumbent, or until they reach a 1% MIP gap.
This 10 day computation time is done with MIP focus set to 3 to prioritize improvement in
the best bound. After 20 days of computation time per scenario, MIP gaps are reported,
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with all scenarios finishing within a 5% MIP gap. Solution times are shown in Figures 6a
and 6b.

While not all simulations converge to a 1% MIP gap, we note the monotonically decreasing
objective across budgets, see Figures 6c and 6d. Note the objective value for the baseline
objective displays total network load shed while the equity objective values portray the
maximum percentage of demanded load that is shed for a given group, resulting in different
scales. All simulations with a baseline objective solve to within a 1% MIP gap. Two
combinations of the equity objective with the both the modified and original Justice 40
load shed constraints converge to within a 5% MIP gap. All other cases with the equity
objective converge to within a 1% MIP gap.

(a) Solution times by budget for simulations with the
baseline objective (minimize total loadshed) and var-
ious policy constraints.

(b) Solution times in hours by budget for simulations
with the equity objective and various policy con-
straints.

(c) Objective values by budget for simulations with
the baseline objective (minimize total loadshed) and
various policy constraints.

(d) Objective values by budget for simulations with
the equity (minimize the maximumum percent of
load shed by group) objective and policy constraints.

Figure 6: Solve times, MIP gaps, and Objective values for listed policy constraints with both the
baseline objective and the equity objective.

D.2 Indigenous Load Shed

Figure 7 shows comparisons of each combination of equity objective and policy constraint
in terms of the quantity of load shed per indigenous person under each resource allocation
framework. In the figure, there are two important observations. First, the overall Texas per
capita load shed, shown by the horizontal dotted line on each bar of the barplot, increases
when the Equity objective is used instead of the baseline objective. This is not unexpected
given that we are trading off between the efficiency of the resource allocation, and the equity
of the resource allocation. In Appendix D.D.3, one can see the magnitude of this trade-off
in terms of the percent of each group’s load demanded that is shed, and we argue that these
increases in total load shed are not unreasonable.
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(a) Comparison of normalized indigenous load shed
across cases with the objective of minimizing total
network load shed with different equity constraints.

(b) Comparison of normalized indigenous load shed
across cases with a MMF objective where we balance
the percent of total load shed by racial group.

Figure 7: Normalized indigenous load shed across multiple budgets when only equity constraints
are used (left) and when the percentage-based MMF objective is used with and without equity
constraints (right). The “budget” and “load shed” modifiers are there to say whether the program
allocates 40% of the budget or 40% load shed reduction to the vulnerable groups identified by the
preceding vulnerability metric. The horizontal dashed lines on each bar show the normalized overall
load shed in the network for that case. When only considering equity objectives, we see that none
of these constraints decisively reduce load shed for indigenous groups. When we add the percentage-
based MMF objective by group, we find that once a $500 million budget is achieved, the objective
to minimize the maximum percent of load shed by each racial group coupled with either no equity
constraints or Justice40 constraints consistently leads to lower indigenous load shed than the baseline.
We also see that indigenous per capita load shed is always much higher than the overall per capita
load shed under the baseline objective, whereas the indigenous per capita load shed is closer to even
with the overall per capita load shed with the MMF objective. However, this comes at the cost of
increases in overall per capita load shed.

The second observation deals with how effective the Equity objective is at reducing in-
digenous load shed relative to the baseline (no Equity objective, no Policy constraints,
shown by the bolded bar on the plot). In Figure 7a, we see Policy constraints alone do
not improve indigenous load shed outcomes until a $750 million budget is met, and even in
the $750 million and $1 billion budget cases, the improvement is marginal. In comparison,
in Figure 7b we see reductions in indigenous load shed with the Equity objective when as
little as $250 million is allocated. With the exception of the case where we use the modified
Justice40 Policy constraint by reduction in percent load shed with the Equity objective,
all other Equity models decrease the per capita load shed experienced by indigenous pop-
ulations compared to the baseline once a $500 million budget is allocated. At the $1 billion
budget, we see a reduction of roughly 1MWh of load shed affecting indigenous communities
between the baseline and those under the equity objectives (excluding the case using the
modified Justice40 policy constraint). This is equivalent to nearly 35 more homes being
able to maintain power for an entire day9.

D.3 Load Shed Results

In this section, we discuss the full load shed results for each budget we considered, from 0
budget allocated to $1 billion allocated, in $250 million increments for each combination of
Policy constraint and Equity Objective. In Appendix D D.3.1, we show tables for the
total load shed in megawatt hours per group and in AppendixD.3 D.3.2, we show tables
of the percent of load demanded that is shed by group as well as the ”relative unfairness”
in load shed , which is defined as the ratio of the percent of load shed experienced by the
particular group to the percent of load shed experienced by the overall population served by

9This is based on an assumed 29kWh of daily power consumption.
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the ERCOT network. All results shown in this table are from runs of the MIP described in
Appendix B up to a 5% MIP gap with most of the results converging with under a 1% gap.

D.3.1 Total Load Shed By Group

As was discussed at length in this article, one of situations in which vulnerability indices
can fall short is when there are very small minority populations that become homogenized
with a larger minority group within census tracts. In Table 5, we see the nominal load
shed results in megawatt hours for eight groups considered in this studied, one of which is
the overall population, five of which are racial groups, and two of which are measures of
economic vulnerability, when there is no budget allocated (Table 5), and when there is $1
billion allocated. Without any undergrounding, we see that the baseline load shed on the
network is about 2500 MWh, and when we substitute the Equity objective, the total load
shed increases by around 1000 MWh, depending on the specific policy being used. Because
there is no budget for undergrounding, this 1000 MWh increase is simply from choosing to
switch off more lines than is necessary to reduce risk below a reasonable threshold, which
would likely never be done in practice. However, this does highlight the trade-off between
equity and efficiency when trying to implement fairness into optimization models in practice.
In Table 6, we can see how power line undergrounding can dramatically reduce the load
shed on the network; in the baseline case, the overall load shed drops by about 73% after
allocating a $1 billion budget. We see small increases in total network load shed between
about 50 and 150 MWh, excluding Model M5, which is an outlier when incorporating Policy
constraints alone, but see larger increases in total network shed compared to the baseline
when incorporating the Equity objective, where we see increases between about 375 and 820
MWh (excluding outlier M12). The discrepancy in load shed outcomes between the baseline
and Equity objective cases is due to a possible combination of increased load shed on mid-
risk census tracts and less-efficient power line undergrounding (i.e., power lines serving fewer
people are undergrounded, but these lines serve high-vulnerability populations).

In nominal terms, we see that Hispanic and white groups experience a large percentage of
the total load shed experienced by the overall population; however, this result is reflective
of these groups’ relative share of the population, not some inherent higher likelihood of
experiencing a power outage, which is apparent when considering each group’s percent of
load that is shed, (discussed in Appendix D.3.2). Thus, the nominal load shed can be
deceiving; most notably, indigenous groups make up an small quantity of the nominal load
shed in the network—reflecting that they make up a tiny fraction of the overall Texas
population—but have a disproportionately high percentage of their load demanded that is
shed.

D.3.2 Percent of Load Demanded That is Shed and Relative Unfairness in Load
Shed

It is nearly impossible to ascertain how equitable the switching and power line underground-
ing decisions are without some degree of normalization for different group sizes. In this
subsection, we discuss the percent of load demanded that is shed by each group and give
a ”relative unfairness” metric. This metric computes the ratio of the percent of load shed
experienced by the group to the percent of load shed experienced by the overall population.
We designate an ”unfair” outcome as one in which a group experiences more than 1.1 times
the overall percent load shed for a budget of $1 billion or more or more than 1.3 times if the
budget is under $1 billion, and we bold and color the text in those cells red to call attention
to these unfair outcomes. Tables 7, 8, 9, and 10 show the percentage of load demanded
and relative unfairness in outcome by group for the $0, $250 million, $500 million, and $750
million cases, respectively.
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(a) Nominal load shed in megawatt hours by group under only policy constraints when there is
no budget allocated for power line undergrounding.

Policy Constraint Nominal Load Shed (MWh)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

M1 - BL None None 2491 456 276 1304 1029 89 13 28

M2 Justice40

Proportional

Budget

Expenditure

2491 458 275 1304 1034 86 13 27

M3 Justice40

Proportional

Load Shed

Reduction

2491 458 276 1307 1031 87 13 27

M4
Justice40

(Modified)

Proportional

Budget

Expenditure

2473 458 275 1305 1014 88 14 27

M5
Justice40

(Modified)

Proportional

Load Shed

Reduction

2494 459 276 1310 1030 89 14 27

M6 SVI

Proportional

Budget

Expenditure

2473 458 275 1305 1014 88 14 27

M7 SVI

Proportional

Load Shed

Reduction

2473 459 273 1299 1019 87 13 28

(b) Nominal load shed in megawatt hours by group under under the Equity objective and Policy
constraints when there is no budget allocated for power line undergrounding.

Policy Constraint Nominal Load Shed (MWh)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

Equity-M8 None None 3523 602 401 1571 1569 237 12 85

Equity-M9 Justice40

Proportional

Budget

Expenditure

3777 619 419 1576 1847 203 12 85

Equity-M10 Justice40

Proportional

Load Shed

Reduction

3320 577 379 1579 1508 135 12 47

Equity-M11
Justice40

(Modified)

Proportional

Budget

Expenditure

3581 595 403 1562 1703 176 12 79

Equity-M12
Justice40

(Modified)

Proportional

Load Shed

Reduction

3915 601 426 1576 1881 240 12 145

Equity-M13 SVI

Proportional

Budget

Expenditure

3581 595 403 1562 1703 176 12 79

Equity-M14 SVI

Proportional

Load Shed

Reduction

3855 642 445 1574 1883 267 12 63

Table 5: Summary of nominal load shed results across all combinations of Equity objective
(group-level protections) and Policy constraints when no budget is allocated for power line
undergrounding.

In Table 7, we observe that when there is no budget allocated, indigenous and Hispanic
groups experience unfair load shedding outcomes across the board. When considering the
baseline case (M1-BL), we see that indigenous and hispanic groups see about 2 and 1.4 times
the average overall percent of load demanded that is shed, respectively. Asian and black
communities experience disproportionately low levels of load shed, likely due to residence
in urban areas with lower wildfire ignition risk, and low-income communities are also not
at higher risk of experiencing load shed, again likely due to city poverty. If we set a 1%
threshold as an ”acceptable” percentage of load shed, we see that the overall population
load shed is above this percentage threshold, and, in particular, uninsured, Hispanic, white,
and indigenous groups are above this percentage threshold.
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(a) Nominal load shed in megawatt hours by group under only policy constraints when there is
a $1 billion budget allocated for power line undergrounding.

Policy Constraint Nominal Load Shed (MWh)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

M1 - BL None None 668 129 101 366 268 15 5.38 6.12

M2 Justice40

Proportional

Budget

Expenditure

718 141 103 372 313 13 5.92 6.05

M3 Justice40

Proportional

Load Shed

Reduction

919 161 119 443 432 17 7.79 9.83

M4
Justice40

(Modified)

Proportional

Budget

Expenditure

724 142 104 374 317 13 6.03 6.06

M5
Justice40

(Modified)

Proportional

Load Shed

Reduction

1662 311 236 746 743 119 7.14 21

M6 SVI

Proportional

Budget

Expenditure

748 147 104 392 321 15 6.54 6.21

M7 SVI

Proportional

Load Shed

Reduction

754 150 111 381 342 11 4.88 6.11

(b) Nominal load shed in megawatt hours by group under under the Equity objective and Policy
constraints when there is a $1 billion budget allocated for power line undergrounding.

Policy Constraint Nominal Load Shed (MWh)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

Equity-M8 None None 1140 192 138 520 571 19 4.19 13

Equity-M9 Justice40

Proportional

Budget

Expenditure

1043 192 136 520 481 16 4.2 8.88

Equity-M10 Justice40

Proportional

Load Shed

Reduction

1488 221 188 545 654 163 4.4 57

Equity-M11
Justice40

(Modified)

Proportional

Budget

Expenditure

1155 208 151 534 559 33 4.31 9.73

Equity-M12
Justice40

(Modified)

Proportional

Load Shed

Reduction

2445 351 308 880 1056 264 7.1 93

Equity-M13 SVI

Proportional

Budget

Expenditure

1163 213 154 541 548 44 4.37 10

Equity-M14 SVI

Proportional

Load Shed

Reduction

1178 198 140 520 612 20 4.19 9.13

Table 6: Summary of nominal load shed results across all combinations of Equity objective
(group-level protections) and Policy constraints when a $1 billion budget is allocated for power
line undergrounding.

Table 8 shows how these results change as we begin allocating budget for power line un-
dergrounding. When we only consider policy constraints (Table 8a), we see that this small
budget allocation decreases overall percent load shed by about 46%. Furthermore, with the
exception of model M5,which is often an outlier, all groups except the indigenous group see
their load shed percentage drop below the 1% threshold. White and Hispanic groups seem
to experience the most benefit from this investment with over 50% reductions in percent of
load demanded that is shed. Indigenous groups experience relatively less benefit, which is
why the relative unfairness that they experience increases between the $0 and $250 million
budgets when using only Policy constraints. Now, we consider Table 8b where the Equity
objective is incorporated. Relative to the Policy-constraint only case in Table 8a and the
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0-budget case in Table 7, relative unfairness decreases for both indigenous and Hispanic
groups when we introduce the equity objective. However, while relative unfairness is lower
than that in the Policy-constraint only case in Table 8a, the percent of load shed expe-
rienced is higher. For example, the overall load shed in Model M8 (Equity objective, no
Policy constraints), leads to only a 16% decrease in the percent of load demanded that is
shed relative to the baseline model in the 0-budget case.

When budget increases to $500 million, $750 million, and eventually $1 billion, indigenous
load shed outcomes continue to be relatively unfair under Policy constraints alone; even at
the $1 billion budget, Table 2a shows relative unfairness ratios for indigenous populations
sometimes over 3 times that of the overall population. In contrast, unfairness ratios under the
Equity objective are sub-2 as soon as a $250 million budget is allocated. More importantly,
by an allocation of $500 million, indigenous percentage of load shed decreases relative to
the baseline case, meaning that these groups are finally receiving real benefit from these
investments without pushing other groups’ percent load shed above 1%. This is why we argue
that a MMF framework that minimizes the maximum percent of a group’s load demanded
that is shed coupled with a sufficient budget (in this case, at least $500 million) allows for
the controlling of wildfire risk and the fair reduction of load shed from emergency power
shutoffs to all considered groups. When considering Tables 10 and the full results, shown in
the main paper, these trends continue, lending more credence to this recommendation.
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(a) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under only policy constraints when there is no budget allocated for power
line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Fairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured Impoverished Hispanic White Black Indigenous Asian

M1-BL None None
1.22

(1.0)

1.31

(1.07)

0.92

(0.75)

1.7

(1.39)

1.12

(0.92)

0.39

(0.32)

2.52

(2.07)

0.36

(0.3)

M2 Justice40

Proportional

Budget

Expenditure

1.22

(1.0)

1.32

(1.08)

0.92

(0.75)

1.7

(1.39)

1.12

(0.92)

0.38

(0.31)

2.52

(2.07)

0.35

(0.29)

M3 Justice40

Proportional

Load Shed

Reduction

1.22

(1.0)

1.32

(1.08)

0.92

(0.75)

1.71

(1.4)

1.12

(0.92)

0.38

(0.31)

2.5

(2.05)

0.35

(0.29)

M4
Justice40

(Modified)

Proportional

Budget

Expenditure

1.21

(1.0)

1.32

(1.09)

0.91

(0.75)

1.7

(1.4)

1.1

(0.91)

0.39

(0.32)

2.55

(2.11)

0.34

(0.28)

M5
Justice40

(Modified)

Proportional

Load Shed

Reduction

1.22

(1.0)

1.32

(1.08)

0.92

(0.75)

1.71

(1.4)

1.12

(0.92)

0.39

(0.32)

2.54

(2.08)

0.34

(0.28)

M6 SVI

Proportional

Budget

Expenditure

1.21

(1.0)

1.32

(1.09)

0.91

(0.75)

1.7

(1.4)

1.1

(0.91)

0.39

(0.32)

2.55

(2.11)

0.34

(0.28)

M7 SVI

Proportional

Load Shed

Reduction

1.21

(1.0)

1.32

(1.09)

0.91

(0.75)

1.7

(1.4)

1.11

(0.92)

0.38

(0.31)

2.51

(2.07)

0.36

(0.3)

(b) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under the Equity objective and Policy constraints when there is no budget
allocated for power line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Fairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured Impoverished Hispanic White Black Indigenous Asian

Equity-M8 None None
1.72

(1.0)

1.73

(1.01)

1.32

(0.77)

2.04

(1.19)

1.69

(0.98)

1.01

(0.59)

2.31

(1.34)

1.04

(0.6)

Equity-M9 Justice40

Proportional

Budget

Expenditure

1.84

(1.0)

1.77

(0.96)

1.38

(0.75)

2.05

(1.11)

1.98

(1.08)

0.88

(0.48)

2.31

(1.26)

1.04

(0.57)

Equity-M10 Justice40

Proportional

Load Shed

Reduction

1.63

(1.0)

1.66

(1.02)

1.26

(0.77)

2.06

(1.26)

1.64

(1.01)

0.59

(0.36)

2.31

(1.42)

0.6

(0.37)

Equity-M11
Justice40

(Modified)

Proportional

Budget

Expenditure

1.75

(1.0)

1.71

(0.98)

1.33

(0.76)

2.04

(1.17)

1.84

(1.05)

0.77

(0.44)

2.31

(1.32)

0.98

(0.56)

Equity-M12
Justice40

(Modified)

Proportional

Load Shed

Reduction

1.93

(1.0)

1.73

(0.9)

1.42

(0.74)

2.06

(1.07)

2.06

(1.07)

1.06

(0.55)

2.31

(1.2)

1.82

(0.94)

Equity-M13 SVI

Proportional

Budget

Expenditure

1.75

(1.0)

1.71

(0.98)

1.33

(0.76)

2.04

(1.17)

1.84

(1.05)

0.77

(0.44)

2.31

(1.32)

0.98

(0.56)

Equity-M14 SVI

Proportional

Load Shed

Reduction

1.87

(1.0)

1.83

(0.98)

1.46

(0.78)

2.05

(1.1)

2.02

(1.08)

1.13

(0.6)

2.31

(1.24)

0.77

(0.41)

Table 7: Summary of load shed results across all combinations of Equity objective (group-level
protections) and Policy constraints when no budget is allocated.
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(a) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under only policy constraints when there is a $250 million budget allocated
for power line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Unfairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

M1 - BL None None
0.66

(1.0)

0.75

(1.14)

0.59

(0.89)

0.95

(1.44)

0.61

(0.92)

0.12

(0.18)

1.28

(1.94)

0.15

(0.23)

M2 Justice40

Proportional

Budget

Expenditure

0.66

(1.0)

0.74

(1.12)

0.6

(0.91)

0.95

(1.44)

0.61

(0.92)

0.11

(0.17)

1.66

(2.52)

0.16

(0.24)

M3 Justice40

Proportional

Load Shed

Reduction

0.83

(1.0)

0.86

(1.04)

0.69

(0.83)

1.09

(1.31)

0.84

(1.01)

0.18

(0.22)

1.78

(2.14)

0.23

(0.28)

M4
Justice40

(Modified)

Proportional

Budget

Expenditure

0.66

(1.0)

0.74

(1.12)

0.6

(0.91)

0.95

(1.44)

0.61

(0.92)

0.11

(0.17)

1.66

(2.52)

0.16

(0.24)

M5
Justice40

(Modified)

Proportional

Load Shed

Reduction

1.07

(1.0)

1.16

(1.08)

0.79

(0.74)

1.46

(1.36)

1.01

(0.94)

0.36

(0.34)

2.24

(2.09)

0.35

(0.33)

M6 SVI

Proportional

Budget

Expenditure

0.66

(1.0)

0.74

(1.12)

0.6

(0.91)

0.95

(1.44)

0.61

(0.92)

0.11

(0.17)

1.66

(2.52)

0.16

(0.24)

M7 SVI

Proportional

Load Shed

Reduction

0.7

(1.0)

0.78

(1.11)

0.63

(0.9)

0.97

(1.39)

0.67

(0.96)

0.11

(0.16)

1.66

(2.37)

0.14

(0.2)

(b) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under the Equity objective and Policy constraints when there is a $250
million budget allocated for power line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Unfairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

Equity-M8 None None
1.02

(1.0)

0.95

(0.93)

0.83

(0.81)

1.14

(1.12)

1.14

(1.12)

0.3

(0.29)

1.29

(1.26)

0.5

(0.49)

Equity-M9 Justice40

Proportional

Budget

Expenditure

1.18

(1.0)

1.16

(0.98)

1.03

(0.87)

1.34

(1.14)

1.27

(1.08)

0.55

(0.47)

1.51

(1.28)

0.56

(0.47)

Equity-M10 Justice40

Proportional

Load Shed

Reduction

1.11

(1.0)

1.06

(0.95)

0.97

(0.87)

1.15

(1.04)

1.11

(1.0)

1.03

(0.93)

1.29

(1.16)

1.15

(1.04)

Equity-M11
Justice40

(Modified)

Proportional

Budget

Expenditure

1.19

(1.0)

1.14

(0.96)

1.03

(0.87)

1.33

(1.12)

1.26

(1.06)

0.58

(0.49)

1.51

(1.27)

0.87

(0.73)

Equity-M12
Justice40

(Modified)

Proportional

Load Shed

Reduction

1.47

(1.0)

1.27

(0.86)

1.17

(0.8)

1.43

(0.97)

1.43

(0.97)

1.43

(0.97)

1.6

(1.09)

1.43

(0.97)

Equity-M13 SVI

Proportional

Budget

Expenditure

1.22

(1.0)

1.18

(0.97)

1.07

(0.88)

1.34

(1.1)

1.34

(1.1)

0.6

(0.49)

1.51

(1.24)

0.51

(0.42)

Equity-M14 SVI

Proportional

Load Shed

Reduction

1.0

(1.0)

1.01

(1.01)

0.84

(0.84)

1.14

(1.14)

1.1

(1.1)

0.35

(0.35)

1.29

(1.29)

0.39

(0.39)

Table 8: Summary of load shed results across all combinations of Equity objective (group-level
protections) and Policy constraints when a $250 million budget is allocated. The red, bolded
text indicates “unfair” load shed, which we define as a group experiencing over 1.3 times the
percent load shed that is experienced by the overall population. The red cells indicate load shed
percentages above 1%.

34



(a) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under only policy constraints when there is a $500 million budget allocated
for power line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Unfairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

M1 - BL None None
0.51

(1.0)

0.59

(1.16)

0.48

(0.94)

0.71

(1.39)

0.48

(0.94)

0.09

(0.18)

1.23

(2.41)

0.1

(0.2)

M2 Justice40

Proportional

Budget

Expenditure

0.53

(1.0)

0.59

(1.11)

0.5

(0.94)

0.74

(1.4)

0.5

(0.94)

0.09

(0.17)

1.6

(3.02)

0.12

(0.23)

M3 Justice40

Proportional

Load Shed

Reduction

0.67

(1.0)

0.71

(1.06)

0.59

(0.88)

0.87

(1.3)

0.68

(1.01)

0.15

(0.22)

1.77

(2.64)

0.24

(0.36)

M4
Justice40

(Modified)

Proportional

Budget

Expenditure

0.57

(1.0)

0.64

(1.12)

0.54

(0.95)

0.79

(1.39)

0.55

(0.96)

0.09

(0.16)

1.6

(2.81)

0.11

(0.19)

M5
Justice40

(Modified)

Proportional

Load Shed

Reduction

0.97

(1.0)

1.02

(1.05)

0.71

(0.73)

1.23

(1.27)

0.95

(0.98)

0.35

(0.36)

1.83

(1.89)

0.5

(0.52)

M6 SVI

Proportional

Budget

Expenditure

0.53

(1.0)

0.6

(1.13)

0.52

(0.98)

0.74

(1.4)

0.51

(0.96)

0.08

(0.15)

1.54

(2.91)

0.1

(0.19)

M7 SVI

Proportional

Load Shed

Reduction

0.53

(1.0)

0.61

(1.15)

0.49

(0.92)

0.73

(1.38)

0.51

(0.96)

0.09

(0.17)

1.29

(2.43)

0.12

(0.23)

(b) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under the Equity objective and Policy constraints when there is a $500
million budget allocated for power line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Unfairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

Equity-M8 None None
0.75

(1.0)

0.76

(1.01)

0.63

(0.84)

0.91

(1.21)

0.79

(1.05)

0.22

(0.29)

1.03

(1.37)

0.34

(0.45)

Equity-M9 Justice40

Proportional

Budget

Expenditure

0.71

(1.0)

0.78

(1.1)

0.64

(0.9)

0.98

(1.38)

0.66

(0.93)

0.17

(0.24)

1.11

(1.56)

0.2

(0.28)

Equity-M10 Justice40

Proportional

Load Shed

Reduction

0.94

(1.0)

0.86

(0.91)

0.78

(0.83)

0.93

(0.99)

0.93

(0.99)

0.93

(0.99)

1.04

(1.11)

0.93

(0.99)

Equity-M11
Justice40

(Modified)

Proportional

Budget

Expenditure

0.88

(1.0)

0.83

(0.94)

0.69

(0.78)

1.01

(1.15)

0.98

(1.11)

0.21

(0.24)

1.13

(1.28)

0.4

(0.45)

Equity-M12
Justice40

(Modified)

Proportional

Load Shed

Reduction

1.35

(1.0)

1.13

(0.84)

1.11

(0.82)

1.3

(0.96)

1.29

(0.96)

1.3

(0.96)

1.45

(1.07)

1.3

(0.96)

Equity-M13 SVI

Proportional

Budget

Expenditure

0.8

(1.0)

0.84

(1.05)

0.68

(0.85)

1.0

(1.25)

0.82

(1.02)

0.22

(0.27)

1.13

(1.41)

0.29

(0.36)

Equity-M14 SVI

Proportional

Load Shed

Reduction

0.82

(1.0)

0.79

(0.96)

0.7

(0.85)

0.91

(1.11)

0.91

(1.11)

0.31

(0.38)

1.03

(1.26)

0.51

(0.62)

Table 9: Summary of load shed results across all combinations of Equity objective (group-level
protections) and Policy constraints when a $500 million budget is allocated. The red, bolded
text indicates “unfair” load shed, which we define as a group experiencing over 1.3 times the
percent load shed that is experienced by the overall population. The red cells indicate load shed
percentages above 1%.
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(a) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under only policy constraints when there is a $750 million budget allocated
for power line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Unfairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured

Low-

Income
Hispanic White Black Indigenous Asian

M1 - BL None None
0.4

(1.0)

0.47

(1.17)

0.4

(1.0)

0.56

(1.4)

0.38

(0.95)

0.08

(0.2)

1.17

(2.92)

0.08

(0.2)

M2 Justice40

Proportional

Budget

Expenditure

0.44

(1.0)

0.51

(1.16)

0.42

(0.95)

0.62

(1.41)

0.42

(0.95)

0.09

(0.2)

1.23

(2.8)

0.09

(0.2)

M3 Justice40

Proportional

Load Shed

Reduction

0.55

(1.0)

0.56

(1.02)

0.45

(0.82)

0.73

(1.33)

0.55

(1.0)

0.1

(0.18)

1.46

(2.65)

0.2

(0.36)

M4
Justice40

(Modified)

Proportional

Budget

Expenditure

0.45

(1.0)

0.51

(1.13)

0.42

(0.93)

0.61

(1.36)

0.44

(0.98)

0.07

(0.16)

1.14

(2.53)

0.1

(0.22)

M5
Justice40

(Modified)

Proportional

Load Shed

Reduction

0.84

(1.0)

0.87

(1.04)

0.62

(0.74)

1.06

(1.26)

0.88

(1.05)

0.24

(0.29)

1.57

(1.87)

0.29

(0.35)

M6 SVI

Proportional

Budget

Expenditure

0.45

(1.0)

0.53

(1.18)

0.43

(0.96)

0.62

(1.38)

0.43

(0.96)

0.08

(0.18)

1.18

(2.62)

0.08

(0.18)

M7 SVI

Proportional

Load Shed

Reduction

0.44

(1.0)

0.51

(1.16)

0.41

(0.93)

0.61

(1.39)

0.43

(0.98)

0.07

(0.16)

1.08

(2.45)

0.09

(0.2)

(b) Percent of load demanded that is shed and relative unfairness in the percent of load demanded
that is shed by group under the Equity objective and Policy constraints when there is a $750
million budget allocated for power line undergrounding.

Policy Constraint Percent of Load Demanded That is Shed (Relative Fairness)

Vulnerability

Index

Constraint

Type
Overall Uninsured Impoverished Hispanic White Black Indigenous Asian

Equity-M8 None None
0.59

(1.0)

0.62

(1.05)

0.51

(0.86)

0.75

(1.27)

0.63

(1.07)

0.09

(0.15)

0.84

(1.42)

0.13

(0.22)

Equity-M9 Justice40

Proportional

Budget

Expenditure

0.62

(1.0)

0.65

(1.05)

0.53

(0.85)

0.8

(1.29)

0.64

(1.03)

0.1

(0.16)

0.89

(1.44)

0.15

(0.24)

Equity-M10 Justice40

Proportional

Load Shed

Reduction

0.84

(1.0)

0.72

(0.86)

0.66

(0.79)

0.82

(0.98)

0.82

(0.98)

0.82

(0.98)

0.92

(1.1)

0.82

(0.98)

Equity-M11
Justice40

(Modified)

Proportional

Budget

Expenditure

0.69

(1.0)

0.67

(0.97)

0.55

(0.8)

0.8

(1.16)

0.77

(1.12)

0.15

(0.22)

0.89

(1.29)

0.21

(0.3)

Equity-M12
Justice40

(Modified)

Proportional

Load Shed

Reduction

1.25

(1.0)

1.06

(0.85)

1.03

(0.82)

1.2

(0.96)

1.2

(0.96)

1.2

(0.96)

1.34

(1.07)

1.21

(0.97)

Equity-M13 SVI

Proportional

Budget

Expenditure

0.72

(1.0)

0.71

(0.99)

0.59

(0.82)

0.82

(1.14)

0.79

(1.1)

0.19

(0.26)

0.92

(1.28)

0.36

(0.5)

Equity-M14 SVI

Proportional

Load Shed

Reduction

0.65

(1.0)

0.64

(0.98)
0.51 (0.78)

0.75

(1.15)

0.76

(1.17)

0.09

(0.14)

0.84

(1.29)

0.12

(0.18)

Table 10: Summary of load shed results across all combinations of Equity objective (group-level
protections) and Policy constraints when a $750 million budget is allocated. The red, bolded
text indicates “unfair” load shed, which we define as a group experiencing over 1.3 times the
percent load shed that is experienced by the overall population. The red cells indicate load shed
percentages above 1%.
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