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Abstract—With the growing integration of stochastic renewable
generation and adaptable resources in electrical distribution
systems, distribution utilities are increasingly eager to improve
the visibility of their networks using distribution system state
estimation (DSSE). However, scarcity of measurements and a
limited communication bandwidth challenges the ability of the
distribution utilities to estimate distribution system states. This
paper presents a forecast-aided real-time state estimation method
for distribution networks, using forecasts for nodes lacking direct
measurements. While other recent studies have also used forecast-
aided state estimation methods, existing approaches require large
amounts of historical data to train the forecasting model or
depend on phasor measurements, both of which are not easily
accessible to distribution utilities. In contrast, we introduce a
joint forecasting and state estimation methodology. Our forecasts
are generated by a Vector-Autoregressive (VAR) model, which
is recursively trained as new measurements are acquired, and
thus does not rely on a full set of historical data or phasor
measurements. These forecasts, together with the available mea-
surements, are subsequently used for DSSE. We validate the
effectiveness of our approach on the IEEE 123-bus benchmark
network, taking into account various correlation assumptions and
differing quantities of accessible measurements.

Index Terms—State estimation, distribution networks, vector
autoregressive model (VAR), LinDistflow, low observability.

I. INTRODUCTION

Distribution networks are constantly changing with the
rapid integration of distributed energy resources (DERs), such
as electric vehicle (EV) chargers and privately owned solar
photovoltaic (PV) installations. This evolution has, on one
hand, boosted flexible resources within distribution grids. On
the other hand, it has also led to challenges with maintaining
adequate voltages and avoiding overloads due to the signifi-
cant magnitude and stochastic nature of solar PV generation
and EV demand. These factors have increased the volatil-
ity of power injections within power distribution systems,
causing line flow congestion, transformer overloads, voltage
imbalance, and overvoltages. As distribution system operators
(DSOs) are required to ensure quality of supply (QoS) while
adhering to the physical limits of the network [1]–[3], they
are increasingly focused on enhancing the visibility of their
networks through distribution system state estimation (DSSE).
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Additionally, the growing number of flexible resources in
the distribution system brings increased risks, such as cyber
attacks [4]. DSSE provides DSOs with the real-time situational
awareness needed to react appropriately when threats arise.

Normally, state estimation (SE) involves an overdetermined
system of equations where the number of measurements is
higher than the number of states to be estimated. However,
implementing SE in power distribution systems is challenging
as the number of available measurements is usually limited.
In addition, distribution grids also have many branches and
nodes, each with associated states, resulting in an underde-
termined system of equations. Although many DSOs have
installed smart meters located at end consumers, limitations in
the communication bandwidth makes it challenging to transit
these measurements at a high sampling rate to the DSO [5].
This motivates the development of DSSE methods which
perform well with sparse measurements.

A. Related Work

Several methods in the literature consider solving the state
estimation problem in contexts with limited measurements.
Such methods can broadly be categorized into three different
approaches. The first approach relies on algorithms for com-
pressed sensing and matrix completion, where the problem of
low observability is addressed by leveraging sparsity properties
of the DSSE problem while it remains underdetermined. For
example, [6] proposed compressing the measurements based
on correlation information among the nodal voltages. The
work in [7] assumed that the substation injected current is
much higher than the load current, resulting in a sparse
problem. References [8] and [9] propose approaches based on
matrix completion, which is generally used to estimate missing
values in low-rank matrices. The key drawback of these
approaches is that they are highly sensitive to measurement
noise and require significant computational effort.

The second approach relies on pseudo-measurements to
address the problem of sparse measurements [10]. Pseudo-
measurements specify estimated power consumption or gen-
eration based on historical observations. For example, [10]
proposes using standard profiles of different consumers based
on a clustering process. Reference [11] uses machine learning
(ML) based approaches such as neural networks to create
pseudo-measurements. The key drawback of these methods is
that they depend on fixed heuristics that are determined based
on past observations and are not updated frequently. Heuristics



based on historical data may no longer be valid due to the
stochastic nature of injections in distribution systems with
high levels of solar photovoltaic (PV) generation and electric
vehicle (EV) demand and may be outdated particularly fast in
areas where the number of solar PV installations and EVs is
rapidly changing. Furthermore, the construction of heuristics
requires access to historical data, which is not necessarily easy
to obtain for technical and privacy reasons.

The third approach, which is the focus of our work, relies
on a two-stage framework referred to as forecast-aided DSSE.
In the first stage, a forecasting model is used for predicting
measurement values for the non-observed nodes. In the second
stage, a DSSE is solved considering the measurements from
the observed nodes and the predicted values of the non-
observed nodes, making the DSSE problem overdetermined.
References [12]–[16] propose different approaches to achieve
forecast-aided DSSE. Reference [12] uses load forecasts in
the state estimation process; however, their motivation was
to improve the estimation performance, rather than to tackle
the challenge of low observability. References [14] and [15]
consider using the forecasting model in a low-observable
setting and showed that forecasting schemes can make the
DSSE observable. However, the proposed scheme assumes
measurements from phasor measurement units (PMUs), which
are not usually available at the distribution level. Further, this
scheme has a long offline training phase that assumes access
to a large set of historical data from all nodes, which is not
necessarily realistic. The method in [15] also utilizes a separate
forecasting model for each node and ignores the spatial corre-
lation with injections from the other nodes. Other drawbacks
of the method in [15] is that they use a Gaussian process
offline to train the forecast model and that the forecast model
is not updated as new measurements arrive. Such a scheme
may fail when distribution injections have substantial real-time
variations. The works in [13] and [16] also propose forecast-
aided DSSE, but rely on a large number of measurements
from PMUs and remote terminal units, which are unavailable
in typical distribution systems.

In summary, existing forecast-aided DSSE methods assume
the availability of phasor measurements, a large number of
historical measurements to train the forecast model, and/or do
not account for the spatial correlation between different nodal
measurements. We tackle these limitations of existing work as
described in the next section.

B. Contributions

We address the above-mentioned drawbacks of the forecast-
aided DSSE by (i) developing a new recursive forecasting
model that relies only on existing smart meter measurement
and communication infrastructure, and (ii) integrate this fore-
casting model with the state estimation step. We demonstrate
the efficacy of the proposed method on a case study. We
describe each contribution in more detail below.

• Forecasting model: We propose a forecasting model
that relies only on smart meters measurements that are
already present in the grid, thus allowing DSSE without

the installation of PMUs, as required by the methods pro-
posed in [14]–[16]. To comply with existing bandwidth
limitations in the communication with smart meters, our
models only rely on accessing a few measurements at a
time and are updated recursively. We achieve this using a
recursive least-square approach, which is computationally
inexpensive to train and can be updated in each timestep
based on measurements from a small number of locations
in the network. As a result, we do not rely on a large
amount of historical data to train the forecasting model,
as assumed by the previous work in [14]–[16].

• State Estimation: We utilize the above-mentioned fore-
casts along with smart meter measurements from a lim-
ited number of nodes to solve a linear DSSE. The DSSE
is formulated as a linear least squares estimator which
is based on the linearized Lin3DistFlow approximation
of the power flow equations [17]–[19]. Unlike previous
works, where the smart meter locations are fixed, the pro-
posed DSSE is capable of reliably estimating the network
state with a limited set of smart meter measurements
whose locations can be changed dynamically.

• Validation: We validate the proposed scheme on the
unbalanced IEEE 123-bus benchmark network and show
that the proposed forecast-aided approach successfully
achieves good estimation performance while directly
measuring only 10% of the total states at any time.

The paper is organized as follows. Section II gives a
schematic overview of the proposed approach. Section III
introduces the linearized power flow model, which is later
used for state estimation. Section IV presents the forecasting
schemes. Section V describes the state estimation scheme.
Section VI presents the numerical setup and results. Finally,
Section VII concludes the work.

II. PROPOSED APPROACH

In this section, we describe the notation used in the paper
and provide an overview of the proposed approach.

A. Notation

We consider a generic unbalanced power distribution net-
work represented by the graph G = (N , E), where N is the set
of nodes and E is the set of all distribution lines. A is the inci-
dence matrix of the graph G with the column corresponding to
the slack bus removed. The nodes in the network are indexed
from 1, 2, . . . , N where node 1 represents the substation. The
three phases are denoted by the superscripts a, b, and c.
The lines are indexed from 1, . . . , E, where E = N − 1 as
distribution networks are typically radial.

Throughout the paper, we use boldface to represent vectors
and matrices, while normal fonts are used to represent scalars
and elements of vectors/matrices. The vectors v, θ, P, and
Q ∈ R3N represent the squared voltage magnitudes, phase
angles, and active and reactive power injections, respectively.
The vectors p and q ∈ R3E denote active and reactive
power flows along lines. We use single subscripts i and j to
represent quantities associated with the corresponding node in
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Fig. 1: Overview of the proposed state estimation framework, partial real time measurements

the network, e.g., vi and Pi for node i. Double subscripts ij
are use to represent quantities associated with the distribution
line connecting nodes i and j, e.g., pij ,qij . Let In, 0n and
1n be the n×n identity matrix, the length-n zero vector, and
the length-n vector of ones, respectively. The operators Tr(·)
and vec(·) represent the trace and vectorization of matrices,
respectively. The operators diag(·) and blkdiag(·) are used
to represent diagonal and block-diagonal matrices, respec-
tively. Let ⊤ and −⊤ denote the transpose and inverse transpose
of a matrix, and ∥·∥ represents the ℓ2-norm of a vector. Finally,
E(·) and N(·) represent the expectation operator and normally
distributed random variables, respectively.

B. Overview

Each node in the network is assumed to be equipped with
a smart meter capable of measuring voltage magnitudes v
as well as active and reactive power injections P and Q.
However, due to limited communication bandwidth, the DSO
can access only measurements from a subset of smart meters,
denoted by M ⊂ N , at any given time. Given this limitation,
the DSO’s objective is to estimate the network state, i.e.,
voltage magnitudes v, phase angles δ, and power injections
P and Q for all nodes, using the available measurements.
This communication bottleneck challenges the DSO’s ability
to achieve an accurate distribution system state estimate. As
only a few measurements are available at any given time, the
state estimation problem is underdetermined. Therefore, the
key difficulty lies in developing a DSSE approach that can
accurately estimate the network state when only a limited num-
ber of smart meters are sampled due to bandwidth constraints.

In this paper, we tackle the challenge of limited bandwidth
constraints by developing a forecast-aided DSSE that is ca-
pable of reliably estimating the network state using a small
number of dynamically sampled smart meter measurements,
i.e., the set of sampled smart meters changes at each time
instant. The proposed scheme consists of two stages, as shown
in Fig. 1. The first stage implements a recursive forecasting
scheme based on vector auto-regressive (VAR) model, which
is trained using power injection measurements from a time-
varying subset of smart meters. The trained VAR model is
used to predict power injections at all nodes in the network
for the next time step using data from the previous time
step. Subsequently, the second stage performs linear least-
squares estimation to provide both the voltage magnitudes

and phase angles and refine the power injection forecasts.
This second step uses both voltage magnitude and power
injection measurements from the observed nodes. To account
for load variability during the day, the measurements are used
to recursively refine the forecast model to keep it updated
with the new load information. We model the grid using a
linearized approximation of the power flow equations known
as the Lin3DistFlow model [17]–[19], resulting in a linear
DSSE. While we use the Lin3DistFlow approximation for state
estimation, we evaluate our proposed method by comparing
the estimated values to the true states obtained by solving
a non-linear AC power flow. The prediction error of the
forecasting model and the noise in smart meter measurements
are modeled as additive white Gaussian noise with zero mean.

In the following sections, we present the key components
of the proposed framework which are the power flow model,
the forecasting scheme, and the state estimation formulation.

III. THREE-PHASE LINDISTFLOW

In this section, we describe the linearized three-phase
DistFlow approximation (Lin3DistFlow) [17]–[19] used in our
model. To simplify the non-linear DistFlow equations, the
Lin3DistFlow approximation assumes that the system is loss-
less, the voltage angle differences across lines are small, and
the voltage magnitudes are close to unity. As a consequence
of these assumptions, the voltage phasors are assumed to be
almost balanced. Under these assumptions, the voltages at
adjacent nodes i and j are related as:

∆vij = vi − vj = Hp
ijpij −Hq

ijqij , (1a)

∆δij = δi − δj = −Hq
ijqij −Hp

ijpij , (1b)

where ∆vij ∈ R3 represents the difference of squared volt-
age magnitudes vi,vj ∈ R3 at nodes i and j. Similarly,
∆δij ∈ R3 represents the difference in phase angles δi, δj ∈
R3 at nodes i and j. The quantities pij and qij are the active
and the reactive power flows on the distribution line connecting
nodes i and j. Finally, the matrices Hp

ij ,H
q
ij ∈ R3×3 are

HP
ij =

 −2raaij rabij −
√
3xab

ij racij +
√
3xac

ij

rbaij +
√
3xba

ij −2rbbij rbcij −
√
3xbc

ij

rcaij −
√
3xca

ij rcbij −
√
3xcb

ij −2rccij

 , (2a)

HQ
ij =

 −2xaa
ij xab

ij +
√
3rabij xac

ij −
√
3racij

xba
ij −

√
3rbaij −2xbb

ij xbc
ij +

√
3rbcij

xca
ij +

√
3rcaij xcb

ij +
√
3rcbij −2xcc

ij

 . (2b)



Using (1a), we can express the voltage difference ∆v ∈ R3E

across all lines as

∆v = vec(∆vij),

=
[
blkdiag(Hp

ij) blkdiag(Hq
ij)

] [vec(pij)
vec(qij)

]
,

=
[
blkdiag(Hp

ij) blkdiag(Hq
ij)

]
Sf , (3)

where Sf =
[
vec(pij)

⊤ vec(qij)
⊤]⊤ ∈ R6E is the vector

of active and reactive branch flows.
For radial networks, we can express the squared voltage

magnitudes v and the nodal power injections S as

v = v11 +A−1∆v, (4)

S = A⊤Sf , (5)

where v = [v⊤
2 , . . . ,v

⊤
N ]⊤ ∈ R3N , S =[

P⊤
2 , . . . ,P

⊤
N ,Q⊤

2 , . . . ,Q
⊤
N

]⊤ ∈ R6N , v1 is the voltage
at the substation, and Pi and Qi are the active and reactive
power injections at node i, respectively. Combining (3), (4),
and (5) results in

v = v11+
[
2R 2X

]
S = v11+MvS, (6)

where R = A−1 blkdiag(Hp
ij)A

−⊤, X =

−A−1 blkdiag(Hq
ij)A

−T , and Mv =
[
2R 2X

]
.

Similarly, we can derive the following expression for the
voltage phase angles δ:

δ = δ11+
[
X −R

]
S = δ11+MδS, (7)

where δ =
[
δ2, . . . , δN

]⊤ ∈ R3N , δ1 is the voltage angle at
the substation, and Mδ =

[
X −R

]
.

IV. FORECASTING

We next describe the forecasting model used to predict the
power injections at every node. The power injection forecasts,
in conjunction with the Lin3DistFlow model, are used to
forecast the state variables, which include the squared voltage
magnitude (v) and the voltage angles (δ), and to perform state
estimation, as shown in Fig. 1.

In the literature, there are two broad classes of methods
used for forecasting load and renewable generation: (a) Ma-
chine learning (ML) based methods and (b) statistical time
series models like autoregressive processes (AR), autoregres-
sive moving average (ARMA) processes, etc. Recent studies
highlight the application of ML-based models to forecast loads
and renewable generation [20]–[23]. While ML-based methods
can accurately capture complicated non-linear relationships
between loads, these methods often require large datasets
for effective training, which makes them computationally
expensive. Consequently, ML-based methods are less effective
at adapting to short-term variations in power injections.

On the other hand, statistical methods such as ARMA
processes are simpler, require less data, and are computa-
tionally more efficient. Several studies have highlighted the
utility of different statistical methods for short term load and
renewable generation forecasts [13], [24]–[27]. Due to the

low computational effort involved in training these statistical
models, they can adapt quickly to changes in the network,
making them suitable for short-term forecasting. Hence, AR-
type models are a better choice in the context of forecast-aided
DSSE. In addition to the short-term temporal correlations,
power injections also exhibit spatial correlations influenced
by geographical and behavioral factors [28]. To capture both
spatial and temporal correlations effectively, we selected a
vector autoregressive (VAR) model.

A. Vector Autoregressive Model (VAR)

We next provide a detailed description of the vector autore-
gressive (VAR) model for predicting nodal power injections
and the associated training process. Consider the predicted
nodal power injections at time t, Ŝt, described by an order-p
VAR(p) model:

Ŝt =

p∑
i=1

BiSt−i + εt, (8)

where S = [P,Q]⊤ ∈ R6N is the vector of active and
reactive power injections, Bp, . . . ,Bp ∈ R6N×6N are the VAR
model’s coefficient matrices, and εt ∼ N(0,Σs) is a zero-
mean Gaussian noise with a covariance of Σs ∈ R6N×6N . The
temporal correlation in the power injections S is captured by
the diagonal terms of Bi and the covariance matrix Σs, while
the spatial correlations are captured by the off-diagonal terms
of Bi and Σs. For most short-term forecasting applications, a
VAR(1) model is sufficient [26], [29]:

Ŝt = BSt−1 + εt. (9)

The VAR(1) model, described by (9), is used to predict values
for the power injections at time step t (Ŝt) based on the
power injections at the previous time step (St−1). While the
forecasting model is simple, we face two hurdles: (i) we have
to determine appropriate values for the matrix B and (ii) we
do not have access to all the measurements St−1 from the
previous time step. In the following subsection, we will first
describe two methods to determine B while assuming that
we could, in fact, access all measurements simultaneously.
Then we will describe our proposed approach for relaxing this
requirement.

B. Estimating the Coefficient and Covariance Matrices

This subsection describes three methods for estimating the
coefficient matrix B and the covariance matrix Σs for the
prediction error εt in (9).

1) Yule-Walker: The Yule-Walker (YW) method is a stan-
dard method for estimating the parameters of autoregressive
models [30]. Multiplying both sides of (9) on the right with
S⊤
t−1 and taking the expected value yields

Π(1) = BΠ(0), (10)



where Π(0) and Π(1) represent the auto-covariances of S
at lags of 0 and 1 time periods, respectively. These can be
estimated using past observations of S as follows:

Π̂(j) =
1

M

M∑
i=1

Si · S⊤
i+j , j ∈ {0, 1}, (11)

where M is the number of past observations available for
training the VAR(1) model. The coefficient matrix B is
estimated by solving the system of equations (10). Finally,
the forecasting error covariance is computed as

Σ̂s = Π̂(0)− B̂Π̂(1), (12)

where Σ̂s is the estimated forecasting error covariance and B̂
is the coefficient matrix estimated by solving (10) [30].

We highlight that the accuracy of the YW method improves
with the number of available observations, M . Additionally, as
the network size grows, the number of parameters in the VAR
model increases, necessitating a larger dataset to accurately
train the model [28]. Furthermore, the YW method assumes
that power injection measurements from all nodes are available
at every time instant. However, in reality, this assumption
is often unrealistic due to the limited availability of sensors
and constraints on communication bandwidth. To address this,
we use a recursive least-squares algorithm to estimate the
parameters of the VAR(1) model.

2) Recursive Least Squares (RLS): Consider the VAR(1)
model described in (9). Rather than utilizing all historical data
simultaneously, we can iteratively update our estimate of the
matrix B at each time step, as power injection measurements
are collected, using the following iterative update rule:

B̂t = B̂t−1 +
(
St − B̂t−1St−1

)
K⊤

t , (13)

where B̂t is our estimate of the matrix B at time t. The optimal
gain matrix Kt ∈ R6N is found by solving the following
optimization problem:

min
Kt

k∑
i=1

λt−i∥St − B̂t−1St−1∥2 ⇐⇒

min
Kt

Tr
(
(S̄t − B̂t−1S̄t−1)Λ(S̄t − B̂t−1S̄t−1)

⊤), (14)

where the scalar λ ∈ (0, 1] is a forgetting factor, Λ =
diag(λt−1, . . . , λt−i+1, 1), S̄t = [S2, . . . ,St], and S̄t−1 =
[S1, . . . ,St−1]. The optimization problem (14) has a closed
form solution that is expressed as

Kt = (S̄tΛS̄t−1)(S̄t−1ΛS̄t−1)
−1. (15)

Using the Sherman-Morrison matrix inversion formula, we can
write (15) using the following recursion:

Kt = Ct−1Sk(λ+ S⊤
t Ct−1St)

−1, (16a)

Ct =
1

λ
(I6N −KtS

⊤
t )Ct−1, (16b)

where C = (S̄t−1ΛS̄t−1)
−1 is the covariance of the estimated

matrix B̂. The covariance Σs of the prediction error ε is
estimated as

Σ̂s =
1

t− 1

t∑
i=1

(S̃i − B̂tS̃i−1)(S̃i − B̂tS̃i−1)
⊤, (17)

where Σ̂s is the estimated covariance of the prediction error
εt. Therefore, St ∼ N(µs, Σ̂s), where µs = St−1. Selecting
an appropriate forgetting factor λ can yield convergence of the
RLS algorithm with significantly fewer training data samples.
Moreover, RLS provides computational advantages over the
YW method. The YW method requires solving the system of
equations in (10), which can be computationally prohibitive
for large systems, and requires storing extensive historical
data for accurate training. In contrast, RLS updates parameters
iteratively, eliminating the need for large-scale data storage and
reducing computational costs.

3) RLS with Partial Measurements: As formulated above,
the RLS method assumes that power injection measurements
from all the nodes are available at each time step to perform
the iterative update. To address this, we next describe an ap-
proach that only accesses measurements from subset of smart
meters at each time step. Let S̃t represent the training data
sample used to perform the iterative update of the estimated
matrix B̂, described by (13) and (16). To perform this iterative
update, we use the power injection measurements at time t for
the observed nodes and the previously measured values for the
unobserved nodes, i.e.,

S̃m
t = Sm

t , ∀m ∈ Mt, (18)

S̃m
t = S̃m

t−1, ∀m ∈ N\Mt, (19)

where Mt is the set of observed nodes at time t and S̃m
t

and Sm
t represent the entries of the vectors S̃t and St corre-

sponding to node m. Here, we assume that the nodal power
injections are in a quasi-steady-state, meaning they change
slowly over time. While this assumption may not strictly hold
in the presence of DERs, we will empirically demonstrate that
the method remains effective under realistic conditions. The
subset of observed nodes changes at each time step, ensuring
full network coverage in a finite number of steps. The proposed
method does not depend on how the set of observed nodes is
chosen at every time step and optimally selecting the nodes
to be observed for obtaining the measurements is part of
our future work. However, it is important to ensure that the
measurements are obtained from all the nodes in the network
in the shortest time possible.

C. Forecasting the System States

Using (6) and (7), the system states y =
[v⊤,θ⊤,P⊤,Q⊤]⊤ ∈ R12N , consisting of the squared
voltage magnitudes, voltage angles, and power injections, are
expressed as

y = y1 +MS, (20)



where the matrix M =
[
M⊤

v M⊤
δ I6N

]⊤ ∈ R12N×6N and
y1 =

[
v⊤
1 δ⊤1 0⊤

6N

]⊤ ∈ R12N . Using (20), we express the
observed states yo as

yo = Zoy = y1o +MoS, (21)

where Zo is a permutation matrix composed of the rows of
the identity matrix I12N corresponding to the observed states
such that y1o = Zoy1 and Mo = ZoM. Similarly, we express
the unobserved states yu as

yu = Zuy = y1u +MuS, (22)

where Zu is a permutation matrix composed of the rows of the
identity matrix I12N corresponding to the unobserved states
such that y1u = Zuyu and Mu = ZuM. Since we do not
actually measure the unobserved states, we do not model any
measurement noise in the unobserved states.

Combining (21), (22), and the forecasted power injections
Ŝ from (9), we obtain forecasts of the state variables:

ŷo = y1o +MoŜ, (23a)

ŷu = y1u +MuŜ, (23b)

where Ŝ ∼ N(µs, Σ̂s) are the forecasts of the nodal power
injections and ŷo and ŷu are the forecasts of the state at
the observed and the unobserved nodes, respectively. Since
we assume that the power injection forecasts Ŝ are normally
distributed and, as described in (23), the states and the
power injections are linearly related, the forecasted states
are also normally distributed, i.e., ŷo ∼ N(µo, Σ̂o) and
ŷu ∼ N(µu, Σ̂u). Their respective means are

µo = E(ŷo) = Moµs, (24a)
µu = E(ŷu) = Muµs. (24b)

The covariances of ŷo and ŷu, Σ̂o and Σ̂u, and the cross-
covariance, Σ̂uo, between ŷo and ŷu are computed as

Σ̂o = E
(
(ŷo − µo)(ŷo − µo)

⊤) = MoΣ̂sM
⊤
o , (25a)

Σ̂u = E
(
(ŷu − µu)(ŷu − µu)

⊤) = MuΣ̂sM
⊤
u , (25b)

Σ̂uo = E
(
(ŷu − µu)(ŷo − µo)

⊤) = MuΣ̂sM
⊤
o . (25c)

The estimated means and the covariances of the forecasts for
the observed and unobserved states are used in conjunction
with actual measurements to estimate the network states. We
model the measurement noise in the observed states as additive
Gaussian noise, i.e.,

ym
o = yo + η, (26)

where η ∼ N(0,Ωo) is the measurement noise with a covari-
ance of Ωo ∈ RM×M and ym

o ∼ N(yo,Ωo) is the measured
value of the observed states yo. Using (26) and forecasts of
the observed states, ŷo, we forecast the measurements

ŷm
o = ŷo + η, (27)

where ŷm
o ∼ N(µo, Σ̂o + Ωo) is the forecast of the mea-

surements of the observed states. We assume that the mea-
surement noise η and the forecast error ε are uncorrelated,

i.e., E(εη⊤) = E(ηε⊤) = 0. However, in practice, this
assumption may not hold as the VAR model used for forecast-
ing is trained using power injection measurements, meaning
that the accuracy of these measurements directly influences
the accuracy of the forecasts. Consequently, any errors in
the measurements could propagate into the forecasted states,
leading to potential correlation between η and ε. However,
our numerical assessment shows that, despite the potential
correlation in prediction errors and measurements noise, the
proposed method performs well over the time periods con-
sidered. Furthermore, this motivates the periodic retraining of
the VAR model to avoid the accumulation of errors caused
due to this assumption. Since the measurement noise and
the prediction errors are assumed to be uncorrelated, the
covariance between the forecasts of the unobserved states ŷu

and the measurements ŷm
o is also given by (25c).

V. STATE ESTIMATION

Building upon the models described in the prior two sec-
tions, we next describe the state estimator based on a linear
least-squares approach. We use the forecasts of nodal power
injections to forecast the system states using the Lin3DistFlow
approximation. Then, treating these state forecasts as priors,
we incorporate limited smart meter measurements to refine our
state estimate by solving a least-squares optimization problem.
With the means µ and covariances Σ̂ of the state forecasts
ŷ estimated in Section IV-C, we construct a linear estimator
for the unobserved states yu of the form ỹu = Lym

o + ρ,
where ρ is a normally distributed random variable representing
the estimation error, by minimizing the squared norm of the
estimation residual:

minE
(
∥ỹu − yu∥2

)
, (28)

where ỹu is the vector of estimated states. The optimization
problem described in (28) has a closed-form solution [31]:

ỹu = E(yu|ym
o ),

= µu + Σ̂uo

(
Σ̂o +Ωo

)−1
(ym

o − µo). (29)

The proposed estimator uses the statistical information of
states computed in Section IV-C, which in turn only depend
on the forecasted power injections, the network topology, and
the line parameters. The estimator given by (29) is linear
with respect to the measurements and, thus, is computationally
efficient and easy to implement. Moreover, this estimator
does not require full network observability as the lack of
measurements are compensated for by the spatial correlation in
power injections estimated by the VAR(1) model. For accurate
state estimation, it is important to choose the observed nodes
such that (Σ̂o+Ωo) remains invertible, which will happen as
long as the observed nodes are uniformly spread through out
the system.

While our simulations will show that out proposed method
performs well under many different scenarios, a possible
drawback of this method as currently implemented is that it
might not be robust to outliers, as we have not accounted
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Fig. 2: Correlation in the active power injections in (a) the
base case and (b) in the low-correlation scenario.

for other sources of measurement error. Existing machinery
for detecting and mitigating outliers (see, e.g., [32]) could be
applied in this context, which is a direction for future work.

VI. NUMERICAL SIMULATIONS

In this section, we describe the numerical simulations
performed under various scenarios to validate the proposed
method. First, we describe the test feeder utilized and the
modifications applied to it. Next, we provide details on the
load and renewable generation data used, along with the
different simulation scenarios. Finally, we present a detailed
analysis of the the results.

A. Setup

1) Test System: The performance of the proposed DSSE
method is tested on the IEEE 123-bus distribution test
feeder [33], using the network data available at [34]. The

feeder includes capacitors banks, voltage regulators, and
switches for topology changes. To simplify the modeling
requirements, we neglect the capacitor banks, replace all the
voltage regulators by short transmission lines of equivalent
impedance, and remove all the switches in the network. The
nodes connected to the ends of normally closed switches are
merged to maintain connectivity, while normally open switches
are left open. Extensions of the proposed approach to consider
more detailed network models are possible without substantive
changes to our proposed methodology.

2) Load and Renewable Data: We use load profiles based
on actual measurements from a substation in Oak Park,
Portland, OR [35]. These measurements include a full day
of load data sampled at 2 kHz, which is subsequently down-
sampled to a resolution of 1 minute. For data on renewable
generation, we used actual active power measurements from
a rooftop photovoltaic system from the EPFL Distributed
Electrical Systems Laboratory [36], with data available at [37].
In our simulations, we assume that PV plants with a capacity
of 50% of the peak load are installed at every node with non-
zero power injection. Using the load and renewable generation
data, we obtain the true values of the network states by solving
the non-linear AC power flow (ACPF), which is then used to
obtain noisy measurement as described in the next section.

3) Measurements: We model the measurement noise as
unbiased additive Gaussian noise according to the standard
defined by the Instrument Transformer (IT) class [38], [39].
For simulations, we consider IT 1.0 which translates to the
maximum measurement noise of 1% relative to the true
values. Additionally, we assume that only a small set of
measurements, as low as 10%, are accessible in real-time at
each time step. The measurement set can be updated at each
time step to capture measurements from all the nodes in the
network. To select the set of observed nodes, we begin by
constructing a random permutation Np by shuffling the set
of nodes N . The set Np is then partitioned into subsets of
equal size. At each time step, one subset is selected as the
measurement set.

4) Scenarios: To validate the performance of the proposed
method under different operating conditions, we consider the
following scenarios:

a) Base case (BC): Each node in the feeder is randomly
assigned one of the six available load profiles, which are
described in Section VI-A2. The load profiles are first
normalized to have a peak value of one. The load data for
each node are then generated by multiplying the node’s
assigned load profile by the nominal load value specified
in the network data. We note that this results in the load
data having a high degree of spatial correlation, as shown
in Fig. 2a, as may occur if the distribution feeder is spread
over a small geographic area.

b) Higher renewable penetration (PV): To verify the effec-
tiveness of the proposed method in networks with high
renewable penetration, we simulate a scenario where each
node is equipped with a PV plant with a capacity of up



to 50% of its nominal load. In this sceanrio, we use the
same load data as the base case scenario.

c) Low correlation (LC): Finally, we simulate a scenario
with reduced correlation in the load data, as illustrated
in Fig. 2b, to assess whether the results from the base
case are overly influenced by the high correlation in the
base case scenario. Since we do not have access to actual
load data from many different customers, we generate a
synthetic dataset with low correlation by shuffling each
load profile by a random amount in time. This captures
the underlying patterns in the typical customer behaviors
inherent to the measured load data from [35] while
modeling customers with offset daily schedules.

For each of the scenarios, we use the root mean square error
(RMSE) and the mean absolute error (MAE) to evaluate the
performance of the proposed method:

RMSE =

√√√√ 1

Ns

Ns∑
i=1

∥ṽt − vt∥22, (30)

MAE =
1

Ns

Ns∑
t=1

∥ṽt − vt∥1, (31)

where Ns refers to the number of samples and ṽt ∈ R3N is
the vector of estimated voltage magnitudes.

B. Forecasting Performance

In this section, we evaluate the performance of the VAR(1)
model, which, as described by (9), predicts the power in-
jections St at the current time step using power injection
measurements St−1 from the previous time step. The VAR(1)
model is trained using the Yule-Walker (YW) and the Re-
cursive Least Squares (RLS) algorithms explained in Sec-
tion IV-B, with the YW algorithm providing a baseline. To
compare the effectiveness of the YW and RLS algorithms
under varying amounts of available data, we consider two
training datasets that include either 1000 or 200 time steps. For
the YW algorithm, the training dataset is gathered over time
and then used simultaneously to estimate the parameters of the
VAR(1) model. Conversely, for the RLS algorithm, the dataset
size represents the number of time steps required for iteratively
training the VAR(1) model. At each time step, the RLS
algorithm updates the parameters of the VAR(1) model using
measurements only from the current time step. In addition to
varying the size of the training dataset in terms of the number
of time steps, we also assess how varying the percentage
of sampled nodes impacts the RLS algorithm’s performance.
To obtain a baseline, we first train the VAR(1) model using
the YW algorithm with power injection measurements from
all nodes. We then train the VAR(1) model with the RLS
algorithm assuming that differing subsets of nodes can be
observed at every time step. Specifically, we consider two
cases where the operator can access measurements from 100%
and 10% of nodes in the network. At every time step, the set of
observed nodes is varied according to the procedure described
in Section VI-A3. We evaluate the performance of both the
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Fig. 3: Forecast accuracy of the VAR(1) model when trained
using (a) 1000 time steps and (b) 200 time steps. In both
plots, the dashed black line represents the true nodal power
injections. Both methods perform comparably when the VAR
model is trained using 1000 time steps of data. However, with
200 samples, the YW method fails to accurately predict the
power injections, while the RLS method is more robust.

methods via predicting the power injections at the current time
step St by assuming that we have perfect knowledge of the
power injections at the previous time step St−1.

Fig. 3 and Table I summarize the forecasting performance
of each method with different dataset sizes and percentages of
sampled measurements. We first analyze the scenario where
data from 1000 time steps are used to train the VAR(1)
model. Here, we observe that all the considered methods
have comparable prediction accuracy, as shown by Fig. 3a.
Importantly, the RLS method accurately trains the VAR model
even when only 10% of the nodal power injections are
accessible at each time step due to bandwidth constraints.
The forecasting accuracy of both methods deteriorates when



TABLE I: Forecasting accuracy with varying training dataset
sizes and measurement sets

# Training samples Method MAE [p.u.] RMSE [p.u.]

1000
YW 8.9120× 10−5 1.3291× 10−4

RLS 100% 8.2374× 10−5 1.2946× 10−4

RLS 10% 9.6501× 10−5 1.4401× 10−4

200
YW 1.3965× 10−3 2.1458× 10−3

RLS 100% 6.7451× 10−4 4.4499× 10−4

RLS 10% 7.0130× 10−4 4.4706× 10−4

TABLE II: Voltage estimation error in the base case

% Measurements RMSE [p.u.] MAE [p.u.]
Fixed Measurement set

10 5.4991× 10−4 4.2027× 10−4

20 4.9729× 10−4 3.8687× 10−4

Dynamic Measurement set
10 5.6587× 10−4 4.3026× 10−4

20 5.2314× 10−4 4.0294× 10−4

TABLE III: Voltage estimation error with PV integration

% Measurements RMSE [p.u.] MAE [p.u.]
Fixed Measurement set

10 5.1374× 10−4 3.8790× 10−4

20 4.6347× 10−4 3.5473× 10−4

Dynamic Measurement set
10 5.2448× 10−4 3.9446× 10−4

20 4.8866× 10−4 3.7037× 10−4

we have access to less training data. We can observe this in
Figs. 3b when compared to the plots in Figs. 3a. In the case of
the RLS method with access to 200 samples of data, the RMSE
increases by almost a factor three and the MAE increases by
almost an order of magnitude, as shown in Table I. Despite
the degraded performance, the RLS method is, in general,
still capable of capturing the trends in power injections with
an acceptable accuracy. Additionally, the performance of the
RLS method is insensitive to the percentage of measurements
accessed in each training iteration. The performance with only
10% of the measurements is only slightly worse than when
we have access to all the measurements. On the other hand,
with a training dataset of 200 samples, the YW method fails to
accurately estimate the parameters of the VAR model, resulting
in poor forecasting performance, as shown by Fig. 3b. The
YW method involves solving (10), where Π0 is computed as
a sum of M rank-1 matrices, with M denoting the number of
training samples. Therefore, the YW method is only feasible
with a sufficiently large M so that Π0 is not ill-conditioned.

From Fig. 3, it is evident that the forecasting accuracy of
the RLS method is more sensitive to the size of the training
dataset than to the number of sampled measurements. Thus,
during the offline training phase, it is more important to train
the VAR model for a longer duration, resulting in a more
accurate estimate of its parameters B and Σs.

C. State Estimation Performance

Next, we compare the performance of the proposed state
estimation method under the scenarios described in Sec-

TABLE IV: Voltage estimation error under the low correlation

% Measurements RMSE [p.u.] MAE [p.u.]
Fixed Measurement set

10 5.7959× 10−4 4.4772× 10−4

20 5.3669× 10−4 4.3154× 10−4

Dynamic Measurement set
10 6.3749× 10−4 4.8921× 10−4

20 5.4284× 10−4 4.2703× 10−4

tion VI-A4, with the results summarized in Fig. 4 and Ta-
bles II–III. In all three scenarios, we train the VAR(1) model
using the RLS method with 200 data samples. As shown in
Section VI-B, despite the lower accuracy, the VAR(1) model
trained with 200 data samples still captures the general trends
in the power injections. As we will show in this section, the
state estimation step is able to account for this increased error
to recover accurate state estimates. While the VAR(1) model
can be updated regularly to adapt to changes in load and
renewable generation, for simplicity, we train the VAR model
at the beginning of the simulation and keep it fixed thereafter.

To evaluate the performance of the proposed method, volt-
age magnitudes estimated using the proposed method are com-
pared against the true nodal voltages obtained by solving an
AC power flow using the backward-forward sweep algorithm.
To assess the performance of the proposed method under
different communication infrastructures, we simulate both
fixed and dynamically varying measurement sets, with sizes
corresponding to 10% and 20% of all nodes in the network.
The fixed measurement set represents a case where only a few
nodes in the network are equipped with smart meters, while
the dynamically varying measurement set represents a case
where every node in the network is equipped with a smart
meter but measurements can only be accessed from a few
nodes each time step due to limited bandwidth. In the case of a
fixed measurement set, we randomly choose one of the subsets
constructed using the procedure described in Section VI-A3 at
the beginning of the simulation. The measurement set is kept
fixed during the entire simulation. In the case of a dynamically
varying measurement set, a different subset of measurements is
selected at each time step such that all nodes in the network are
sampled within a finite number of time steps. State estimation
is initialized using the final sample of the training data. The
estimated power injections from the previous time step are
used as inputs to the VAR model for predicting the power
injections at the current time step.

We first analyze the performance of the proposed method in
the base case scenario. In this scenario, we assume there is no
renewable generation in the network, ensuring that there are no
sudden changes in the power injections, as shown in Fig. 4a.
We also observe that the loads are highly correlated. Under
these conditions, the proposed method is expected to work
well with few measured nodes. Thus, the base case scenario
serves as a baseline, allowing us to compare the performance
of our proposed method under other scenarios. Figs. 4d and 4g
show the true and the estimated voltages of all phases of a
particular node, computed using a fixed measurement set with
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(c) LC: Substation power injection
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(d) BC: 10% measurements
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(e) PV: 10% measurements
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(f) LC: 10% measurements
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(g) BC: 20% measurements
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(h) PV: 20% measurements
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Fig. 4: Performance of the proposed state estimation method in different scenarios. Figs. 4a–4c show the substation active
power injections under different scenarios. Figs. 4d–4i show the performance of the proposed method with 10% (top) and 20%
(bottom) measurements, in the base case (left, BC), with PV integration (middle, PV), and in the low-correlation scenario (right,
LC). As an illustrative example, we plot the voltage at one particular three-phase node but emphasize that the performance is
consistent across all the nodes in the network as shown by Tables II–IV.

20% and 10% of all nodes, respectively, while the estimation
errors with different measurement configurations are tabulated
in Table II. Here, we can observe that our proposed method
performs consistently across different measurement configura-
tions. Notably, even with only 10% of the nodes sampled, the
state estimation error remains low.

To assess whether the observed performance in the base case
is related to the lack of renewable generation, we next analyze
our proposed method in a scenario with high renewable
penetration, the results of which are summarized in Figs. 4e
and 4h and in Table III. The selected PV profiles exhibit
significant fluctuations in active power injections, as shown

by the substation active power injection in Fig. 4b. These
sudden variations represent the uncertainty in PV generation
due to factors such as cloud cover and partial shading. Despite
the rapid changes in voltage magnitudes induced by the fluc-
tuations in power injections, the proposed method accurately
tracks the voltage, as shown by Figs. 4e and 4h. This indicates
that method performs well even when our assumption of quasi-
steady-state power injections (see Section IV-B3) does not
hold in the presence of significant quantities of renewable
generation. Additionally, from Tables II and III, we observe
that our proposed method performs similarly in both the high
renewable generation and the base case scenarios despite the
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Fig. 5: Impact of the number of measured nodes on state
estimation performance.

sudden changes in active power injections.
Finally, to assess the impacts of load demand correlations,

we simulate the case with low correlation and compare to the
base case. Figs. 4f–4i and Table IV illustrate that the method
remains effective for low-correlation scenarios. The proposed
method performs comparably to the base case across the differ-
ent measurement configurations, with some slight deterioration
since the lack of measurements is partially compensated by
the estimated correlation in nodal power injections. In the
extreme case when the power injections are uncorrelated,
the forecasted power injections do not provide additional
information, necessitating a larger measurement set.

The results presented above illustrate that the proposed
method performs consistently across all scenarios. However,

we can observe from Tables II–IV that, for all three scenarios,
the performance of the proposed method with a dynamic
measurement set is slightly worse than when compared to
fixed measurement set due to the random sampling of observed
nodes at each time step. Since the network consists of both
three- and single-phase nodes, we note that random sampling
does not ensure a consistent number of measurements at each
time step. Thus, choosing a measurement set more strategically
is likely to improve our method’s performance. This is a topic
for our future work.

D. Impact of the Number of Measurements

Finally, we provide a more detailed assessment on how the
number of sampled measurements impacts the accuracy of
the state estimate. To accomplish this, we vary the number
of measurements sampled during VAR parameter estimation
and state estimation. For each combination of sampled mea-
surements across these two stages, we simulate the base case
and the low-correlation scenarios to assess the sensitivity of
the proposed method to the number of measurements under
different conditions. To ensure that the comparison is fair
across all cases, we fix the forgetting factor λ at 1. We use
200 data samples to train the VAR model and use a fixed
measurement set for the state estimation.

As expected, the performance of the proposed state esti-
mation framework improves when we increase the number
of measurements sampled at different stages, as shown in
Figs. 5a–5b. From Fig. 5a, we observe that the performance
of the state estimation is more sensitive to the number of
measurements sampled at the state estimation step than to
the number of measurements sampled during VAR training.
While only the results for the base case scenario are shown,
we observe similar trends for the low-correlation scenario.
The results presented above suggest that careful selection of
measurements during the state estimation stage is more critical.

VII. CONCLUSIONS

This paper has presented a forecast-aided state estimation
scheme for distribution systems that addresses the problem of
scarcity of measurements caused by limited communication
bandwidth. This scheme consists of two stages. The first stage
trains a forecasting model using power injection measurements
from a subset of smart meters that are randomly sampled
over a period of time. The second stage then uses the trained
forecasting model along with the measurements from a few ob-
servable nodes for the state estimation. The proposed method
improves on the recent literature by (i) introducing a recursive
approach for the forecasting which does not require a large
amount of historical measurements, (ii) developing a state
estimation approach without any phasor measurements, and
(iii) accurately estimating the system state with a limited set
of dynamically sampled smart meter measurements.

We validated the proposed scheme on the IEEE 123-
bus benchmark network. The results show that the proposed
scheme can accurately estimate the system state with measure-
ments from only 10% of nodes, with estimation error reducing



as the number of observed nodes increases. We also analyzed
the performance of the proposed scheme using three scenarios
with different correlation properties in power injections. The
proposed method performs consistently across scenarios with
varying measurement configurations and thus remains robust
under a range of scenarios.

Future work will improve upon the key assumptions used
in this work as follows.

a) Our model assumes that every node has a smart meter
(with few sampled simultaneously), which may not hold
in distribution grids with limited smart meter deployment.
However, we also demonstrated that our methods achieve
accurate estimates with a constant set of measurements,
representing scenarios with limited measurement units.
We plan to further investigate the impacts that reduced
smart meter coverage has on estimation accuracy.

b) We used a linearized power flow approximation,
Lin3DistFlow, and compared the state estimation results
against the true AC power flow solutions. In the future,
we will extend the state estimation model to consider the
AC three-phase non-linear power flow model.

c) We assumed that all the prediction errors and measure-
ment noise are additive white Gaussian noise with zero
mean, which may not reflect the real noise characteristics.
Future work could relax this assumption by considering
additional noise models.

d) We also assumed that the prediction errors and measure-
ment noise are uncorrelated, which may not always be
true. Our results show that, for the range of time periods
we considered, the proposed method remains accurate
despite possible correlations. To mitigate the potential
issues that may arise if this assumption does not hold,
the VAR model could be retrained periodically.

Furthermore, our future research will focus on developing
an optimization framework for dynamically sampling smart
meter data, with the aim of reducing the state estimation
error while satisfying communication constraints. We will also
develop algorithms for considering adjustable precision from
smart meters and determining different bit rates for various
smart meters to minimize the overall state estimation error,
considering the impact of quantization error and communica-
tion bandwidth limits.
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