
Equitably Allocating Wildfire Resilience Investments for Power Grids
— The Curse of Aggregation and Vulnerability Indices

Madeleine Pollacka, Ryan Pianskyb, Swati Guptaa, Daniel Molzahnb

aMassachusetts Institute of Technology,
bGeorgia Institute of Technology,

Abstract

Social vulnerability indices have increased traction for guiding infrastructure investment decisions to prioritize com-
munities that need these investments most. One such plan is the Biden-Harris Justice40 initiative, which aims to guide
equitable infrastructure investments by ensuring that disadvantaged communities defined by the Climate & Economic
Justice Screening Tool (CEJST) receive 40% of the total benefit realized by the investment. However, there is limited
research on the practicality of applying vulnerability indices like the CEJST to real-world decision-making for policy
outcomes. In this paper, we study this gap by examining the effectiveness of vulnerability indices in a case study
focused on power shutoff and undergrounding decisions in wildfire-prone regions. Using a mixed-integer program
and a high-fidelity synthetic transmission network in Texas, we model resource allocation policies inspired by Jus-
tice40 and evaluate their impact on reducing power outages and mitigating wildfire risk for vulnerable groups. Our
analysis reveals that the Justice40 framework may fail to protect certain communities facing high wildfire risk. In
our case study, we show that Indigenous groups are particularly impacted. We posit that this outcome is likely due to
information losses from data aggregation and the use of generalized vulnerability indices. Through the use of explicit
group-level protections, we provide bounds on the best possible outcome for population groups that are proportionally
most affected.
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1. Introduction

The increased frequency and severity of extreme cli-
mate events in the 21st century necessitates policy and
infrastructure change to mitigate property damage, en-
vironmental impacts, and loss of life from these ex-
treme events. While climate change has widespread
negative effects, the degree of impact is non-uniform
across communities. In particular, research shows that
historically marginalized and low-income communities
are most susceptible to environmental hazards such as
water contamination [1, 2], excessive heat [3, 4], and air
pollution [5, 6]. Hence, it is important that legislators
prioritize the protection of these groups when allocat-
ing public funds for climate infrastructure.

With these goals in mind, the Biden-Harris administra-
tion issued United States Executive Order 14008 [7],
which established the Justice40 initiative in its over-
arching plan of “tackling the climate crisis.” The Jus-
tice40 initiative has the stated goal that 40% of the

overall benefits of federal investments in environmen-
tal and energy infrastructure should flow to disadvan-
taged communities. In November 2022, the US Coun-
cil on Environmental Quality launched the Climate &
Economic Justice Screening Tool (CEJST) to serve as
a vulnerability index for identifying census tracts that
should be prioritized for investment [8].

The CEJST is the result of years of dedicated research
on climate and socioeconomic vulnerability; however,
there is currently very little research analyzing the prac-
tical effectiveness of specific policies deployed in line
with the Justice40 initiative’s goals. This is not unique
to the CEJST or the Justice40 initiative; various vul-
nerability indices have been scrutinized for lack of
demonstrated efficacy in their intended contexts. Ru-
fat et al. [9] evaluates the CDC’s Social Vulnerability
Index (SVI) [10, 11] and Cutter’s Social Vulnerabil-
ity Index (SoVI) [12] in their ability to identify which
groups and communities were most detrimentally im-
pacted by Hurricane Sandy in 2012, and concludes that
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these metrics lack “construct validity”1. Rufat et al. [9]
and Spielman et al. [14] each advise expert develop-
ment of indices for the specific case study as opposed
to blindly applying the SoVI or SVI. However, all of
these studies recognize the importance of measuring,
monitoring, and prioritizing social vulnerability when
planning for hazardous events [9, 14], and they call
for better development of benchmarks for developing
and evaluating appropriate indices [15]. These stud-
ies underscore the need for detailed analyses that ex-
amine how these indices influence policy decisions and
resource distribution and whether index-based policies
truly benefit the targeted populations.

Building on this critical gap, our paper examines the
outcomes of applying the Justice40 initiative to bud-
get allocation policies relevant to infrastructure invest-
ment for wildfire resilience. Specifically, we focus
on optimizing budget allocations for undergrounding
transmission lines in high wildfire risk areas that cur-
rently rely on emergency power shutoffs to mitigate
both wildfire risk and power outages. Our analysis
centers on evaluating the effectiveness of two vulner-
ability indices—the CDC’s SVI and the CEJST—in di-
recting funds to vulnerable groups, which we define as
communities more susceptible to wildfire risk due to
social, political, economic, and institutional disenfran-
chisement [15].

To assess the impact of the Justice40 allocation pol-
icy, we (1) examine the ability of the CEJST and SVI
to identify high-risk, high-need populations for under-
grounding investments, and (2) compute the load shed,
or quantity of power loss, experienced by different pop-
ulations on the network after undergrounding decisions
have been implemented under different interpretations
of the Justice40 initiative. Additionally, we compare
load shedding outcomes from these allocation policies
with those output from a Min-Max Fairness (MMF)
framework, a widely used approach in fair operations
research literature. Although this analysis is applied
to a case study in Texas, the proposed methodology is
generalizable to transmission networks in other regions.

In this paper, we demonstrate that allocating budget ac-
cording to Justice40-style constraints based on vulner-
ability indices fails to reduce power outages for Indige-
nous communities in the representative region managed
by the Electric Reliability Council of Texas (ERCOT)
and for areas at high risk of wildfire ignition. This find-
ing is based on analysis using a high-fidelity synthetic

1Measures that have construct validity relate to other measures
that are known to quantify a phenomenon [13].

power grid dataset that replicates the key characteris-
tics of ERCOT. We explore how aggregating commu-
nity features into a single vulnerability index and em-
ploying a “one-size-fits-all” approach to defining vul-
nerability may contribute to a misalignment between
the intended goals of these indices and their actual im-
pact in this context. Then, using an MMF framework
to include group-level protections on the percentage of
load shed across each population group of interest, we
provide a lower bound on the percentage load shed ex-
perienced by the proportionally most-affected popula-
tion group. Our work thus adds to the ongoing dis-
course on the construct validity of vulnerability indices,
offering empirical insights into their performance in a
specific application. This approach aids in identifying
the strengths and limitations of these tools and helps
guide future refinements to enhance their effectiveness
and relevance in policy-making.

The rest of the paper is organized as follows. First,
§2 provides a brief literature review and background
on wildfire risk management, social vulnerability in-
dices, and our Texas case study. Then, in §3, we dis-
cuss our optimization framework for making line de-
energization and undergrounding decisions under vari-
ous objectives and constraints for equitable budget al-
location. In §4, we show the network configuration and
demographic profile of our Texas case study. Finally,
in §5, we show the results of our optimization models,
and in §6, we discuss the limitations of vulnerability
indices and the possible causes.

2. Literature Review

The relevant literature for this paper can be divided
into three categories: (1) information on the known or
perceived efficacy of social vulnerability indices, (2)
sources pertaining to the context of our case study on
wildfire risk and its management, and (3) background
on Texas’ environmental risk and demographic profile,
validating its use for our case study.

2.1. The Role and Application of Vulnerability Indices
in Policy-Making

Vulnerability indices have emerged as a critical tool
for identifying and prioritizing communities that are
disproportionately impacted by environmental hazards
and socioeconomic inequalities. In this work, we con-
sider both the CEJST and SVI in our analyses.
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The SVI, developed by the Center for Disease Con-
trol and Prevention (CDC) and Agency for Toxic Sub-
stances and Disease Registry (ATSDR), assesses so-
cial vulnerability based on factors such as socioeco-
nomic status, household composition, minority status,
housing, and transportation [10]. This index has been
widely applied in various domains, including disas-
ter management [11], healthcare resource allocation
[16, 17], and environmental justice assessments [18].

Similarly, the CEJST was created by the US Council
on Environmental Quality via Executive Order 14008
to identify disadvantaged census tracts for use by the
Justice40 initiative. This initiative aims to direct 40%
of the benefits of federal infrastructure investments to
these disadvantaged communities [7, 19]. The CEJST
incorporates a range of indicators, including environ-
mental, climate, health, and socioeconomic factors, to
identify communities eligible for Justice40 benefits.

There is much optimism regarding the ability of vul-
nerability indices to direct investments toward at-risk
groups. In the context of energy systems, recent studies
have begun to integrate social vulnerability assessments
into infrastructure planning and emergency response
strategies. Taylor et al. [20] explore the use of the
SVI in configuring microgrids to reduce load shedding
impacts on vulnerable communities during wildfire-
related outages. Ganz et al. [21] examine the socioeco-
nomic impacts of renewable energy deployments, high-
lighting the importance of incorporating vulnerability
considerations in energy transitions. Other research ap-
plications making use of vulnerability indices include
healthcare [16, 17], and disaster relief [11, 18].

However, empirical evaluations assessing how effec-
tively these indices inform specific infrastructure in-
vestment decisions, such as those related to wildfire
risk mitigation, remain limited. Fekete [15] and Ru-
fat et al. [9] emphasize the need for more comprehen-
sive research to validate these tools and ensure that they
accurately represent vulnerability and effectively guide
resource allocation. Concerns have been raised regard-
ing the potential oversimplification of complex social
dynamics and the risk of misidentifying or overlooking
certain vulnerable populations due to methodological
limitations. This study seeks to help address this gap
by analyzing the application and outcomes of vulnera-
bility index-informed resource allocation strategies in a
power grid wildfire resilience context.

2.2. Mitigating Risk of Wildfire from Power Lines

While power line-sparked ignitions account for only a
small fraction of total wildfires in the United States,
these ignitions often occur under extreme environmen-
tal conditions that lead to catastrophic spread and de-
struction [22]. Notable incidents, such as the Smoke-
house Creek (Texas), Maui Morning Fire (Hawaii),
Echo Mountain (Oregon), and Camp (California) fires,
have been linked to power infrastructure ignitions [23].

To address this issue, high wildfire-risk states employ
emergency public safety power shutoff (PSPS) events,
where power lines are proactively de-energized during
high-risk conditions to prevent ignitions [24]. While
effective in reducing wildfire occurrences, PSPS events
can result in power outages, referred to as load shed,
adversely affecting communities, especially those with
higher vulnerability due to factors such as food insecu-
rity, poverty, and medical needs [25, 26].

While PSPS events provide short-term solutions to high
wildfire risk, a promising long-term solution is to “un-
derground” (i.e., bury) high-risk power lines, which
significantly reduces the likelihood of wildfire igni-
tions. However, the high costs associated with un-
dergrounding—ranging from $5 to $10 million per
mile—and the extended timelines required for such
projects pose substantial challenges [27–30]. Conse-
quently, determining how to allocate limited budgets
for undergrounding projects becomes a complex re-
source allocation problem that must balance efficiency
and equity considerations.

Recent research efforts have focused on optimizing
PSPS implementations to balance wildfire risk reduc-
tion and minimizing adverse impacts on communi-
ties. Rhodes et al. [31] and Huang et al. [24] utilize
mixed-integer programming models to determine opti-
mal combinations of power line shutoffs that minimize
both fire risk and the extent of load shedding. Other
works have optimized PSPS operations to reduce dis-
ruptions, ensure reliability, and incorporate renewable
resources [32–35].

Advancements in modeling techniques have incorpo-
rated stochastic elements to account for uncertainties
in wildfire conditions. Su et al. [36] develop a stochas-
tic mixed-integer nonlinear programming approach that
considers variable environmental factors to optimize
PSPS plans. Additionally, the integration of renewable
energy storage solutions, such as long-duration bat-
teries, has been investigated as a supplementary strat-
egy to maintain power supply during high-risk periods
while mitigating ignition risks [37]. Despite these ad-
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vancements, there is limited research literature on the
integration of social vulnerability considerations into
wildfire risk management and infrastructure investment
strategies. There is a critical need for frameworks that
explicitly incorporate equity considerations, ensuring
that mitigation efforts adequately protect and benefit
the most vulnerable populations.

Power line undergrounding is not the only long-term
approach for mitigating wildfires sparked from power
lines; other options include vegetation management,
covered conductors, and fast trip settings. This paper
focuses on undergrounding power lines for wildfire risk
mitigation because utilities are already actively doing
this [29, 38]. In previous work, [35] showed under-
grounding may be a good choice when balancing load
shed and wildfire risk reduction. Furthermore, because
undergrounding provides a permanent and comprehen-
sive solution to many of the risk factors contributing
to ignitions, a power line undergrounding campaign is
well-aligned with the goals of the Justice40 initiative.

2.3. Social Vulnerability and Infrastructure Invest-
ments: The Case of Texas

Texas offers a compelling context for examining the in-
tersection of social vulnerability, infrastructure invest-
ments, and wildfire risk. The state’s diverse demo-
graphic composition and varied socioeconomic land-
scapes contribute to differential exposures and capac-
ities to cope with environmental hazards, including
wildfires.

Studies have highlighted the inequitable impacts of en-
vironmental disasters and infrastructure failures across
Texas communities. For instance, Shah et al. [39] doc-
ument the disproportionate effects of power outages on
minority populations during Winter Storm Uri in 2021,
underscoring systemic vulnerabilities exacerbated by
inadequate infrastructure resilience. In a similar report
of Winter Storm Uri, these authors show that, adjusted
for income level, census block groups with higher pro-
portions of minority populations are more likely to ex-
perience a power outage [40]. This suggests that Texas
residents’ vulnerability to power outages is related to
racial minority status, but interestingly somewhat un-
related to income. Our experiments with a simulated
dataset corroborate this finding (discussed in §5.1 refer-
encing Appendix B.2), which is why the case study de-
scribed in §4 considers racial groups primarily instead
of focusing on income groups.

While electric utilities in Texas have not historically
used PSPS events, Texas has experienced more than

4,000 wildfires caused by power lines between 2011
and 2014 [41], making PSPS events a possible future
solution. Most recently, the 2024 Smokehouse Creek
fire, the largest wildfire in Texas history, was likely
ignited by power infrastructure [42], emphasizing the
state’s susceptibility to such hazards and the critical
importance of effective risk mitigation strategies [23].
Furthermore, the increase in power outages due to ice
storms and other extreme weather in Texas has led to in-
creased popularity of line undergrounding as a method
of preventing these blackouts [43]. The combination of
climatic conditions conducive to wildfires and expan-
sive power infrastructure networks necessitates proac-
tive measures to prevent ignitions and protect commu-
nities.

3. Methods

We first introduce the framework used to model line
de-energization from PSPS events on an electric power
transmission network. Then, we discuss modifications
to this model to incorporate line undergrounding and
equity considerations.

3.1. Network Description

We consider an electric transmission network com-
prised of buses (nodes) connected by power lines
(edges). For a given network, let N be the set of
buses, L be the set of transmission lines, and G be the
set of generators. Let T = {1, . . . ,T } be the consid-
ered set of time indices over the period of a day. Let
D = {1, . . . ,D} be the considered set of days. We define
a 100 MVA per unit (p.u.) base power. The following
network parameters are provided for all lines ℓ ∈ L:

• bℓ, line susceptance in p.u.,
• f ℓ, the power flow limit in p.u.,
• rℓ,d, the wildfire risk incurred if line ℓ is energized

on day d,
• nℓ,to and nℓ,fr, to and from buses, respectively, de-

noting direction of positive power flow,
• δℓ and δℓ, upper and lower voltage angle difference

limits in radians, respectively,

The set L is further divided in to Lhigh
d , Lmed

d , and Llow
d

to indicate the set of lines that have high, medium, or
low wildfire risk on day d, respectively. These cate-
gories are further described in Appendix A.4. For all
generators i ∈ G, define the parameters:

• pg
i and pg

i
, upper and lower power generation lim-

its, respectively, in p.u. for generator i,
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For all buses n ∈ N , define the parameters:

• pl
n,d,t, power demand (load) at bus n at time period

t ∈ T on day d ∈ D in p.u.,
• Gn, the set of generators located at bus n,
• Ln,to and Ln,fr, the subset of lines ℓ ∈ L with bus

n as the designated to bus and bus n as the desig-
nated from bus, respectively.

The operation of the network during a multi-time-
period PSPS event is characterized by the following
set of variables using the BΘ representation of the DC
power flow model:

• pg
i,d,t, power generated at unit i ∈ G at time period

t ∈ T on day d ∈ D in p.u.,
• θn,d,t, voltage angle at bus n ∈ N at time period

t ∈ T on day d ∈ D in radians,
• ps

n,d,t, load shedding at bus n ∈ N at time period
t ∈ T on day d ∈ D in p.u.,
• fℓ,d,t, power flowing along line ℓ ∈ L at time pe-

riod t ∈ T on day d ∈ D in p.u.,
• zℓ,d ∈ {0, 1}, state of energization of line ℓ ∈ Lhigh

d
and ℓ ∈ Lmed

d on day d ∈ D. If zℓ,d = 0, then line
ℓ is de-energized, and if zℓ,d = 1, then line ℓ is en-
ergized. Note that the line’s energization state is
constant for all t ∈ T on day d ∈ D. Transmission
lines that are de-energized for safety reasons, such
as a PSPS event, need to be visually inspected
by a grounds crew before being re-energized, so
intra-day de-energizations are not desirable. Mod-
els for transmission line re-energization have been
explored in [32]. For all ℓ ∈ Llow

d , zℓ,d = 1. Let
Lswitch

d = L
high
d ∪ Lmed

d .

3.2. Operational and Physical Constraints

We define the constraints for the DC Optimal Trans-
mission Switching Problem (DC-OTS) in Equation (1),
∀d ∈ D, ∀t ∈ T .

In (1), (1a) enforces lower and upper generation lim-
its, (1b) constrains any load shedding to be nonnega-
tive and less than the load demanded at that time at
that bus, (1c) and (1d) enforce line flow limits, (1e)
and (1f)/(1g) constrain angle differences across lines,
(1h)/(1i) and (1j) model the DC power flow approxi-
mation, and (1k) ensures power balance at all buses in
the network. In equations (1f), (1g), (1h) and (1i), M
and M are big-M constants set to 2π and −2π respec-
tively for the numerical experiments in this paper. Note
that an energized line (i.e., zℓ = 1), simplifies (1f)/(1g)
to (1e) and (1h)/(1i) to (1j).

We then constrain the total risk from all energized

Eq. 1 DC-OTS Constraints

pg
i
⩽ pg

i,d,t ⩽ pg
i , ∀i ∈ G, (1a)

0 ⩽ ps
n,d,t ⩽ pl

n,d,t, ∀n ∈ N , (1b)

− f ℓzℓ,d ⩽ fℓ,d,t ⩽ f ℓzℓ,d, ∀ℓ ∈ Lswitch
d , (1c)

− f ℓ ⩽ fℓ,d,t ⩽ f ℓ, ∀ℓ ∈ L \ Lswitch
d ,(1d)

δℓ ⩽ θnℓ,fr,d,t − θnℓ,to,d,t ⩽ δℓ, ∀ℓ ∈ L \ Lswitch
d , (1e)

θnℓ,fr,d,t−θnℓ,to,d,t ⩾δℓzℓ,d+M(1−zℓ,d), ∀ℓ ∈ Lswitch
d ,(1f)

θnℓ,fr,d,t−θnℓ,to,d,t ⩽δℓzℓ,d+M(1−zℓ,d), ∀ℓ ∈ Lswitch
d ,(1g)

fℓ,d,t ⩾−bℓ(θnℓ,fr,d,t−θnℓ,to,d,t)+|bℓ |M(1−zℓ,d),
∀ℓ ∈ Lswitch

d , (1h)
fℓ,d,t ⩽−bℓ(θnℓ,fr,d,t−θnℓ,to,d,t)+|bℓ |M(1−zℓ,d),

∀ℓ ∈ Lswitch
d , (1i)

fℓ,d,t = −bℓ(θnℓ,fr,d,t − θnℓ,to,d,t), ∀ℓ ∈ L \ Lswitch
d , (1j)∑

ℓ∈Ln,fr

fℓ,d,t−
∑
ℓ∈Ln,to

fℓ,d,t=
∑
i∈Gn

pg
i,d,t−pl

n,d,t+ps
n,d,t,

∀n ∈ N , (1k)

above-ground lines to be below a given threshold,
RPS PS , on each day:∑

ℓ∈L

zℓ,drℓ,d ≤ RPS PS ∀d ∈ D. (2)

3.3. Line Undergrounding Formulation

Let the subset Lharden ⊆ L be the set of lines that are
candidates for hardening/maintenance where Lharden =

L
high
d
⋃

d∈DL
med
d . Define ϕug

ℓ
as the cost of under-

grounding line ℓ in millions of dollars per line. For
all ℓ ∈ Lharden, we introduce the variable yℓ ∈ {0, 1},
which indicates whether a line has been undergrounded
(yℓ = 1) or not (yℓ = 0). Note for all ℓ ∈ L \ Lharden,
we set yℓ = 0. In our model, we assume that the entire
length of line ℓ is undergrounded.

There is no benefit to simultaneously undergrounding
and de-energizing a line since undergrounding a line
already reduces the line’s risk to zero. Thus, we impose
the following constraints to prevent simultaneously de-
energizing and hardening a line:

zℓ,d = yℓ, ∀ℓ ∈ L
high
d , ∀d ∈ D. (3)

(1 − zℓ,d) + yℓ ⩽ 1, ∀ℓ ∈ Lmed
d , ∀d ∈ D. (4)

Equation (3) ensures lines in the highest-risk category
are either de-energized or undergrounded, removing the
risk by one method or the other. Alternatively, (4) al-
lows for the lines in the medium-risk category to op-
tionally be de-energized, undergrounded, or left above
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ground and energized. Regardless, in both categories,
undergrounded lines will remain energized.

We introduce a budget B (in millions of dollars) to limit
the resources available for line undergrounding. We use
a fixed cost of $7 million per mile for underground-
inglines in the network [44]. The total cost of under-
grounding line ℓ ∈ L is precomputed as ϕug

ℓ
, defined

above. This introduces the following constraint that en-
forces that the total cost of undergrounding must not
exceed budget B: ∑

ℓ∈Lharden

ϕ
ug
ℓ

yℓ ⩽ B. (5)

We can reformulate equation (2) to account for both
the risk reduction associated with de-energizing lines
as well as with line undergrounding:∑

ℓ∈L

rℓ,d(zℓ,d − yℓ) ⩽ RPS PS , ∀d ∈ D. (6)

3.4. Baseline Model

The baseline model reflects the scenario where under-
grounding decisions are made without considering the
vulnerability or demographics of affected populations.
That is, the objective of the baseline model is to mini-
mize total load shed in the network. Let Pl be the total
demand in the network over all time periods:

Pl =
∑
d∈D

∑
t∈T

∑
n∈N

pl
n,t,d,

and let Ps be the total load shed in the network over all
time periods:

Ps =
∑
d∈D

∑
t∈T

∑
n∈N

ps
n,t,d.

Now, let S represent the fraction of load shed in the
network, given by:

S =
Ps

Pl . (7)

We define the baseline model as:

min
pg,θ, f ,ps,z,y

(7) s.t. (1), (3) − (6). (BL)

3.5. Fairness Models

In this subsection we present optimization models that
select lines to underground while considering the vul-
nerability and/or demographics of affected populations.

Let M be the set of considered demographic groups
(e.g., income, race). Let γgrp

n,m represent the percentage
of the population at bus n ∈ N that belongs to demo-
graphic group m ∈ M. Let γvuln

n be the percentage of
population at bus n that belongs to vulnerable popula-
tions, which is defined based on the considered metric
(e.g., CEJST or SVI).

We assume that the load requested at a bus is allocated
proportionally to the groups at that bus. That is, if
group A is 20% of the population at bus n, we attribute
20% of the load at bus n to group A. We define the total
load demanded by each group m ∈ M across all buses
and all considered time periods as Pl

m:

Pl
m =
∑
d∈D

∑
t∈T

∑
n∈N

γ
grp
n,m pl

n,t,d.

Similarly, we assume that load shed at a bus proportion-
ally affects the groups at that bus. Let Ps

m for all groups
m ∈ M be the total load shed experienced by group m
across all buses and all considered time periods:

Ps
m =
∑
d∈D

∑
t∈T

∑
n∈N

γ
grp
n,m ps

n,t,d.

The demographics and vulnerability of the population
at each bus in the network are determined using census
data, where we assign each census tract to the nearest
load bus. See Appendix B for details on the method-
ology we employ to attribute demographic data to each
bus.

Next, we introduce three categories of optimization
model that aim to incorporate fairness considerations
into undergrounding decisions:

1. Policy constraint models, which preferentially al-
locate resources to groups with vulnerability char-
acteristics by imposing proportionate policy-level
constraints,

2. Equity objective models, which seek to minimize
disparate impacts of load shedding across different
demographic groups through specially designed
objective functions, and

3. Policy constraint and Equity objective model,
which combines the two above goals.

Table 1 can be used as reference for the considered
models in this study.

3.5.1. Policy Constraint Models

As discussed in Section 1, the goal of the Justice40 ini-
tiative is for 40% of the “benefit” induced by federal cli-
mate investment to be accessible to vulnerable groups.
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The Policy constraint models are intended to enforce
this prioritization. The aim of the Policy constraint
models are to ensure 40% of benefits are realized by
vulnerable groups. We enforce this allocation through
the inclusion of an additional optimization constraint.
In the context of a wildfire risk mitigation scenario, the
“benefit” to vulnerable groups could be interpreted as
(1) the budget allocated to vulnerable groups, or (2) the
load shed reduction experienced by vulnerable groups.
Consequently, there are two versions of the Policy con-
straint model: one that enforces the benefit to vulnera-
ble groups through a budget constraint, and another that
enforces it through a load shed reduction constraint.

We first introduce the version of the Policy constraint
model that ensures 40% of the total budget aids vulner-
able populations. Recall from Section 3.3 that ϕug

ℓ
is

the cost to underground line ℓ ∈ L. We assume that
half of this investment is attributed to each of the popu-
lations at the terminal buses. That is, the dollar amount
of benefit is split equally between the populations at the
two buses of the line, nℓ,to and nℓ,fr. We then define the
budget spent on vulnerable populations as:

ϕvuln =
∑
ℓ∈L

yℓ
ϕ

ug
ℓ

2

(
γvuln

nℓ,to + γ
vuln
nℓ,fr

)
.

To ensure 40% of the budget is allocated to vulnera-
ble populations based on the Justice40 initiative, we
enforce the following constraint:

ϕvuln ≥ 0.4 · B. (8)

Now, we can introduce the first version of the Policy
constraint model, which ensures that 40% of the budget
is allocated to vulnerable populations:

min
pg,θ, f ,ps,z,y

(7) s.t. (1), (3) − (6), (8). (9)

Next, we introduce the second version of the Policy
constraint model that ensures 40% of the total load shed
reduction affects vulnerable populations. We define the
total load shed seen by vulnerable populations over the
considered time period as:

Ps,vuln =
∑
d∈D

∑
t∈T

∑
n∈N

ps
n,d,t γ

vuln
n .

Let Ps
BL−M0 and Ps,vuln

BL−M0 represent the total load shed
and the load shed experienced by vulnerable popula-
tions respectively under the baseline model (BL) with
no budget, where the subscript BL-M0 references the
descriptors in Table 1. Recall from Section 3.4 that Ps

is the total load shed in the network. Now, we can intro-
duce the optimization constraint to enforce that 40% of
load shed reduction is seen by vulnerable populations:

Ps,vuln
BL−M0 − Ps,vuln

Ps
BL−M0 − Ps ≥ 0.4. (10)

The second version of the Policy constraint model that
ensures that 40% of the load shed reduction affects vul-
nerable populations is then defined as:

min
pg,θ, f ,ps,z,y

(7) s.t. (1), (3) − (6), (10). (11)

3.5.2. Equity Objective Model

The Equity objective models aim to minimize the dis-
parity in proportional load shed seen across groups, i.e.
minimizing the maximum proportion of load shed seen
by any one group. To define the Equity objective, we
define the auxiliary variable, α, denoting the maximum
proportion of load demanded that is shed across each
group. That is, for each group m ∈ M, we constrain

α ≥
Ps

m

Pl
m

. (12)

We define the following mixed-integer program (MIP)
to minimize the maximum percent load shed across
groups:

min
pg,θ, f ,ps,z,y

α s.t. (1), (3) − (6), (12). (13)

This method can result in extraneous load shed. For ex-
ample, load shed occurring at a bus that has no associ-
ated population belonging to the most affected group is
not accounted for by the objective. To maintain a focus
on improving outcomes for the most impacted groups,
a post-processing step minimizes total load shed, (7),
in the network after setting the binary decisions found
from models E-M6 through E-M10 as discussed in Ta-
ble 1. This post-processing re-optimizes over the con-
tinuous variables.

3.5.3. Policy Constraints with Equity Objectives

We include two additional models that incorporate both
policy constraints as well as equity objectives. With the
inclusion of the policy constraint considering budget,
the objective becomes (14):

min
pg,θ, f ,ps,z,y

α s.t. (1), (3) − (6), (8), (12), (14)

Next, we consider a constraint on proportional load
shed reduction along with the equity objective, (15)

min
pg,θ, f ,ps,z,y

α s.t. (1), (3) − (6), (10), (12). (15)
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3.6. Model Descriptions

Results presented in the body of this paper cover 11 dif-
ferent models each for 5 different budgets, representing
various combinations of Policy constraints and Equity
objectives. A summary of models is given in Table 1.

1. Load shed outcomes under no intervention, given
by model (BL) when the budget parameter B is set
to zero. We will call this our no-budget model, and
is denoted by BL-M0.

2. Load shed outcomes when allocating budget for
undergrounding without considering any vulnera-
bility or demographic factors (i.e., no Policy con-
straints or Equity objective). This model is given
by (BL) for nonzero budgets. In tables and plots,
this model is denoted by BL-M1 to emphasize that
this model is the baseline for a specified budget B.
In this results section, we look at budget B = 1000
million USD, but the Appendix shows results for
other budgets.

3. Load shed outcomes when allocating budget for
undergrounding when using an objective that min-
imizes total load shed, with Policy constraints to
preferentially allocate 40% of the budget (9) (M2,
M4) or 40% of the load shed reduction (11) (M3,
M5) relative to the no-budget model to tracts des-
ignated as disadvantaged by the CEJST and SVI,
respectively.

4. Load shed outcomes when allocating budget for
undergrounding when using the Equity objective,
either without (13) or with ((14) or (15)) Policy
constraints by budget ((8) in E-M7 and E-M9)
and load shed reduction ((10) in E-M8 and E-
M10), respectively. These models use either the
CEJST (E-M7 and E-M8) or SVI (E-M9 and E-
M10) datasets. Models of this type are given the
prefix “E-” for equity, appended by the model la-
bel M6-M10 for a pre-specified budget; see Table
1 for specifics of each model type.

4. Texas Wildfire Case Study

In this section, we discuss the demographic distribution
and network configuration specific to this case study.
The case study models a synthetic grid covering a sim-
ilar area to the ERCOT transmission network in Texas.

4.1. Synthetic Texas Network

We use the synthetic Texas7k transmission network
test case, developed by the Texas A&M PERFORM

group [45]. This test case provides a realistic approx-
imation of the area covered by the ERCOT [45, 46]
while not disclosing critical energy infrastructure infor-
mation [47].

4.2. Simulating Features of the Texas 7k Network

The Texas7k network gives us information about the
synthetic transmission network structure (e.g., network
topology, loads, line impedances, etc.). To understand
the wildfire ignition risk and demographic profile of
different parts of the Texas7k network, we augment the
dataset with three other types of data:

1. Demographic data from the 2010 US Census [48,
49].

2. Vulnerability index data at the US Census tract
level [8, 10].

3. United States Geological Survey (USGS) wildfire
risk data [50].

Using these datasets, we assign demographic informa-
tion and vulnerability metrics for each bus in the net-
work. For this problem, we generally define the groups
M as the five census defined racial and ethnic groups;
Hispanic, White, Black, Indigenous, and Asian popula-
tions. For each line in the network, we assign a risk of
igniting a wildfire if the line is energized for each day
in the simulation period. Reference the Appendix for
more details on demographic data (A.1), CEJST (A.2),
SVI (A.3), and the USGS data (A.4).

This augmented dataset enables visualizing risk, de-
mographic, and vulnerability data for the synthetic
Texas7k transmission network. Figure 1 shows vulner-
ability characteristics of the synthetic network where
the circled regions highlight the overlap in vulnerabil-
ity between these four metrics (wildfire risk, high cost
to underground, low-income status, and racial minor-
ity status). We can see that the western- and northern-
most parts of Texas are likely most susceptible to power
outages from PSPS events (i.e., high wildfire risk, but
lower ability to cope due to lower income) as well
as lower likelihood of being selected for power line
undergrounding due to lower population density (not
pictured) and the high cost to underground the lines.
Hence, we can anticipate some difficulty allocating load
shed relief to populations in these northwest regions.
This hypothesis will be corroborated in §5.

5. Results

In this section, we discuss the impacts of equitable re-
source allocation policies on reducing load shed to vul-
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(a) Risk per line in the Texas7k network (b) Cost to underground each line (c) Percent of tract that is a racial minority

Figure 1: This figure shows some vulnerability characteristics of the synthetic Texas7k network where the circled regions show the
overlap in vulnerabilities between these three metrics (wildfire risk, high cost to underground, and racial minority status). These
areas also have a lower likelihood of being selected for power line undergrounding due to lower population density (not pictured).

(a) Approximately 40% of all Texas cen-
sus tracts are vulnerable per the CEJST, and
only 37% of Texas census tracts experienc-
ing load shed are CEJST tracts.

(b) Approximately 38% of all Texas cen-
sus tracts are vulnerable per the SVI, and
only 28% of Texas census tracts experienc-
ing load shed are SVI tracts.

(c) Census tracts with relatively larger (al-
though still minority) Indigenous popula-
tions are high-risk, and have load shed.

Figure 2: Load shed (in the absence of undergrounding decisions and equity considerations, BL-M0), visualized with red bubbles
on the map, occurs almost exclusively in the vulnerable areas highlighted in Figure 1.

nerable populations, particularly for Hispanic and In-
digenous populations. We will consider four model
types, discussed in each of the next four subsections,
§5.1-§5.4. A summary of the models discussed below
can be seen in Table 1.

For this case study, we show that models including the
Equity object more effectively reduces the proportional
burden of load shed on Indigenous populations com-
pared to using policy constraints alone.

5.1. Baseline Load Shed Under No Intervention

First, we discuss the results of the no-budget baseline
model (BL-M0), which shows the regions and popu-
lations most subjected to load shed from PSPS events
when there is no budget for undergrounding power
lines. Figure 2 shows the load shed patterns from a

PSPS event on the network covered by the Texas7k case
study for the 5-day period from June 11th through June
15th of 20212. Figure 2 highlights two regions in the
north and west of Texas that bear most of the load shed
in the network overlaid on choropleths of the vulner-
able census tracts in Texas per the CEJST (Figure 2a)
and SVI (Figure 2b).

Figure 3 presents the load shed results for the no-
budget baseline model (BL-M0), which show that In-
digenous, Hispanic, and uninsured populations face
above-average percentages of load shed. In particular,
Indigenous populations experience more than nearly
twice as much load shed as the average Texas resident
(2.52% vs 1.22%). Figure 2c shows that census tracts

2We choose this week because of the relatively high load and
wildfire risk on the network during this week.

9



Policy Constraint
Model Objective (min)

Vulnerability Index Constraint Type
Budget Eq.

BL-M0 total load shed (7) N/A N/A 0.0 (BL)
BL-M1 total load shed (7) N/A N/A 1000.0 (BL)
M2 total load shed (7) CEJST Prop. Budget Expenditure (8) 1000.0 (9)
M3 total load shed(7) CEJST Proportional Load Shed Reduction (10) 1000.0 (11)
M4 total load shed (7) SVI Prop. Budget Expenditure (8) 1000.0 (9)
M5 total load shed (7) SVI Proportional Load Shed Reduction (10) 1000.0 (11)
E-M6 max % load shed across groups (12) N/A N/A 1000.0 (13)
E-M7 max % load shed across groups (12) CEJST Prop. Budget Expenditure (8) 1000.0 (14)
E-M8 max % load shed across groups (12) CEJST Proportional Load Shed Reduction (10) 1000.0 (15)
E-M9 max % load shed across groups (12) SVI Prop. Budget Expenditure (8) 1000.0 (14)
E-M10 max % load shed across groups (12) SVI Proportional Load Shed Reduction (10) 1000.0 (15)

Table 1: Summary of all models considered in the results section of this paper. Appendix results show alternative
budget outcomes. All models include the constraints (1), and (3)–(6). Budgets are listed in millions USD.

Figure 3: In the no-budget baseline case (BL-M0) we ob-
serve that Indigenous, Hispanic, and uninsured populations
face above-average percentages of load shed.

with relatively larger (although still minority) Indige-
nous populations tend to live in areas experiencing load
shed.

One might be surprised to see that the low-income
group in Figure 3 experiences a lower percentage of
load shed than the overall percentage of load shed;
however, this finding is not an anomaly. Shah et al.
[39] studied the correlative effects of race and income-
level on the likelihood that a Texas resident experienced
a power outage during 2021 Winter Storm Uri, and the
authors found that ethnic minority status has greater im-
pact on load shed than income group. Shah et al. [39]
also found that at every income level, minority groups
experienced disproportionately high amounts of power
loss compared to non-minority groups. Our own sim-
ulations of power loss by income group, a sample of
which is shown in Appendix B.2, reflect the same trend

as Shah et al. [39] that income has very little effect on
the likelihood of experiencing power loss. Hence, in
this paper, we primarily discuss discrepancies in load
shed by racial group.

5.2. Load Shed Under Increasing Budgets for Under-
grounding

Now, we consider how load shed patterns change when
we allocate budget for power line undergrounding ac-
cording to the baseline model (BL). Ideally, if budget
allocations were equitable, the groups that were sub-
ject to the most load shed in the no-budget case (BL-
M0) should see relatively higher percentages of budget
allocated to them, as well as higher decreases in load
shed and wildfire risk as budget increases. For this case
study, we would expect to see this for Indigenous and
Hispanic populations.

In Figure 4, we show how the per capita load shed,
risk reduction (as compared to the no-budget case), and
budget-allocated by group changes as the total available
budget increases. We observe that Indigenous and His-
panic populations experience the highest load shed on
a per capita basis (Figure 4a), across all budgets. How-
ever, as the amount of budget allocated increases, His-
panic populations see steady decreases in load shed per
person and the highest per capita increases in risk re-
duction and budget allocation. In contrast, Indigenous
populations have a large initial drop in per capita load
shed when $250 million is allocated, but do not experi-
ence substantial reductions in load shed per person until
the $1 billion budget is allocated. Furthermore, Indige-
nous groups neither experience substantial reductions
in wildfire risk (Figure 4b) nor commensurate levels of
budget allocation (Figure 4c) relative to their risk and
load shed profile until $1 billion is allocated. This in-
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(a) Normalized load shed by group (b) Normalized risk reduction by group (c) Normalized budget allocation (in USD) per
person in group

Figure 4: Trends in load shed, risk reduction, and budget allocation per person in each group under BL-M1 as a function of the
total budget allocated for undergrounding.

dicates that Indigenous groups live in census tracts that
are either (a) too expensive for power line underground-
ing or (b) reside in census tracts where they constitute a
minority of the population—and thus are not prioritized
by the baseline model—or both (a) and (b). These hy-
potheses are corroborated by Figures 1b and 2c, which
show that the census tracts with the highest portion of
Indigenous populations still only see less than 5% of
their population comprised of Indigenous populations.
These same census tracts (in Region 2 of the figures)
have many transmission lines that cost upwards of 100
million USD to underground. Further discussion about
the challenge of using vulnerability indices when opti-
mizing for equitable resource allocation can be found
in §5.5.

5.3. Impacts of Justice40-Style Resource Allocation
Using Policy Constraints

The previous section showed that Indigenous commu-
nities in Texas face disproportionately high load shed
under the baseline model, even as increased budget is
allocated to reduce load shed. Policies like the Jus-
tice40 initiative seek to ensure some minimal level
(40%) of realized benefit (e.g., relief from load shed
or budget allotment) is allocated to vulnerable popula-
tions. In this section, we analyze whether constraints
modeling the Justice40 initiative rectify the current im-
balance in load shed experienced across demographic
groups after investments have been made. In other
words, do the Policy constraints result in the intended
effect?

Optimization models (9) and (11) employ Policy con-
straints by budget allocation (8) and load shed reduc-
tion (10), respectively. Table 2 shows the results for

these models for a $1 billion budget. Recall that model
BL-M0 in the first row represents the baseline no-
budget case, and is given as a reference. Each row
in the table represents one model, which is defined by
a vulnerability index, constraint type pair, where the
constraint type indicates whether we implement a Pol-
icy constraint by budget, reduction in load shed over
the no-budget model, or have no additional constraint.
The vulnerability index column indicates which index
is used to designate the vulnerable communities when
a Policy constraint is in effect. Each cell gives the per-
cent of a given group’s load demanded that is shed. We
note that load shed values above 1% have red text to
indicate a rate of load shed that we highlight as partic-
ularly elevated. From these load shed values, we can
compute an “unfairness ratio,” which is the ratio of that
group’s percent of load shed to the overall population’s
percent of load shed. The unfairness ratios for mod-
els with Policy constraints and the baseline “minimize
total load shed” objective are shown in Figure 5a.

No-budget model BL-M0 and baseline model for $1
billion budget BL-M1 in Table 2 seek to minimize the
total load shed in the network subject to power flow
and budget constraints only (i.e., there are no Policy
constraints). Between BL-M0 and BL-M1, there is a
substantial reduction in load shed across every group
when budget is allocated for undergrounding, although
the level of benefit is not uniform. For example, while
the overall population sees their load shed decrease by
a factor of nearly four, Indigenous load shed does not
even decrease by a factor of three.

Now, consider models M1-M5. Under BL-M1, Indige-
nous populations experience 0.97% of load shed, which
is almost three times higher than that of the overall pop-
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Policy Constraint Percent of Load Demanded that is Shed
Vulnerability

Index
Constraint

Type
Overall Uninsured Low-Income Hispanic White Black Indigenous Asian

BL-M0 None None 1.22 1.31 0.92 1.7 1.12 0.39 2.52 0.36
BL-M1 None None 0.33 0.37 0.33 0.48 0.29 0.07 0.97 0.08
M2 CEJST Budget 0.35 0.41 0.34 0.48 0.34 0.06 1.07 0.07
M3 CEJST Load Shed 0.45 0.46 0.40 0.58 0.47 0.07 1.41 0.12
M4 SVI Budget 0.37 0.42 0.34 0.51 0.35 0.07 1.18 0.08
M5 SVI Load Shed 0.37 0.43 0.37 0.49 0.37 0.05 0.88 0.07

Table 2: Percentage load shed across different groups, when not using the Equity objective and different types of
Policy constraints when a $1 billion budget is allocated. The blue-highlighted row showing the results of model
BL-M0 represents the no-budget baseline case (i.e., no undergrounding) for reference. The red cells in the table
indicate that the % load shed is above a threshold of 1%.

Policy Constraint Percent of Load Demanded that is Shed
Vulnerability

Index
Constraint

Type
Overall Uninsured Low-Income Hispanic White Black Indigenous Asian

E-M6 None None 0.49 0.54 0.45 0.67 0.49 0.08 0.75 0.13
E-M7 CEJST Budget 0.47 0.53 0.43 0.67 0.44 0.06 0.75 0.10
E-M8 CEJST Load Shed 0.41 0.45 0.38 0.54 0.40 0.07 0.79 0.19
E-M9 SVI Budget 0.53 0.59 0.49 0.70 0.54 0.09 0.79 0.13
E-M10 SVI Load Shed 0.45 0.51 0.42 0.64 0.43 0.06 0.75 0.10

Table 3: Percentage load shed across different groups, for all combinations of Equity objective (group-level protec-
tions) and Policy constraints with a $1 billion budget.

ulation at 0.33%.3 For models M2-M5, we test vari-
ous optimization models that minimize the total load
shed in the network subject to Policy constraints ensur-
ing that 40% of the benefit goes to vulnerable tracts,
designated by either CEJST or SVI. For each of these,
with the exception of M5, Table 2 shows a consistently
higher percent of load shed for Indigenous populations
compared to BL-M1, thus, not having a considerable
impact on protecting this vulnerable population. Even
for model M5, the Indigenous load shed reduction is
minimal, with an improvement of only 0.09% over the
baseline. We also observe that, in general, no group is
substantially “better off” (in terms of percent of load
shed) after implementing Policy constraints—in fact,
they are usually worse off.

Furthermore, Figure 6b shows how every racial
group—including Indigenous groups—experiences
more load shed after either Justice40-style Policy
constraint is implemented, even though the budget

3We can compare these percentages with the System Average In-
terruption Duration Index (SAIDI) which measures the average num-
ber of minutes of power loss seen by a costumer in a year for dif-
ferent states. When looking at Texas in 2021, we see roughly 1500
minutes of power loss or 0.2% of the year. However, Winter Storm
Uri impacted Texas during 2021, causing widespread outages. When
looking at the 10 year average SAIDI for Texas from 2013 to 2022,
we see a value of 0.074% of the year [51].

allocation does become increasingly allocated to
Indigenous groups. It is likely that the discrepancy be-
tween budget allocation and load shed reduction stems
from Policy constraints channeling funds towards cen-
sus tracts with lower population density or tracts where
the cost to underground power lines is higher, reducing
the total amount of lines that can be undergrounded.
Consequently, although the per capita investment for
Indigenous groups may be more substantial, the per
capita reduction in load shed remains unimproved.

5.4. Group Fair Frameworks Using Equity Objective

In this case study, it is clear that protecting Indigenous
populations from load shed is challenging due to their
minority status in each census tract and their residence
in areas where undergrounding is expensive and wild-
fire ignition risk is high.4 This motivates the study
of group-level protections, which may help ensure that
each population group of interest is able to receive the
appropriate level of resources. This framework pro-
vides a lower bound on the percentage load shed experi-
enced by the proportionally most-affected group, which
in our study is Indigenous populations.

4Note that low income communities may be more likely to re-
side in high wildfire risk areas given lower housing prices in wildfire-
prone areas [52].
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(a) Relative unfairness in the percent of load demanded that is
shed at the $1 billion budget for simulations NOT using the
Equity objective.

(b) Relative unfairness in the percent of load demanded that is
shed at the $1 billion budget for simulations using the Equity
objective.

Figure 5: Relative unfairness is the ratio of the percent of a group’s load shed to the percent of load shed over individuals in the
entire network. The larger the relative unfairness score, the more unfair the load shed outcomes are for that group. We can see that
the maximum unfairness values decrease when considering the MMF framework with the Equity objective (b) versus the Policy
constraints alone (a).

Optimization models (13), (14), and (15) employ
group-level protections by implementing a percentage-
based MMF framework using the Equity objective de-
fined by (12). By using this percentage-based MMF
framework, we account for the total load demanded
by each group, which prevents minority groups within
census tracks from being de-prioritized for investment
allocation. We summarize the results of using any com-
bination of Equity objective and Policy constraint for a
$1 billion budget in Table 3. We also provide a visual
comparison of load shed statistics across variance bud-
gets between Indigenous groups and the overall Texas
population in Figure 7. Note that the “E” prefix in the
model names E-M6 through E-M10 correspond to the
“Equity” objective.

First, we discuss the overall trends from the 1 billion
USD budget case in Table 3. We observe from mod-
els E-M6 through E-M10 that using Equity objectives
with and without Policy constraints reduces the per-
centage of load shed across all populations to be un-
der 0.80%. In particular, between the baseline BL-M1
and the models using the Equity objective, we see a
minimum of a 19% decrease in percent of load de-
manded that is shed. However, prioritizing relief to
Indigenous communities comes at a cost; the average
load shed across all individuals increases from 0.33%
to, at best, 0.41%, and all other non-Indigenous groups

see increases in percent of load shed. However, it is
ultimately the task of a policymaker to determine what
level of overall load shed increase is tolerable to reduce
disparities across groups.

In Figure 5b, we show the unfairness ratios when incor-
porating the Equity objective. While Indigenous and
Hispanic groups still face disproportionately high lev-
els of load shed relative to the overall population, these
unfairness ratios are significantly lower than the unfair-
ness ratios when not using the Equity objective, shown
in Figure 5a. When we consider both the overall per-
cent of load shed in Table 3 and the unfairness ratios in
Figure 5b, we see that all of the models show varying
degrees of trade-off between the overall load shed and
the unfairness ratio experienced by Indigenous groups.

In terms of providing power loss protections to Indige-
nous populations, we show a significant benefit of us-
ing Equity objectives in conjunction with Policy con-
straints. While Tables 2 and 3 only show the results
for the $1 billion budget, we note that the MMF frame-
work, which promotes the most load shed relief for In-
digenous groups under the $1 billion budget, also pro-
motes load shed relief compared to the baseline at the
$500 million and $750 million budgets. The relative
improvement in Indigenous load shed outcomes can be
seen more directly in Figure 7 for a subset of the mod-
els. For tabular results like those in Tables 2 amd 3 for
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(a) Normalized cost allocated to group in the baseline case (no policy constraints) (left), the case when constraining 40% of the budget to
go to Justice40 communities (center), and the case when constraining 40% of load shed reduction to go to Justice40 communities (right).

(b) Percent of load demanded that is shed by racial group in the baseline case (no policy constraints) (left), the case when constraining
40% of the budget to go to Justice40 communities (center), and the case when constraining 40% of load shed reduction to go to Justice40
communities (right).

Figure 6: The budget allocation increase to Indigenous populations (top right) does not translate to load shed reduction (bottom
right). In fact, the bottom subfigure shows load shed trends by racial group remain relatively consistent across each of these policy-
constrained cases.

the $500 million case, see Figure 12 in the Appendix.
Hence, we find that in order to see meaningful reduc-
tions in Indigenous load shed while maintaining rea-
sonably low load shed for other groups, our study iden-
tifies two requirements: (1) a sufficiently high budget,
in our case, at least $500 million (See Appendix C), and
(2) a MMF framework that considers minimizing the
maximum percentage of a group’s load demanded that
is shed. This latter requirement is necessary to place In-
digenous groups on equal priority with different racial,
ethnic, and other groups which make up a higher per-
centage of Texas’ total population.

5.5. The Curse of Aggregation in Vulnerability Index
Creation

Our analysis reveals that adding Policy constraints gen-
erally leads to increased load shed outcomes for all
racial and socioeconomic groups, and does not alleviate

the disproportionately high load shed experienced by
Indigenous Texans. This is important because Indige-
nous populations experience nearly double the poverty
rate of Texas overall, and would be ideally flagged as
disadvantaged by a vulnerability index. Yet, we do
not observe any benefit from these Policy constraints.
Why?

The challenge with using any vulnerability index, in-
cluding the CEJST and SVI metrics, lies in the neces-
sity of data aggregation, which homogenizes popula-
tions within a census tract and can obscure the vulnera-
bility profiles of minority subpopulations when they are
surrounded by a non-disadvadvantaged majority. We
observe that this is the case when we consider which
census tracts in Texas fail to meet the qualifications to
be considered vulnerable by these metrics. Figure 8
shows that there is little to no correlation between ei-
ther (a) the percentage of a tract that is Indigenous or
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Figure 7: Policy constraints increase the percent of load shed
experienced by Indigenous households over BL-M1, whereas
the Equity objective decreases the percent of load shed expe-
rienced by Indigenous households, particularly at higher bud-
gets. The overall percentage of load shed increases relatively
little when implementing either Policy constraints or the Eq-
uity objective.

Figure 8: Vulnerability metrics correlate with socioeconomic
indicators (blue text), but do not necessarily correlate with
racial/ethnicity variables (red text) or indicators of high wild-
fire ignition risk (green text). Blue cells indicate negative cor-
relation values while red cells indicate positive values.

(b) the wildfire ignition risk at the census tract dur-
ing a high-risk period on the likelihood that the tract
is categorized as vulnerable. Since Indigenous popula-
tions make up a small fraction of the total population of
each census tract, their relative disadvantage5 may be
eclipsed by the fact that a majority of the census tract

5Indigenous groups make up less than 1% of the Texas population,
but experience poverty at nearly double the rate of White Texans.
This makes aggregation a likely explanation for the discrepancy in
budget allocation and lack of characterization of Indigenous groups
as belonging to Justice40 census tracts [53–55]

GIDTR
percentile

below poverty
line

percentile
Indigenous

percentile
ignition risk

110093 65 94 88
120013 53 85 94
120013 57 94 94
220006 52 99 99
220020 52 99 99
220077 77 99 99

Table 4: A subset of census tracts categorized as “not
vulnerable” for each of the three indices.

consists of groups that are generally not disadvantaged
(i.e., higher income, not a racial minority). This is what
we define to be “the curse of aggregation:” the loss of
minority characteristics of a region’s demography after
aggregating population data to create a profile of that
region.

We see that while northern and western Regions 1 and
2 in Figure 2 do experience the disproportionate frac-
tion of the power loss experienced during this period, as
we might have assumed from our observations in §4.1,
the CEJST and SVI metrics do not identify these tracts
experiencing power outages as being particularly vul-
nerable. A natural question is whether this is due to
(1) the fact that the CEJST indices are based on vul-
nerability from a national standpoint instead of consid-
ering statewide trends or (2) the fact that CEJST de-
fines general climate vulnerability as opposed to wild-
fire vulnerability, specifically. To test this, we modified
the CEJST criteria to only consider Texas percentiles of
wildfire spread risk, as opposed to national percentiles
of many types of climate risks (e.g., flood risk, agri-
culture loss rate, wildlife loss, etc). Even this “modi-
fied CEJST” index fails to capture the vulnerability of
the census tracts in the highlighted Regions 1 and 2, as
shown in Figure 8. Table 4 shows a subset of census
tracts that the CEJST, modified CEJST, and SVI crite-
ria fail to designate as vulnerable, despite being above
the 50th percentile for low income and at very high per-
centiles for ignition risk (over 88%), as well as the frac-
tion of the census tract that is Indigenous (over 85%).
Indeed, there are cumulative network effects that nei-
ther the SVI, CEJST, nor modified CEJST can capture
in their entirety.

This “curse of aggregation” highlights a potential lim-
itation of social vulnerability indices, which has also
been corroborated by other works (e.g., [56–58]). This
work demonstrates an observation made by Cutter in
[56]: “Clearly, the differing contexts of social vulner-
ability become averages when using aggregated data,
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and the single [social vulnerability index] score tends
towards oversimplification.” That is, our work demon-
strates that Indigenous communities become “aver-
aged” with non-indigenous neighbors, and the index
cannot identify their unique attributes.

In contrast, we find that Equity objectives taking group
size into account may ensure that minority subpopula-
tions within census tracts are not overlooked. By de-
sign, such MMF objectives balance “fair” load shed
outcomes for the considered set of groups; however,
as discussed in Section 5.4, this may come at the cost
of increased total load shedding. Despite this trade-
off, the outcomes simulated from decisions made by a
group-fair MMF model can inform decision-makers on
the conceivable bounds on possible load shed improve-
ments for vulnerable communities, even if the model
is not implemented in practice. Stakeholders, policy-
makers, and other decision-makers are ultimately re-
sponsible for determining what balance of competing
objectives should be prioritized.

6. Conclusion

In this paper, we analyzed the performance of a Jus-
tice40 framework for making power line underground-
ing and de-energization decisions on a synthetic trans-
mission network modeling the ERCOT region of Texas.
We modeled this multi-criteria decision with the fol-
lowing considerations: (i) to have minimal (or close
to minimal) total load shed in the network, (ii) so that
the total wildfire ignition risk in the network remains
within set limits, and (iii) to allocate benefits fairly
across various groups. While considerations (i) and (ii)
are relatively straightforward, achieving a “fair” alloca-
tion policy (iii) was significantly more challenging.

First, we analyzed the load shed outcomes when im-
plementing Justice40-style Policy constraints on a MIP
model of the transmission network with the objective
of minimizing total network load shed. Specifically,
we considered constraints that proportionally allocate
40% of the total budget to vulnerable communities or
proportionally allocate 40% of the total load shed re-
duction to vulnerable communities as defined by two
vulnerability indices: the CEJST and the SVI. The op-
timal solution to these programs generally led to worse
load shed outcomes for all racial and socioeconomic
groups. In particular, these Policy constraints often
fail to protect Indigenous populations who experience
nearly double the poverty rate and double the antic-
ipated load shed as the average rate of poverty and

load shed in Texas. We posit that there are two key
causes for the misalignment between the intent of the
Justice40 initiative with and the realized benefit (or
lack thereof) to communities experiencing high wild-
fire risk after implementing Policy constraints. First,
there is information loss due to data aggregation, and
second, generalized vulnerability criteria lack context-
specificity to be effective across different types of cli-
mate vulnerabilities and investments.

Aggregation of demographic data is necessary to com-
pute a “vulnerability index” for a census tract. How-
ever, doing so homogenizes the demographic profile
of the census tract instead of capturing its diversity.
Hence, a disadvantaged group that makes up a minority
of the census tract is likely to be overlooked if the ma-
jority of the census tract is not disadvantaged. This is
likely why Indigenous groups were not more likely to
live in disadvantaged census tracts than other groups,
despite higher rates of poverty. In contrast, Hispanic
groups in poor areas (a much larger group in Texas)
could be appropriately identified as vulnerable by these
vulnerability indices.

Furthermore, many of these vulnerability indices are in-
tentionally general, as to be able to be utilized for a va-
riety of different resource allocation projects. However,
as this case study has demonstrated, the use of general
vulnerability indices may not have the intended effect
under specific policies. One option may be to define
context-specific vulnerability indices, both by location
and the type of risk that is being mitigated. However,
even when vulnerability is defined in this way, the curse
of aggregation may still apply, leaving some groups at
disproportately high risk. In our case, when we eval-
uated a modified CEJST index which only considered
Texas wildfire spread risk (as opposed to national per-
centiles of a plethora of different, potentially unrelated
climate risks), we saw similarly poor load shed out-
comes for Indigenous groups. In short, creating such
a context-specific definition of vulnerability may im-
prove its efficacy, but doing so is not necessarily suffi-
cient for adequately prioritizing at-risk populations.

In this case study, the use of aggregated vulnerabil-
ity indices did not appropriately allocate resources to
vulnerable minority populations, which motivated the
study of explicit group protections. The percentage-
based Equity objective is group-size conscious, which
prevents minority subpopulations within census tracts
from being overlooked during the optimization rou-
tine in a way that vulnerability indices cannot. Fur-
thermore, such an objective, by construction, balances
“fair” load shed outcomes with total load shed in the
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network and does so without any intrinsic bias about
which group should be prioritized. That is, the model
does not know a priori that Indigenous groups need to
be prioritized, the objective simply tries to minimize the
maximum percentage4 of load shed experienced by any
group. While group-size-conscious allocation mech-
anisms may not be advantageous in certain contexts,
the inability of the CEJST and SVI metrics to iden-
tify Indigenous disadvantage makes this particular con-
text of budget allocation for power line undergrounding
a feasible candidate for a group-size-conscious alloca-
tion policy. Furthermore, we emphasize that an MMF
framework is not the only Equity objective that could
be used in this model; other objectives like Lp−norm
fairness or ordered norms can also be used to balance
the percentage load shed across various groups [59–
62]. However, the MMF framework, which minimizes
the L∞ norm, would decrease the percentage load shed
on the most impacted group maximally out of these
choices of Lp-norm objectives.

Though our work underscores how considering ethnic-
ity and race using the MMF framework may help en-
sure certain groups are not disproportionally impacted
by power loss, the legality of the use of explicit group-
level protections is unclear, particularly for public in-
vestments. For some states, explicit use of race when
using the CEJST is illegal (e.g., California Proposition
209) [63], whereas in others, there is some gray area
due to the disparate level of benefit of federal funding
when not considering race. In the United States, there
are some cases that lend legal plausibility to such ap-
proaches, e.g., American Indigenous communities liv-
ing on federally recognized tribal lands are often given
special protections. Stakeholders, policymakers, and
other decision-makers are responsible for which pro-
tections or populations should be prioritized, and the
feasibility of these choices. This work is intended to
aid these decision-makers in their analysis process, and
identify trade-offs that exist when working towards eq-
uitably allocating benefits.

In summary, our analysis reveals the limitations and
potential of vulnerability indices like CEJST and SVI
in effectively directing resources to high-risk, vulner-
able communities—in this case, Indigenous popula-
tions—within climate resilience projects. Aggregat-
ing demographic data into indices risks overlooking
smaller disadvantaged groups within census tracts that
may not fit broad vulnerability criteria, such as Indige-
nous communities. This gap signals the need to con-
sider context-sensitive, group-conscious approaches
like the MMF framework. Our work thus contributes

empirical insights into the trade-offs of different vulner-
ability frameworks, equipping policymakers and stake-
holders with an informed basis to advance more equi-
table climate resilience initiatives.

Appendices
A. Data Sources

A number of data sets were used for this project. In-
formation on each data source is described below. The
methodology used to map these data sets to the syn-
thetic network is described in Appendix B.

A.1. US Census Data

We use the census tract definitions that were in effect
from 2010-2020. To obtain data by census tract for to-
tal population, median income, and number of individ-
uals in each racial group, we used the 2019 Planning
Database, version 2 [49]. To get the latitude and log-
itude of the center of population for each census tract,
we used center of population data from the 2010 De-
cennial census [48], which was the most recently avail-
able center of population data for this districting.

A.2. The Justice40 Initiative

The Justice40 initiative defines “disadvantaged com-
munities” [7] at the US Census Tract level on the ba-
sis of income, energy access, housing access, and en-
vironmental burden, based on data provided by the
CEJST. In general, according to the US Council on
Environmental Quality [8], to qualify for the Justice40-
designation, a census tract must either (a) “meet the
thresholds for at least one of the tool’s categories of
burden,” or (b) be “within the boundaries of a feder-
ally recognized tribe.” Note that the latter condition
does not apply to indigenous populations living out-
side recognized tribal borders. The former condition
generally requires that a census tract be above the 65th
percentile nationwide for the percentage of the popula-
tion which is considered low-income and be above the
90th percentile nationwide for one of the many differ-
ent types of climate burden. Since the CEJST considers
national percentiles and Texas has higher climate risk
and poverty levels than much of the United States, we
see that nearly 50% of census tracts served by ERCOT
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are categorized as vulnerable. Furthermore, this met-
ric involves climate risks that are not limited to wild-
fire risk, so in this study, we also computed a modi-
fied CEJST indexing that categorizes a tract as vulner-
able if the tract is at or above the 50th percentile of
Texas census tracts for the percentage of the tract which
is low-income and at or above the 75th percentile of
Texas census tracts for the wildfire risk subcategory of
the Justice40 dataset. With this definition, only around
11% of census tracts are considered vulnerable. It is
also worth noting that the way that the CEJST com-
putes wildfire risk is based on wildfire spread models
[8, 64], instead of the ignition risk models used in this
study [50].

A.3. The CDC/ATSDR Social Vulnerability Index

The CDC and ATSDR have a joint metric of social vul-
nerability given in terms of an SVI [10]. The goal of
this SVI is to designate communities which may have
additional difficulty coping with a disaster event. This
SVI considers four main “themes” of risk: socioeco-
nomic status, household characteristics, racial and eth-
nic minority status, and housing type/transportation. In
this study, we classify a census tract as vulnerable if the
census tract is is at or above the 75th percentile of bur-
den out of all the census tracts in Texas for at least one
of these four themes. We use the 2010 SVI dataset to
remain consistent with the 2010 census tracts [10].

A.4. USGS Wildland Fire Potential Index & Wildfire
Risk Values

The USGS Wind-Enhanced Fire Potential Index
(WFPI) is a data set compromised of unitless risk val-
ues ranging from 0 to 247 for each 1 km by 1 km
“pixel” of the United States. These values are updated
daily along with a 7-day forecast of expected risk val-
ues. The USGS bases this data on the following [50]:

• Maximum Live Ratio,
• Dead Fuel Moisture,
• Fuel Model,
• Wind Reduction Fac-

tor,
• Vegetation Index,

• Relative Greenness,
• Dead Fuel Moisture,
• Wind Speed,
• Rain,
• Dry Bulb Tempera-

ture.

The USGS WFPI provides a proxy for the risk of ig-
nition from electric infrastructure since higher WFPI
values have, historically, correlated to larger fires and
fires that have spread to burn more area [50].

Historically, wildfire season in the western United
States typically spans from late summer to early fall;
however, recent wildfire seasons have been lengthen-
ing [65]. Therefore, our analyses use data from June 1
to October 31, which we will refer to as the wildfire
season. We assign a unitless wildfire risk value rℓ,d for
each line ℓ ∈ L for each day d ∈ D in the considered
network in the wildfire season over three years (2019,
2020, and 2021). To find this value, we find the average
pixel risk, r̄p by taking the mean of all pixel values on
all lines from the data used. We find the standard devia-
tion on this data as well, σp. We then define a high-risk
pixel to be an pixel with a value more than one standard
deviation above the mean:

rh
p,l,d =

{
rp,l,d, if rp,l,d ≥ r̄p + σp

0, if rp,l,d < r̄p + σp

}
. (16)

We calculate the risk value rℓ,d by integrating the high-
risk pixel values along each line. This method balances
the risk contributions from both long line lengths and
underlying risk of the terrain. “Line length” is a char-
acteristic that has been correlated with higher ignition
risk [66] but this processing avoids a situation where a
long line with relatively low risk along the entire length
appears much riskier than a shorter line with points of
much higher ignition risks. This is a method adapted
from [67].

For each day simulated, we first determine if the wild-
fire threat is high enough to necessitate de-energizing
lines via a threshold on the total risk during that day.
Let Rd be the total wildfire risk the network poses if all
lines ℓ ∈ L are energized on day d, i.e.: Rd =

∑
ℓ∈L rℓ,d.

In our assessment methodology, operators are required
to reduce the total risk of the network by making line
de-energization decisions during any day for which
Rd ⩾ RPSPS, where RPSPS is a specified system-wide
de-energization threshold. Conversely, if Rd < RPSPS,
then the risk the network poses is not great enough to
require the widespread de-energization of lines. For the
purposes of this paper, RPSPS is set to 6 × 108. Results
and figures indicate what overall threshold was applied
to the network.

Two more thresholds are used for the network to split
Ld in to Lhigh

d , Lmed
d , and Llow

d . These thresholds, Rhigh
and Rlow, are used to indicate the highest acceptable risk
before lines must be de-energized or undergrounded
and the lowest risk below which lines are not consid-
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ered for undergrounding or de-energization:

L
high
d ≜ {ℓ ∈ L | rℓ,d ≥ Rhigh}

Lmed
d ≜ {ℓ ∈ L | Rlow ≤ rℓ,d < Rhigh}

Llow
d ≜ {ℓ ∈ L | rℓ,d < Rlow}

(17)

For the results in this paper, Rhigh and Rlow are set to
1 × 106 and 1 × 100, respectively. Note that this means
all lines with risk values greater than one are allowed to
be de-energized or undergrounded. These values were
chosen to allow enough lines to be candidates for un-
dergrounding such that the MIP produces non-trivial
solutions.

B. Mapping Demographic Features to Buses

We match census tracts to buses with load based on the
distance between the bus and the population center of
the census tract. Let C denote the set of census tracts
andN represent the set of buses with nonzero load. Let
dcn represent the distance between the center of popula-
tion of census tract c and bus n. Each census tract c ∈ C
has a feature vector fc. We take a three-pass approach.

1. For every census tract c ∈ C, we initialize the
radius rc as the minimum distance from c to any
other bus in the transmission network. If a bus n is
within the radius rc for any c ∈ C, we say that the
bus has been assigned.

2. For any bus n that has not yet been assigned,
we find the closest census tract c to n. Let this
closest distance be given by rn. We then update
rc ← max{rc, rn}. Now, bus n has been assigned.

3. For every tract c ∈ C, we consider the subset of
buses Nc

rc
within a distance rc from c. We divide

the population of c between each bus n ∈ Nc
rc

pro-
portionally based on their relative distance from c.
That is, the fraction of fc that is assigned to bus
n′ ∈ Nc

rc
is acn′ =

dcn′∑
i∈Nc

rc
dci
.

At the termination of this algorithm, we have a sparse
matrix, A, where each entry ai j is the “fraction” of each
census tract i that is assigned to each bus j. Finally, we
have that the demographic feature vector for bus n ∈ N
is given by fn =

∑
c∈C fc · acn.

B.1. “Missed” Vulnerable Tracts

Table 5 gives the set of Texas census tracts which are
at or above the 75th percentile for the fraction of the
population that is indigenous, at or above the 75th per-
centile for wildfire ignition risk (derived from WFPI

Figure 9: Income has very little impact on the percent of
load demanded that is shed in the baseline, no budget case
(BL-M0). In fact, there appears to be a slight correlative ef-
fect wherein higher income groups see a higher percentage of
their load shed, although the increase is very slight.

data), and at or above the 50th percentile for number of
people below the poverty line, but that were not char-
acterized as vulnerable by the CEJST, modified CEJST,
and SVI criteria. We also show the percentile without
health insurance for reference. One might note from
Table 5 that the impoverished percentile is not often too
high; indeed, the maximum percentile impoverished in
the table is 80.1 for GIDTR 140066, and most values
are between the 50th and 60th percentiles. Given that
indigenous poverty rates are nearly double that of the
overall population [53–55], this indicates that indige-
nous populations are almost always the minority of the
census tract that they live in, and the majority popula-
tion of those tracts is not disadvantaged.

B.2. Income and Power Outages in Texas

Per our simulations, income level has very little effect
on load shed outcomes in Texas. Figure 9 shows that
there is very little discrepancy in the percent of load
demanded that is shed between income groups for the
baseline, no budget case. In fact, the small discrep-
ancy that does exist most favorably impacts the lower-
income groups. While Figure 10 shows this slight trend
reverse once budget is allocated, the discrepancy still
remains quite small. The finding that minority status is
a greater indicator of the likelihood of a power outage
than income mirrors those of [39].
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Table 5: List of disadvantaged census tracts that every vulnerability index categorized as not vulnerable.

GIDTR percentile uninsured percentile impoverished percentile indigenous percentile ignition risk
110093 69.8 64.8 94.5 88.3
110965 73.9 51.0 76.9 75.1
120013 32.9 52.7 84.9 95.7
120063 32.9 52.7 84.9 84.3
120112 52.8 76.2 94.4 89.6
120171 55.7 66.5 90.4 83.9
140066 9.2 80.1 75.1 82.5
210028 20.3 58.4 97.5 89.6
210029 50.0 56.8 94.2 94.4
210030 69.4 62.2 93.2 91.7
210053 50.5 62.4 96.2 78.3
210075 30.7 61.2 77.5 80.4
210207 25.7 59.4 89.6 84.2
210293 59.8 61.0 94.5 88.7
220006 78.5 52.4 100.0 99.3
220020 78.5 52.4 100.0 99.7
220026 54.6 56.5 95.7 95.7
220057 29.9 57.9 98.0 97.2
220077 25.5 76.7 99.4 99.3
220109 38.0 52.9 92.0 95.4
240084 44.4 64.3 75.3 94.7
240121 67.0 64.5 86.4 93.7
240148 67.0 64.5 86.4 91.8
240160 54.1 62.8 86.9 84.8
240162 12.3 74.4 98.1 93.2
240193 18.7 51.6 91.2 84.7

Figure 10: As budget increases, the discrepancy in percent of
load demanded that is shed between income groups remains
small; however, the trend reverses itself where after a $250
million allocation, the wealthiest groups now have marginally
less of their load that is shed.

C. Optimization Results

C.1. Optimization Software, Set Up, and Solve Time

Optimization problems were solved using
Gurobi 10.0.0 [68]. To implement the optimiza-
tion formulations, we use Julia 1.8.0 [69] with
JuMP 1.18.1 [70] along with the data input func-
tionality of PowerModels.jl 0.21.0 [71]. Simulations
were completed on the Partnership for an Advanced
Computing Environment (PACE) at the Georgia
Institute of Technology [72]. For nonzero budgets, we
warm-started the simulation with the results from the
same model on the previous budget. All simulations
are run for 5 days or a MIP gap of 1%. Any simula-
tions that are outside the 1% MIP gap are run for an
additional 5 days with a warm-start of the last found
incumbent. Any simulations that are still outside the
1% MIP gap are run for an additional 10 days, again
warm-started from the last-found incumbent, or until
they reach a 1% MIP gap. This 10-day computation
time is done with Gurobi’s MIP focus parameter set to
3 to prioritize improvement in the best bound. After 20
days of computation time per scenario, MIP gaps are
reported, with all scenarios finishing within a 5% MIP
gap. Solution times are shown in Figures 11a and 11b.
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(a) Solution times by budget for simulations with policy constraints only. (b) Solution times in hours by budget for simulations with the equity
objective and policy constraints.

(c) Objective values by budget for simulations with policy constraints
only.

(d) Objective values by budget for simulations with the equity objective
and policy constraints.

Figure 11: Solve times and objective values for each optimization model.

While not all simulations converge to a 1% MIP gap,
we note the monotonically decreasing objective across
budgets; see Figures 11c and 11d. Note the objective
value for the baseline objective displays total network
load shed while the equity objective values portray the
maximum percentage of demanded load that is shed for
a given group, resulting in different scales. All simu-
lations with a baseline objective solve to within a 1%
MIP gap. One combinations of the equity objective
with the CEJST load shed constraint (E-M8) converges
to within a 5% MIP gap. All other cases with the equity
objective converge to within a 1% MIP gap.

C.2. Load Shed Results

In this section, we discuss the all load shed results for
each budget we considered, up to $1 billion allocated
in $250 million increments for each combination of
Policy constraint and Equity objective. It is nearly
impossible to ascertain how equitable the switching
and power line undergrounding decisions are without

some degree of normalization for different group sizes.
In this subsection, we discuss the percent of load de-
manded that is shed by each group and give a “rela-
tive unfairness” metric. This metric computes the ratio
of the percent of load shed experienced by the group
to the percent of load shed experienced by the overall
population. We designate an “unfair” outcome as one
in which a group experiences more than 1.1 times the
overall percent load shed for a budget of $1 billion or
more or more than 1.3 times if the budget is under $1
billion, and we bold and color the text in those cells
red to call attention to these unfair outcomes. Figure 12
gives the percent of load demanded that is shed for bud-
gets of $0, $250 million, and $500 million, and Figure
13 shows the relative unfairness in the percent of load
demanded that is shed for those budgets.

In Figure 13a, we observe that when there is no budget
allocated, indigenous and Hispanic groups experience
unfair load shedding outcomes across the board. When
considering the baseline case (BL-M1), we see that in-
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(a) No Equity Objective, $0 budget (b) No Equity Objective, $250 million budget (c) No Equity Objective, $500 million budget

(d) Equity Objective, $0 budget (e) Equity Objective, $250 million budget (f) Equity Objective, $500 million budget

Figure 12: Percent of load demanded that is shed across budgets of $0, $250 million, and $500 million. The first row shows Policy
constraints alone, and the second shows Policy constraints and the Equity objective.

digenous and Hispanic groups see about 2 and 1.4 times
the average overall percent of load demanded that is
shed, respectively. Asian and black communities expe-
rience disproportionately low levels of load shed, likely
due to residence in urban areas with lower wildfire ig-
nition risk, and low-income communities are also not at
higher risk of experiencing load shed, again likely due
to city poverty. If we set a 1% threshold as an “accept-
able” percentage of load shed, we see that the overall
population load shed is above this percentage thresh-
old, and, in particular, uninsured, Hispanic, white, and
indigenous groups are above this percentage threshold
(Figure 12a).

Figures 12b, 12e, 13b, and 12e show how these results
change as we begin allocating budget for power line
undergrounding. When we only consider policy con-
straints, we see that this small budget allocation de-
creases overall percent load shed by about 46%. Fur-
thermore, all groups except the indigenous group see
their load shed percentage drop below the 1% thresh-
old. White and Hispanic groups seem to experience
the most benefit from this investment with over 50%
reductions in percent of load demanded that is shed.
Indigenous groups experience relatively less benefit,

which is why the relative unfairness that they experi-
ence increases between the $0 and $250 million bud-
gets when using only Policy constraints. Now, we
consider when Equity objective is incorporated. Rela-
tive to the Policy-constraint-only case and the 0-budget
case, relative unfairness decreases for both indigenous
and Hispanic groups when we introduce the Equity ob-
jective. However, while relative unfairness is lower
than that in the Policy-constraint only case, the percent
of load shed experienced is higher. For example, the
overall load shed in Model M6 (Equity objective, no
Policy constraints), leads to only a 16% decrease in the
percent of load demanded that is shed relative to the
baseline model in the 0-budget case.

When budget increases to $500 million, $750 million,
and eventually $1 billion, indigenous load shed out-
comes continue to be relatively unfair under Policy
constraints alone; even at the $1 billion budget, use
of policy constraints alone allow for relative unfair-
ness ratios for indigenous populations sometimes over
3 times that of the overall population. In contrast, un-
fairness ratios under the Equity objective are sub-2 as
soon as a $250 million budget is allocated. More im-
portantly, by an allocation of $500 million, indigenous
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(a) Relative unfairness in simulations with no
Equity Objective, $0 budget

(b) Relative unfairness in simulations with no
Equity Objective, $250 budget

(c) Relative unfairness in simulations with no
Equity Objective, $500 budget

(d) Relative unfairness in simulations with the
Equity Objective, $0 budget

(e) Relative unfairness in simulations with the
Equity Objective, $250 budget

(f) Relative unfairness in simulations with the
Equity Objective, $500 budget

Figure 13: Relative unfairness in the percent of load demanded that is shed across budgets of $0, $250 million, and $500 million.
The first row shows Policy constraints alone, and the second shows Policy constraints and the Equity objective.

percentage of load shed decreases relative to the base-
line case, meaning that these groups are finally receiv-
ing real benefit from these investments without push-
ing other groups’ percent load shed above 1%. This is
why we argue that a MMF framework that minimizes
the maximum percent of a group’s load demanded that
is shed coupled with a sufficient budget allows for the
controlling of wildfire risk and the fair reduction of
load shed from emergency power shutoffs to all consid-
ered groups. These trends continue for the $750 million
and $1 billion cases.
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