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Abstract— In many power system optimization problems, we
observe that only a small fraction of the line flow constraints
ever become active at the optimal solution, despite variations in
the load profile and generation costs. This observation has far-
reaching implications not only for power system optimization,
but also for practical applications such as long-term planning,
operation, and control of the system.

This paper presents a constraint screening approach to
identify constraints whose satisfaction is implied by other con-
straints in the problem, and can therefore be safely disregarded.
The approach is targeted at problems which involve DC power
flow constraints, and involves two steps. The first step uses
simple analytical relationships to remove redundant limits on
parallel lines. The second step uses optimization to consider
interactions among all of the problem constraints. In essence,
we solve a (relaxed) optimization problem for each constraint
to identify whether it is redundant. Different from existing
methods that focus on constraint screening for a given daily
load profile, we consider ranges of load that are wide enough to
represent yearly variations in loading. The constraint screening
results are thus valid for long periods of time, justifying the
computational overhead required for the screening method.

Numerical results for a wide variety of standard test cases
show that even with load variations up to ±100% of nominal
loading, we are able to eliminate a significant fraction of the
transmission constraints. This large reduction in constraints
may enable computational gains across a range of possible
applications. As one illustrative example, we demonstrate the
computational improvements for the unit commitment problem
obtained as a result of the reduced number of constraints.

I. INTRODUCTION

Many power system applications involve optimization
problems that are solved repeatedly. Important examples
include the optimal power flow (OPF) and unit commitment
(UC) problems. These problems are important both as stand-
alone applications in market clearing and operations and also
as building blocks in more complex problems such as trans-
mission expansion planning. Some of the parameters in these
problems vary over time (e.g., the loading, the renewable
generation, and the coefficients in the cost function). Other
aspects, such as the problem structure and the majority of
the constraints representing the power flows and technical
limits on transmission lines, remain mostly unchanged.

When solving power system optimization problems, an
important source of computational complexity is the large
number of transmission line constraints. While each of these
constraints are important for system security, only a limited
number will be active (i.e., satisfied with equality) at the
optimal solution [1]. This observation can be exploited to
devise more efficient solution algorithms using methods such

1: University of Wisconsin–Madison, Madison, WI. roald@wisc.edu.
2: Georgia Institute of Technology, Atlanta, GA. molzahn@gatech.edu.

as constraint generation [2], [3]. Further, the active con-
straints tend to remain the same across different realizations
of system loading, inspiring methods that learn a collection
of active constraints for varying parameters [1], [4], which
can be used to efficiently obtain optimal solutions [5], [6].

Overall, the structure of the power flow equations seems
to imply that only a fraction of the transmission constraints
in optimal power flow problems are non-redundant. Direct
evidence of this is found in the literature on optimization-
based bound tightening for AC OPF [7], [8]. Starting from
an initial optimization problem with a given set of vari-
able bounds, optimization-based bound tightening solves a
sequence of optimization problems to find the upper and
lower achievable values for, e.g., the voltage magnitudes
and angle differences. In AC OPF, the achievable upper and
lower bounds tend to be tighter than the original bounds
for a large number of constraints [7], which can be used to
improve certain convex relaxations of the AC power flow
equations [8], [9]. More generally, the fact that it is possible
to tighten many of the transmission constraints implies
that many constraints are implicitly satisfied through other
constraints in the problem and can thus safely be removed
before calling the solver. Other work on removing constraints
from AC OPF problems include analytical methods, such as
those presented in [10]–[12], and a variety of pre-solvers
for general optimization problems [13]–[15]. Although these
analytical methods require less computational effort, they are
generally not as effective at identifying redundant constraints
as optimization-based screening methods.

The idea most closely related to the work in this paper
was used in [16] for identification of so-called umbrella con-
straints (i.e., a subset of the constraints whose enforcement
implies satisfaction of the remaining constraints) in DC OPF.
The umbrella constraints are found by solving a sequence of
optimization problems to identify constraints that cannot be
active, with various modifications for improving tractability
in [17]–[19]. Related ideas are discussed in [20], with a focus
on security-constrained unit commitment problems. As in
these papers, our approach will focus on problems which
include a linear DC power flow approximation.

While optimization-based constraint screening has been
shown to be effective, the large computational overhead
of solving optimization problems for each constraint is a
major drawback. However, there are two situations in which
this computational overhead might be justified. First, if the
screening is valid for a long period of time (such that a large
number of problems can be solved more efficiently using the
screening results), the initial computational overhead might



be worthwhile. Second, the actual optimization problem may
have a high complexity (including, e.g., binary decision
variables), but can be relaxed to a simpler, but still effective,
pre-screening problem. In such cases, the reduction in com-
putational time for the complex problem may be significant
enough to justify solving a large number of comparatively
inexpensive pre-screening problems.

In this paper, we show that it is possible to use constraint
screening in both of these situations. While existing papers
focus on bound tightening [7], [8] or constraint screen-
ing [17], [20] where the load profile is given (or restricted
to vary within a limited range representative of day-ahead
load forecast errors), we focus on identifying constraints
that are redundant across a large range of load variations,
representative of, e.g., the maximum and minimum yearly
load. In this way, the results remain valid for a long period of
time. We then use the UC problem as an example of a more
complex (discrete) optimization problem where constraint
screening based on simple problems with DC power flow
constraints can be very effective. However, the proposed
approach could also be applied to more general problems that
include a DC power flow model, such as security-constrained
OPF, robust OPF, and OPF with joint chance constraints.

We present a simple two-step constraint screening ap-
proach. First, we build on [12] to provide analytic rela-
tionships for transmission constraints in the DC power flow
model, which allows for the fast identification of redundant
flow limits on any pair of parallel lines. Second, we use
a constraint screening approach related to the optimization-
based constraint screening in [17], [20]. However, while
we still solve a (relaxed) optimization problem for each
constraint, we consider a more general framework where
the load parameters are also considered as optimization
variables with a corresponding (large) load variation range.
The screening results hence hold not only for one particular
realization of the problem parameters, but for any possible
parameter realization in the considered load variation range.

The main contribution of the paper is to empirically show
that although considering larger load variations leads to an
increased number of non-redundant transmission constraints,
the fraction of non-redundant constraints in OPF and UC
problems still remains small. This is a significant result,
as it drastically increases the applicability of the proposed
constraint screening method. It demonstrates that the com-
putationally burdensome constraint screening method can
be applied as an offline pre-processing step that will be
valid for a prolonged period of time. Additionally, the long-
term identification of redundant constraints may become an
enabling step for a number of other applications, such as
development of reduced models for long-term planning or
determination of which constraints to monitor in a system
with limited observability (e.g., distribution networks).

The remainder of the paper is organized as follows.
Section II describes the DC OPF problem and the constraint
screening method. Section III discusses several applications
enabled by constraint screening with large load variations.
Section IV numerically demonstrates the effectiveness of the

constraint screening method for a variety of large systems
and wide operating ranges. Section V concludes the paper.

II. CONSTRAINT SCREENING
FOR DC OPTIMAL POWER FLOW

This paper considers a constraint screening method for
power system optimization problems which include the DC
power flow equations as a model of the network physics. Our
method is a two-step screening method to identify redundant
constraints in DC OPF problems:
• An initial analytic screening to remove redundant con-

straints on parallel lines.
• An optimization-based screening to remove redundant

constraints based on techniques from optimization-
based bound tightening.

We next formulate the DC OPF problem and then describe
each of these steps in sequence.

A. Optimization with DC Power Flow Constraints

Consider a transmission network modelled as a graph
(V,L), where V denotes the nodes and L denotes transmis-
sion lines. The numbers of nodes and lines are |V| = v and
|L| = `, respectively. The set of dispatchable generators is
denoted by G ⊆ V , and the total number of generators is
|G| = g. The vector d encodes the demands at each bus. The
decision variables are the active power generated by each
generator pi for all i ∈ G and the voltage angles θi for all
i ∈ V . The maximum power flow across each transmission
line ij ∈ L is given by fmax

ij , and the generator limits are
given by pmin

i and pmax
i . For ease of notation and without

loss of generality, we will assume that there is one generator
per node, such that G = V and g = n. This is easily
extended to the more general case with zero or multiple
generators per node by including a matrix which maps each
generator to its respective node. In addition, to keep notation
clear, we assume that pmin

i , pmax
i ≥ 0, although extensions are

straightforward.
While there are a number of power power system opti-

mization problem that include the DC power flow constraints,
the simplest problem is the DC OPF, which we will use as an
example. The DC OPF finds the optimal generation dispatch
p∗ that minimizes operational cost:

min
p,θ

∑
i∈G

c0,i + c1,ipi + c2,ip
2
i (1a)

s.t. pi − di =
∑

j:(i,j)∈L

bij(θi − θj), ∀ i ∈ V, (1b)

pmin
i ≤ pi ≤ pmax

i , ∀ i ∈ G, (1c)
−fmax

ij ≤ bij(θi − θj) ≤ fmax
ij , ∀ ij ∈ L. (1d)

The objective (1a) minimizes the generation cost, modelled
as a function with constant, linear, and quadratic cost coef-
ficients c0,i, c1,i, and c2,i, ∀i ∈ G. Equation (1b) enforces
power balance at every node. The power flow from node i to
each adjacent node j is modelled as a function of the angle
difference θi−θj and the susceptance bij . Limits on generator
outputs and line flows are enforced by (1c) and (1d).



B. Constraint Screening for DC Optimal Power Flow
Our constraint screening approach identifies redundant

constraints among the line flow limits (1d). The set of
redundant constraints is denoted as R ⊆ M, where M is
the set of upper and lower bounds on the transmission lines
(1d), and |M| = 2|L| = 2`. There is no need to perform
screening for the power balance constraints (1b) as equality
constraints will never be redundant. Further, note that we
do not screen for the generator inequality constraints for
two reasons: First, we observed in experiments not reported
here that the number of generator constraints that can be
screened out is very small. This is as expected, as generators
are typically located at nodes which can accommodate the
full ranges of the generators’ power outputs. Second, the
generation limits are bounds on a single variable, which
are generally easy to handle numerically. In contrast, the
transmission line constraints involve a combination of several
variables and can represent a computational bottleneck.

We next present the two step procedure to identify redun-
dant transmission constraints (1d).

Step 1 – Analytic Constraint Screening:
Implied Constraint Satisfaction on Parallel Lines

Our first step is an analytic analysis that removes re-
dundant constraints on parallel lines. Parallel lines are lines
which share the same terminal nodes and the same terminal
voltages, but may have different impedances and flow limits.
Thus, the flows on parallel lines are not independent and
enforcing the flow limit for one line frequently imply satis-
faction of the limits for other parallel lines. Prior work [12]
developed a condition for redundancy of the flow limits for
parallel lines using an AC power flow model. This section
derives an analogous condition using a DC power flow model
which is straightforward, but valuable because of its ability
to quickly identify a non-negligible number of redundant
constraints for certain test cases.

Consider the set of parallel lines connected between
buses i and j, with superscripts ( · )(k) and ( · )(l) denoting
quantities associated with an arbitrary pair of these parallel
lines. Using the DC power flow model, the line flows are

f
(k)
ij = b

(k)
ij (θi − θj) , f

(l)
ij = b

(l)
ij (θi − θj) .

Observe that all the susceptances b(k)ij and b
(l)
ij are positive,

and thus the power flows on two parallel lines are always
in the same direction. In addition, the flow limits f (k),max

ij ,
f
(l),max
ij are also positive, and the upper and lower limits on

the flows in (1d) are symmetric, i.e., f (k),min
ij = −f (k),max

ij .
Hence, we only need to consider the absolute value of the
angle difference, |θi − θj |.

The flow constraint on the kth parallel line is redundant
if the power flow on the lth parallel line always reaches its
limit f (l),max

ij prior to the power flow on the kth parallel line
reaching its limit f (k),max

ij . To analyze whether this condition
holds, we normalize the line constraints by their limits, i.e.,

b
(k)
ij |θi − θj |

f
(k),max
ij

≤ 1,
b
(l)
ij |θi − θj |

f
(l),max
ij

≤ 1.

To show that one constraint reaches its limit before the other,
it now suffices to show that

b
(k)
ij |θi − θj |

f
(k),max
ij

<
b
(l)
ij |θi − θj |

f
(l),max
ij

(3)

for any operating condition, i.e., independent of the specific
values for θi, θj . However, since the two lines share the same
voltage angles θi, θj at the terminals, we can simplify (3):

b
(k)
ij / f

(k),max
ij < b

(l)
ij / f

(l),max
ij . (4)

Satisfaction of (4) guarantees redundancy of the flow limit
on the kth parallel line between buses i and j.

To identify redundant constraints on parallel lines, we
evaluate b(l)ij /f

(l),max
ij for all the lines and check (4) for all

pairs of parallel lines. We only keep the constraint with the
larger fraction (i.e., line (l) in (4)) which reaches its limit
first, and add all other constraints to the set of redundant con-
straints R. Note that equality of the left and right sides of (4)
indicates that the constraints are the equivalent and thus
either can be arbitrarily selected as redundant. Observe that
this screening method only depends on the system topology
and parameters, with no dependence on the operating point.
The constraints identified as redundant will hence remain
redundant regardless of the load and generation profiles.

Step 2 – Optimization-based Constraint Screening:
Implied Constraint Satisfaction Over Varying Loads

The second step applies an optimization-based constraint
screening method inspired by optimization-based bound
tightening [7], [8], and is closely related to previous methods
for identifying so-called “umbrella” constraints [16]–[18],
[20]. However, while the our second constraint screening step
is similar to previously proposed methods, the goal of our
screening is to consider large load variations.

1) Per-Constraint Optimization Problem: The key idea
of the optimization-based screening method is to solve a
modified version of the original optimization problem for
each transmission line constraint (1d) to identify whether or
not the constraint can ever be active. In those modified prob-
lems, we use an objective which maximizes or minimizes
the value of the power flow on the transmission line under
consideration. The set of decision variables still includes the
original optimization variables p and θ (with their original
bounds). Since we are interested in certifying constraint
redundancy not only for one load profile, but for a larger
range of load variations, we also include the load demands d
as optimization variables in the modified problem. The loads
can take any value within a predetermined polyhedral uncer-
tainty set D. This gives rise to the following optimization
problems to obtain the maximum (and minimum) achievable



power flow fmn for each line mn ∈ L,

max
p,θ,d∈D

/ min
p,θ,d∈D

fmn (5a)

s.t. fmn = bmn(θm − θn), (5b)

pi − di =
∑

j:(i,j)∈L

bij(θi − θj), ∀ i ∈ V, (5c)

pmin
i ≤ pi ≤ pmax

i , ∀ i ∈ G, (5d)
−fmax

ij ≤ bij(θi − θj) ≤ fmax
ij , ∀ ij ∈ L, (5e)

2) Certificate of Implied Constraint Satisfaction: If the
maximum (or minimum) power flow given by the objective
function value f∗mn does not achieve the constraint bound,
i.e., f∗mn < fmax

mn for the maximization problem (or f∗mn >
−fmax

mn for the minimization problem), we have a certificate
that the upper (or lower) bound on the transmission line mn
in (1d) can never be violated for any load variation described
by d ∈ D. In this case, we can guarantee that the constraint
will be satisfied even if it is not explicitly considered in the
model and we add the constraint to the set of redundant
constraints, which we denote by R.

We note that solving (5) for each constraint is computa-
tionally expensive, as each problem has similar complexity
to the original OPF problem. Therefore, we are interested
in obtaining screening results that consider a large set of
possible load profiles D, such that we do not need to rerun
the screening frequently. However, while we would like the
results to be valid for prolonged periods of time, considering
a larger set D increases the feasible set of (5), leading to
a larger range of achievable power flows f∗mn. This again
implies that fewer constraints will be deemed redundant,
hence making the screening procedure less effective.

3) Reduced DC OPF After Screening: Given the set of
redundant flow constraintsR, we solve the following reduced
DC OPF problem:

min
p,θ

∑
i∈G

c0,i + c1,ipi + c2,ip
2
i (6a)

s.t. (1b), (1c), (6b)
−fmax

ij ≤ bij(θi − θj) ≤ fmax
ij , ∀ ij ∈ L\R, (6c)

with a smaller number of transmission constraints L\R.
4) DC OPF Reformulation for Problems with Few Line

Constraints: The DC OPF problem (1) can be equivalently
formulated using so-called Power Transfer Distribution Fac-
tors (PTDFs) [21], which eliminates the θ variables and
directly expresses the line flow constraints as a function of
the power injections. The PTDF-formulation of the reduced
DC OPF (6) can be equivalently expressed as

min
p,θ

∑
i∈G

c0,i + c1,ipi + c2,ip
2
i (7a)

s.t.
∑
i∈V

pi − di = 0, (7b)

pmin
i ≤ pi ≤ pmax

i , ∀ i ∈ G, (7c)
−fmax

ij ≤M(ij,·)(p− d) ≤ fmax
ij , ∀ ij ∈ L\R. (7d)

Here, the matrix M is referred to as the PTDF matrix and
is defined in [21]. The notation M(ij,·) indicates the row of
M corresponding to the line ij ∈ L.

The main difference between the θ-formulation (6) and
the PTDF-formulation (7) can be summarized based on
the number of variables and the level of sparsity. The θ-
formulation has a larger number of variables, but a sparse set
of constraints. The PTDF-formulation, on the other hand, has
a smaller number of variables, but the constraint matrix M
is dense. Which formulation is better hence usually depends
on the ability of a given solver to handle a larger number of
variables and exploit sparsity. However, when the set of non-
redundant constraints L\R is small, the PTDF formulation
has the advantage of considering a much smaller number of
variables and only a few dense constraints.

C. Constraint Screening for More General Power System
Optimization Problems

The constraint screening approach described above can
be extended to optimization problems that involve the DC
power flow constraints as part of a more complex problem
formulation including, e.g., integer variables, consideration
of multiple time periods, and non-linear constraints. The
idea is straightforward: instead of doing constraint screening
directly on the more complex problem (which would involve
solving the complex problem a large number of times), we
relax the complex optimization problem to a simpler problem
which resembles the linear DC OPF formulation.

Illustrative Example: DC Unit Commitment

To illustrate this idea, we consider the so-called DC Unit
Commitment (DC UC) problem. The DC UC is an extension
of (1) that accounts for decisions related to the start-up and
shut-down of generators. This is particularly important for
scheduling in problems with non-zero no-load cost c0 and
non-zero lower generation bounds pmin

i . In such cases, con-
sideration of generator shut-down may lead to more econom-
ical solutions and might be necessary to obtain feasibility,
e.g., if the demanded power falls below the minimum gener-
ator bounds. Since the on/off decisions are naturally binary,
the DC UC problem is a mixed-integer optimization problem
and significantly harder to solve than the DC OPF, which is a
continuous optimization problem. This difficulty is generally
reflected in longer solution times. The computational burden
of the UC problem can be significant, which motivates the
application of constraint screening methods. However, to
make the screening problems efficiently solvable, we first
relax the UC problem to bring it to a simpler form, which
is easier to handle computationally. The analytical first step
of our screening method can be applied directly without
modification to remove redundant flow constraints on parallel
lines. Modifications to the optimization-based second step
are described in the remainder of this section.

We note that previous work in [17], [19], [20] also
considers constraint screening for DC UC problems. The
focus of our constraint screening work differs from this
prior work in that we specifically consider the validity of



wide ranges of load variation with the goal of facilitating
extensions to other applications as discussed in Section III.

1) Relaxation of Multi-Period Constraints: The generator
start-up and shut-down decisions considered in the DC UC
problem generally require the consideration of multiple time
periods, as any given generator has limitations on its mini-
mum up-time and minimum down-time after the generator is
started up and shut down, respectively. Other time-coupling
characteristics include start-up costs that depend on how long
the generator has been turned off and ramping constraints
that restrict the ability of a generator to adjust its set-points
between periods. See [22] for a more detailed DC UC model.

As a first step to simplify the UC model, we relax any
multi-period constraints by simply removing them from the
problem. This leads to a set of decoupled unit commitment
problems which only involve a single time period OPF
problem and additional binary decision variables zi for all
i ∈ G that model whether each generator is on (zi = 1) or
off (zi = 0). With this, the single-period UC problem is

min
p,θ

∑
i∈G

c0,izi + c1,ipi + c2,ip
2
i (8a)

s.t. pi − di =
∑

j:(i,j)∈L

bij(θi − θj), ∀ i ∈ V, (8b)

pmin
i zi ≤ pi ≤ pmax

i zi, ∀ i ∈ G, (8c)
−fmax

ij ≤ bij(θi − θj) ≤ fmax
ij , ∀ ij ∈ L, (8d)

zi ∈ {0, 1}, ∀ i ∈ G. (8e)

This problem represents a relaxation of the more comprehen-
sive UC problem, as the additional constraints involving the
coupling of subsequent time-steps have been removed. How-
ever, it still includes another major complication associated
with the UC problem, namely the binary variables zi.

2) Relaxation of Integer Variables: To obtain a more
tractable problem without integer variables, we relax problem
(8) to a linear program. In particular, we modify (8c) by
setting zi = 0 in the lower bound and zi = 1 in the upper
bound, which corresponds to relaxing the lower generation
bound by setting it to zero, i.e., pmin

i = 0. Since our constraint
screening approach does not consider the objective function,
but only investigates constraint redundancy based on the
feasible region of the problem, we do not consider how the
change in zi affects the objective function (8a).

Hence, the relaxed problem for the UC screening is

max
p,θ,d∈D

/ min
p,θ,d∈D

f (R)
mn (9a)

s.t. f (R)
mn = bmn(θm − θn), (9b)

pi − di =
∑

j:(i,j)∈L

bij(θi − θj), ∀ i ∈ V, (9c)

0 ≤ pi ≤ pmax
i , ∀ i ∈ G, (9d)

−fmax
ij ≤ bij(θi − θj) ≤ fmax

ij , ∀ ij ∈ L, (9e)

which is similar to (5) except for the relaxed lower bound
on the generators pmin

i = 0 in (9d).
3) Certification of Implied Constraint Satisfaction: Sim-

ilar to the constraint screening method in (5), we consider

cases where the maximum (or minimum) power flow given
by the objective function value f (R)∗

mn does not achieve the
constraint bound, i.e., f (R)∗

mn < fmax
mn for the maximization

problem (or f (R)∗
mn > −fmax

mn for the minimization problem).
In this case, we know that the power flow on transmission
line mn can never achieve its limit as long as the load stays
within the predefined set D and the other constraints in (9)
are satisfied. This provides a certificate for redundancy of
the constraint on fmn in (9). However, since (9) is a relaxed
(less restrictive) version of the UC problem (9), the objective
value f∗(R)

mn of the relaxed problem (9) is an upper bound
on the objective value f∗(UC)

mn of the original problem (8) in
the case of maximization, or a lower bound in the case of
minimization. Hence, we have that

f∗(R)
mn < fmax

mn =⇒ f∗(UC)
mn ≤ f∗(R)

mn < fmax
mn , (10)

f∗(R)
mn > fmin

mn =⇒ f∗(UC)
mn ≥ f∗(R)

mn > fmin
mn , (11)

for the upper and lower bounds, respectively. Therefore, if
for any transmission line constraint is deemed redundant by
solving (9), we can safely add the corresponding transmis-
sion constraint in (8) to the set RUC of redundant constraints.

Since we are working with a relaxation, the set of certified
redundant constraints RUC is a subset of the true set of
redundant constraints. This is easily seen by considering the
case where

f∗(UC)
mn < f∗(R)

mn = fmax
mn . (12)

This constraint would not be certified as redundant by our
screening method based on the relaxed problem, but would
be redundant for the original UC problem since f∗(UC)

mn <
fmax
mn . However, while relaxing the UC problem may reduce

the number of identified redundant constraint, formulating
our screening problems as LPs rather than MILPs and reduc-
ing their size provides a substantial computational benefit.
As will be demonstrated in the numerical test summarized
in Section IV, the screening method is capable of identifying
many redundant constraints despite this relaxation.

4) Reduced UC Problem after Screening: Similar to the
DC OPF problem, we can express the reduced UC problem
in terms of the PTDF matrix:

min
p,θ

∑
i∈G

c0,izi + c1,ipi + c2,ip
2
i (13a)

s.t.
∑
i∈V

pi − di = 0, (13b)

pmin
i zi ≤ pi ≤ pmax

i zi, ∀ i ∈ G, (13c)
−fmax

ij ≤M(ij,·)(p− d) ≤ fmax
ij , ∀ ij ∈ L\R. (13d)

For simplicity, we focus on the single-period UC problem.

III. APPLICATIONS OF CONSTRAINT SCREENING

Constraint screening that is valid for large load variations
enables a variety of applications. While we have already
mentioned a few applications earlier in the paper, we provide
an overview here.

1) Removing constraints in operational problems: Al-
though the screening process is computationally expensive,
the offline screening reduces the time of solving operational



problems in real-time, e.g., in market clearing based on DC
OPF and DC UC with contingency constraints [16]–[20].

2) Removing constraints from chance-constrained and ro-
bust DC OPF problems: Many previously proposed DC OPF
formulations consider joint chance constraints [23] or robust
constraints [24] to guarantee security against uncertain load
variations. The approach can be used to identify constraints
that are redundant for the considered load unceratainty.

3) Removing constraints in long-term planning problems:
Long-term planning problems can be challenging to solve
due to the consideration of a very large number of time peri-
ods with significant variations in load and renewable energy
generation [25]. The constraint screening can significantly
improve the tractability of these problems.

4) Constructing reduced models: By conclusively deter-
mining that certain constraints are not required in the OPF
problem, we can enable the construction of reduced (but
equivalent) models that still capture all important constraints,
such as the method in [26].

5) Guarantee safe operations with limited measurements
and sensing: Operators of some power systems, such as dis-
tribution networks, have only limited real-time observability
of the system state. In these systems, constraint screening
can be used to distinguish between constraints which are
not important to observe in real time (redundant constraints),
and constraints which should be monitored as they will be
violated before other constraints (non-redundant constraints).
This type of application, which is further discussed in [27],
may enable online control applications such as [28], [29] by
reducing the measurement requirements.

IV. NUMERICAL RESULTS

This section numerically demonstrates the capabilities
of the constraint screening method described in Sec-
tion II-B for a diverse set of large test cases. The con-
straint screening method is implemented in Julia using
PowerModelsAnnex.jl [30] and Ipopt [31]. The single-period
UC problem (13) is implemented using YALMIP [32] and
solved with Mosek v.9.0.79 on a laptop computer with a
quad-core 2.70 GHz processor and 16 GB of RAM. The
test cases are taken from PGLib v.17.08 [33]. For the sake
of brevity, we present detailed results for a selected subset
of the test cases whose characteristics are summarized in
Table I. Note that many of the generators in the PGLib test
cases have lower generation limits set to zero. To obtain
more challenging UC problems, we modified the generators’
lower limits to be the maximum of the value specified in the
dataset and 10% of their upper generation limit. We consider
a range of load demands from 0% to±100% variation around
the nominal values specified in the datasets. This gives us the
following description of the set of considered load ranges D,

D = {(1− v) · dnomi ≤ d ≤ (1 + v)dnomi , ∀i ∈ V}, (14)

where we consider v = {0, 0.25, 0.5, 0.75, 1}.

A. Constraint Screening for Varying Ranges of Load

This section presents numerical results regarding the ef-
fectiveness of the constraint screening for large ranges of

load variation. We first applied the analytic step described
in Section II-B to identify redundant flow constraints on
parallel lines. This step is fast, with computation times
taking less than 0.5 seconds for all considered systems
with less than 4000 buses and 4.6 seconds for the largest
considered test case case9241 pegase. We then applied the
optimization-based constraint screening method described
in Section II-B to the remaining line flow constraints. As
described in Section II-C.2, the lower generation limits are
relaxed to zero in order to accommodate the ability to shut off
generators in the UC problem considered later in this section.
The resulting linear programs are solved quickly, using on
average less than 0.6s per optimization problem even for the
largest test case case9241 pegase. Due to the large number
of constraints, the time required for constraint screening is
still significant if the problems (5) are solved sequentially.
However, since each of the problems (5) are completely
decoupled, they can easily be computed in parallel.

The results for several representative and commonly used
test cases are shown in Fig. 1. Each subplot corresponds
to one test case. For each test case, we show results for
load ranges from 0% to ±100% of the nominal values,
corresponding to the five uncertainty sets described by (14).
The results of the five load ranges are shown as five bars
in each subplot, where each bar represent the percentages
of redundant and non-redundant constraints. The yellow
portions indicate the percentage of constraints identified as
redundant by the parallel line screening, the red portions
correspond to the percentage of constraints identified as
redundant by the optimization-based constraint screening,
and the blue portions denote the percentage of constraints
remaining after applying both steps of the screening proce-
dure. For reference, Table I summarizes the number of flow
constraints in the original (non-screened) problem.

For all test case results shown in Fig. 1, we observe
that the fraction of constraints remaining in the problem
after the screening is small (i.e., the blue bar represents
a small fraction of the total number of constraints). This
empirically confirms our claim that the screening methods
are effective at identifying redundant constraints for wide
ranges of load variation. While the fraction of remaining
constraints increases with larger ranges of variation, the
screening methods still reduced the number of constraints by
between 75.3% and 97.2% for ±100% variation in the load
demands. Since the test cases in our simulations correspond
to a variety of realistic system models, we expect these
results to be representative of many practical power systems.

B. Computational Improvements for UC Problems
In order to showcase one example of the advantages

provided by constraint screening for large variations of load,
we consider the single-period UC problem (13). For each test
case and each range of load variation, we solve 100 instances
of UC problems (13) with load demands uniformly sampled
from the corresponding variation range and calculate the
average solution time. Fig. 2 shows representative results for
several larger test cases. The blue bars denote the average
solution times for the screened problems normalized by
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Fig. 1. Percent of constraints eliminated by the screening methods.

TABLE I
TEST CASE SUMMARY

Case Num. Num. Flow UC Solver Time
Name Gen. Constraints w/o Screening [s]

case14 ieee 5 40 0.006
case24 ieee rts 33 76 0.060
case30 ieee 6 82 0.005
case57 ieee 7 160 0.005
case118 ieee 54 372 0.014
case240 pserc 143 896 0.768
case300 ieee 69 822 0.084
case1354 pegase 260 3982 2.753
case1888 rte 290 5062 1.474
case1951 rte 366 5192 1.964
case2383wp k 327 5792 2.813
case2848 rte 511 7552 2.413
case3375wp k 479 8322 30.948
case6468 rte 399 18000 3.710
case9241 pegase 1445 32098 295.256

the solution times for the original (non-screened) problems.
Average solution times in seconds for the original problems
are presented in Table I.

Eliminating redundant constraints yields significant com-
putational improvements with solver times between 20.7%
and 95.6% faster than the original problems for the sys-
tems with more than 1000 nodes. As expected, the solver
times increase with larger ranges of variation as the screen-
ing removes fewer redundant constraints. Nevertheless, the
screening method still results in substantial computational
advantages even for ±100% load variation with solver times
reductions between 20.7% and 69.9% over the original

problems. While these results do not include the times
required for the constraint screening itself, we reiterate that
the wide range of variation considered here implies that
the screening computations can be conducted offline while
remaining applicable to many problems encountered online.
Consideration of ±100% load variation would make the
screening results applicable for typical variations in load over
the course of a year [34].

We note that while our experiments only considered the
single-period DC UC problem (13), the constraints identified
as redundant by the screening method remain redundant in
the more general multi-period UC problems. We expect that
constraint screening methods will provide even larger relative
improvements in these more complicated problems.

V. CONCLUSION

A common observation in power system optimization is
that only a limited number of transmission line constraints
are ever binding. This paper formalizes this observation
using a constraint screening method that rigorously identifies
redundant constraints. This method begins by quickly iden-
tifying redundancies among parallel lines and then uses an
optimization-based method that computes the most extreme
achievable values for certain constrained quantities. If the
extreme achievable values are less than the specified bounds,
the associated constraint is redundant and can be eliminated
from the problem. Applying this screening method to a
diverse set of large-scale problems reveals that a significant
fraction of the flow constraints are redundant even when



case1951_rte

0% 25% 50% 75%100%
0%

25%

50%

75%

100%
case2383wp_k

0% 25% 50% 75%100%
0%

25%

50%

75%

100%
case2848_rte

0% 25% 50% 75%100%

 Load Variation

0%

25%

50%

75%

100%
case3375wp_k

0% 25% 50% 75%100%
0%

25%

50%

75%

100%
case6468_rte

0% 25% 50% 75%100%
0%

25%

50%

75%

100%
case9241_pegase

0% 25% 50% 75%100%
0%

25%

50%

75%

100%

R
e
la

ti
v
e
 T

im
e

Fig. 2. Normalized solver times for the unit commitment problems after constraint screening relative to the solver times prior to constraint screening.

considering large ranges of variation (±100% of the nominal
load demands). An immediate implication of this result is
that constraint screening methods can provide computational
improvements for a wide range of problems, as demonstrated
by > 50% reductions in computational times for simple UC
problems. These results suggest that the constraint screening
methods will also be valuable in other applications discussed
in this paper (e.g., development of reduced models, stochastic
optimization, and ensuring constraint satisfaction in settings
with limited observability and control), which are subjects of
our ongoing work. We are also evaluating the capabilities of
constraint screening methods for problems that use the AC
power flow model.

REFERENCES

[1] Y. S. Ng, S. Misra, L. A. Roald, and S. Backhaus, “Statistical learning
for DC optimal power flow,” in Power Syst. Comput. Conf. (PSCC),
June 2018.

[2] D. Bienstock, M. Chertkov, and S. Harnett, “Chance-constrained
optimal power flow: Risk-aware network control under uncertainty,”
SIAM Rev., vol. 56, no. 3, pp. 461–495, 2014.

[3] L. Roald, S. Misra, T. Krause, and G. Andersson, “Corrective control
to handle forecast uncertainty: A chance constrained optimal power
flow,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1626–1637, 2017.

[4] S. Misra, L. Roald, and Y. Ng, “Learning for constrained optimization:
Identifying optimal active constraint sets,” 2018.

[5] D. Deka and S. Misra, “Learning for dc-opf: Classifying active sets
using neural nets,” in 2019 IEEE PowerTech, June 2019, pp. 1–6.

[6] Y. Ji, R. J. Thomas, and L. Tong, “Probabilistic forecasting of real-time
lmp and network congestion,” IEEE Transactions on Power Systems,
vol. 32, no. 2, pp. 831–841, March 2017.

[7] C. Coffrin, H. L. Hijazi, and P. Van Hentenryck, “Strengthening convex
relaxations with bound tightening for power network optimization,” in
21st Int. Conf. Principles and Practice of Constraint Prog. (CP), Aug.
2015, pp. 39–57.

[8] B. Kocuk, S. S. Dey, and X. A. Sun, “Strong SOCP relaxations of the
optimal power flow problem,” Operations Research, vol. 64, no. 6, pp.
1177–1196, 2016.

[9] C. Coffrin, H. L. Hijazi, and P. Van Hentenryck, “The QC relaxation:
A theoretical and computational study on optimal power flow,” IEEE
Trans. Power Syst., vol. 31, no. 4, pp. 3008–3018, July 2016.

[10] C. Chen, A. Atamtürk, and S. S. Oren, “Bound tightening for the
alternating current optimal power flow problem,” IEEE Trans. Power
Syst., vol. 31, no. 5, pp. 3729–3736, Sept. 2016.

[11] D. Shchetinin, T. Tinoco De Rubira, and G. Hug, “Efficient bound
tightening techniques for convex relaxations of AC optimal power
flow,” submitted to IEEE Trans. Power Syst., 2018.

[12] D. K. Molzahn, “Identifying redundant flow limits on parallel lines,”
IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3210–3212, May 2018.

[13] J. Telgen, “Identifying redundant constraints and implicit equalities in
systems of linear constraints,” Management Sci., vol. 29, no. 10, pp.
1209–1222, 1983.

[14] M. Karwan, V. Lotfi, J. Telgen, and S. Zionts, Redundancy in math-
ematical programming: A state-of-the-art survey. Springer-Verlag
Berlin Heidelberg, 1983, vol. 206, Lecture Notes in Economics and
Mathematical Systems.

[15] S. Paulraj and P. Sumathi, “A comparative study of redundant con-
straints identification methods in linear programming problems,” Math.
Prob. Eng., 2010.

[16] A. J. Ardakani and F. Bouffard, “Identification of umbrella constraints
in DC-based security-constrained optimal power flow,” IEEE Trans.
Power Syst., vol. 28, no. 4, pp. 3924–3934, Nov. 2013.

[17] ——, “Acceleration of umbrella constraint discovery in generation
scheduling problems,” IEEE Trans. Power Syst., vol. 30, no. 4, pp.
2100–2109, July 2015.

[18] A. Jahanbani Ardakani and F. Bouffard, “Prediction of umbrella
constraints,” in Power Syst. Comput. Conf. (PSCC), June 2018.

[19] . S. Xavier, F. Qiu, F. Wang, and P. R. Thimmapuram, “Transmission
constraint filtering in large-scale security-constrained unit commit-
ment,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2457–2460, May
2019.

[20] R. Madani, J. Lavaei, and R. Baldick, “Constraint screening for
security analysis of power networks,” IEEE Trans. Power Syst., vol. 32,
no. 3, pp. 1828–1838, May 2017.

[21] A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power generation,
operation and control, 3rd ed. John Wiley and Sons, Inc., 2013.

[22] B. Knueven, J. Ostrowski, and J. Watson, “On mixed integer pro-
gramming formulations for the unit commitment problem,” Preprint,
http://www.optimization-online.org/DB HTML/2018/11/6930.html,
Nov. 2018.

[23] M. Vrakopoulou, K. Margellos, J. Lygeros, and G. Andersson, “A
probabilistic framework for reserve scheduling and N-1 security as-
sessment of systems with high wind power penetration,” IEEE Trans.
Power Syst., vol. 28, no. 4, pp. 3885–3896, 2013.

[24] J. Warrington, P. J. Goulart, S. Mariethoz, and M. Morari, “Policy-
based reserves for power systems,” IEEE Trans. Power Syst., vol. 28,
no. 4, pp. 4427–4437, 2013.

[25] S. Lumbreras and A. Ramos, “The new challenges to transmission
expansion planning. Survey of recent practice and literature review,”
Electric Power Syst. Res., vol. 134, pp. 19–29, 2016.

[26] W. Jang, S. Mohapatra, T. J. Overbye, and H. Zhu, “Line limit
preserving power system equivalent,” in IEEE Power Energy Conf.
Illinois (PECI), Feb. 2013, pp. 206–212.

[27] D. K. Molzahn and L. A. Roald, “Grid-aware versus grid-agnostic
distribution system control: A method for certifying engineering
constraint satisfaction,” in 52nd HICSS, Jan. 2019.

[28] L. Gan and S. H. Low, “An online gradient algorithm for optimal
power flow on radial networks,” IEEE J. Sel. Areas Commun., vol. 34,
no. 3, pp. 625–638, Mar. 2016.

[29] M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization
as a feedback controller: Stability and tracking,” to appear in IEEE
Trans. Control Netw. Syst., 2019.

[30] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, “PowerModels.jl:
An open-source framework for exploring power flow formulations,” in
Power Syst. Comput. Conf. (PSCC), June 2018, pp. 1–8.
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