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Abstract—Many power system optimization problems are in-
herently affected by uncertainty, as it is generally impossible to
exactly forecast load or renewable generation. Finding solutions
that lead to low-cost, yet secure operation for a range of
conditions is an important concern to system operators. This
paper considers an iterative algorithm for solving power system
optimization problems that include models of uncertainty and
AC power flow physics. This algorithm iterates between solving
deterministic nonlinear optimization problems with the AC power
flow model and updating constraint tightenings that adjust
the constraints to facilitate secure operation. Decoupling the
uncertainty and the nonlinear optimization steps provides several
advantages, such as tractability for large-scale problems and
the ability to separately apply state-of-the-art techniques for
handling the uncertainty and the nonlinearity. Using numerical
examples and theoretical analyses, this paper discusses the
benefits and limitations of the iterative algorithm in solving
general power system optimization problems. This paper further
characterizes the behavior of the iterative algorithm with respect
to convergence, optimality, and infeasibility, and suggests several
modifications to improve performance.

I. INTRODUCTION

With larger shares of electricity generated by renewable

energy, uncertainty about the future state of the system is

an increasingly important aspect of power systems operation.

Specifically, since forecasts for renewable energy generation

tend to be inaccurate, uncertainty affects predictions of both

renewable generation at large installations and the net load

throughout the system. The uncertainty about the power injec-

tions is a challenge for system operators, who need to account

for a range of possible operating conditions when assessing

and mitigating operational risk. If system operation is not

planned appropriately, fluctuations in the power injections can

lead to frequent deployment of costly emergency measures and

increased risk of blackouts. Developing tools for operational

planning that ensure low-cost and secure operation is therefore

an important concern to system operators.

Safely accommodating uncertainty and ensuring feasibility

for a range of possible real-time operating conditions requires

a certain level of conservativeness. Security against uncertainty

hence comes at a price. Solving power system optimization
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problems using, for example, a robust or chance-constrained

approach leads to solutions that have higher costs than the

corresponding deterministic problems. The aim of the system

operator is therefore to find an operating point that strikes

the optimal trade-off between security and operational cost.

Formulating and solving optimization problems that attain this

optimal trade-off is a very challenging task that involves a

number of modeling and computational aspects.

One challenge is in the definition of an appropriate model

of the uncertainty and a corresponding security criterion.

Many methods represent the impact of uncertainty mainly

through the objective function, by, e.g., minimizing the ex-

pected operating cost. These approaches are typically two- or

multi-stage approaches based on samples [1]–[5] or stochastic

approximation techniques [6], where adverse impacts of the

uncertainty realization are reflected in a higher second-stage

cost, due to, e.g., a more expensive generation dispatch or

emergency measures such as load shedding. Other methods

focus more on limiting constraint violations due to uncertainty,

and guarantee real-time feasibility. Examples include robust

optimization approaches which secure the system against all

uncertainty realizations within a given uncertainty set [7]–

[11] as well as chance-constrained formulations which limit

either the probability of constraint violations [12]–[20] or the

expected risk of constraint violations (i.e., weighted chance

constraints) [21], [22]. Common to all methods that involve

uncertainty is that the quality of the solution depends signifi-

cantly on how the stochastic optimization is reformulated into

a deterministic, tractable problem. In this paper, we focus on

robust and chance-constrained approaches that aim to obtain

solutions which guarantee feasibility via limiting either the

probability or risk of constraint violations.

The quality of the solution is also dependent on the choice

of the system model. Most of the literature on power system

optimization under uncertainty is based on the linear DC

power flow approximation, e.g., [1]–[4], [6], [9], [10], [14],

[16]–[18], [21], [22]. Linearity provides significant advantages

both in characterizing the impact of uncertainty and in solving

the resulting optimization problem. However, the DC power

flow results can be inaccurate and do not consider reactive

power or voltage constraints, which are of importance in,

e.g., transmission grid security assessment or distribution grid

applications. To ensure secure system operation, a power

system model based on the full AC power flow equations

is necessary; however, it also significantly complicates the

problem. The non-linearity of the AC power flow equations
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Fig. 1. Conceptual description of the iterative algorithm for solving chance-
constrained AC OPF problems.

makes it harder to predict how uncertainty affects power flows

and voltage magnitudes throughout the system, and the non-

convexity of the corresponding constraints complicates the

solution process for the power flow optimization problem.

Due to these complications, the literature that considers both

uncertainty and AC power flow is very limited. Many existing

approaches circumvent these issues by using a linearized ver-

sion of the AC power flow equations to express the power flow

constraints, the impact of uncertainty, or both [12], [13], [19],

[20], [23], [24]. Other approaches use a convex relaxation of

the AC power flow equations, combined with either a sample-

based or analytic chance-constrained representation [15], [25],

a two-stage robust optimization method that exploits conic

duality [11], or a two-stage stochastic program which uses

Benders’ decomposition [5]. Due to the high complexity of

modelling both AC power flow constraints and uncertainty,

many of the above approaches have typically only been

demonstrated for small test cases, and scalability to larger

systems remains challenging.

In this paper, we investigate an iterative algorithm which

allows us to consider the full AC power flow equations and a

detailed model of the uncertainty while maintaining computa-

tional scalability. The iterative algorithm was first proposed for

a Chance-Constrained AC Optimal Power Flow (CC-AC OPF)

problem based on a partial linearization in [19]. The algorithm

exploits the fact that the chance-constrained problem can be

interpreted as a deterministic problem where the constraints

have been tightened to accommodate uncertainty. The chal-

lenge is to find constraint tightenings that attain an optimal

trade-off: large enough to keep the probability of constraint

violations below a pre-defined threshold, but as small as

possible to avoid unnecessarily high cost. The iterative solution

algorithm alternates between solving a deterministic OPF

problem and calculating the necessary tightenings associated

with the solution point. If the tightenings have changed since

the last iteration, the deterministic AC Optimal Power Flow

(AC OPF) problem is resolved with the updated tightenings

(see Fig. 1). The iterations stop when the tightenings do not

change between iterations.

The iterative algorithm decouples the handling of the AC

power flow constraints and uncertainty, which is beneficial as it

allows us to leverage the robustness and scalability of existing

deterministic OPF solvers. The algorithm has been shown to

be very efficient for large-scale CC-AC OPF problems [23].

Further, [23] also showed that it is possible to use the iterative

algorithm to calculate the tightenings using more detailed

representations of the uncertainty and the full, non-linear AC

power flow equations.

In this paper, we analyze and extend the iterative algorithm

that was first proposed in [19], [23]. The contributions can be

divided into two parts:

Part I. We discuss how the iterative algorithm can be gener-

alized beyond chance-constrained OPF to include other

types of power system optimization problems. In partic-

ular, we discuss extensions to other chance constraint

representations, such as distributionally robust chance

constraints and weighted chance constraints, and to

problems that include discrete variables, such as unit

commitment or transmission switching.

Part II. We investigate the properties of the iterative algorithm

with respect to optimality, infeasibility and convergence

of the solution. We then suggest modifications to im-

prove the performance of the algorithm.

The paper uses discussions and illustrative numerical examples

to emphasize important aspects of the iterative algorithm and

the various extensions.

The paper is structured as follows. Section II reviews the

iterative algorithm from [19], [23] and summarizes previous

discussions on results and benefits of the algorithm. The first

main part of the paper, Part I, discusses extensions to the

types of problem formulations that the iterative algorithm can

capture in its current form. Section III discusses extensions to

different types of probabilistic constraints, while Section IV

outlines how the algorithm can be used to solve problems

that involve integer variables. The second main part, Part

II, then considers questions related to optimality of the ob-

tained solution, the impact of infeasibility, and convergence

of the algorithm. The section further proposes modifications

for improving the algorithm’s performance to address these

questions. Section V analyzes the performance for continous

problems, while Section VI discusses problems with integer

variables. Section VII concludes the paper and summarizes

directions for future research.

II. REVIEW OF THE ITERATIVE ALGORITHM FOR

CHANCE-CONSTRAINED AC OPTIMAL POWER FLOW

We begin with a brief overview of the iterative algorithm

for solving CC-AC OPF problems. We first present the full

AC OPF problem with chance constraints and then explain

how the problem can reinterpreted as solving the determin-

istic version of the problem with tightened constraints. We

further describe the iterative algorithm and summarize some

observations from previous work. The problem formulation

and results presented in this section is a review of results

previously presented in [19], [23]. The subsequent sections

will present extensions to the iterative algorithm that allow us

to handle a broader class of problems.

A. Notation

We consider a power system where N and L denote the

set of nodes and lines, respectively. The number of nodes and

lines are given by |N | = m and |L| = l. The set of nodes

with uncertain demand or production of energy is given by



U ⊆ N . The set of conventional generators is denoted by

G ⊆ N , and are assumed to be controllable within their limits.

To simplify notation, we assume that there is one conventional

generator with active and reactive power outputs pG,i, qG,i,

one composite uncertainty source ω, and one demand pD,i,

qD,i per node, such that |G| = |U| = |N | = m. Nodes without

generation or load can be handled by setting the respective

entries to zero, and nodes with multiple entries can be handled

through a summation.

B. Chance-constrained AC optimal power flow

The full CC-AC OPF can be stated as

min
pG,qG,v,θ

∑

i∈G

(

c2,ip
2
G,i + c1,ipG,i + c0,i

)

(1a)

s.t. f
(

θ̃(ω), ṽ(ω), p̃(ω), q̃(ω)
)

= 0, ∀ω (1b)

P(p̃G,i(ω) ≤ pmax
G,i ) ≥ 1− ǫP , ∀i ∈ G (1c)

P(p̃G,i(ω) ≥ pmin
G,i ) ≥ 1− ǫP , ∀i ∈ G (1d)

P(q̃G,i(ω) ≤ qmax
G,i ) ≥ 1− ǫQ, ∀i ∈ G (1e)

P(q̃G,i(ω) ≥ qmin
G,i ) ≥ 1− ǫQ, ∀i ∈ G (1f)

P(ṽj(ω) ≤ vmax
j ) ≥ 1− ǫV , ∀j ∈ N (1g)

P(ṽj(ω) ≥ vmin
j ) ≥ 1− ǫV , ∀j ∈ N (1h)

P(̃iij(ω) ≤ imax
ij ) ≥ 1− ǫI , ∀ij ∈ L (1i)

θslack = 0 (1j)

The objective (1a) is to minimize the cost of active power

generation, where c2, c1 and c0 are the quadratic, linear

and constant cost coefficients. Eq. (1b) are the nodal power

balance constraints based on the full non-linear AC power

flow equations. These equations are functions of the nodal

voltage magnitudes ṽ(ω) and angles θ̃(ω) as well as the nodal

injections of active power p̃(ω) and reactive power q̃(ω):

p̃i(ω) = ṽi(ω)

n
∑

k=1

ṽk(ω)
(

Gik cos
(

θ̃i(ω)− θ̃k(ω)
)

+Bik sin
(

θ̃i(ω)− θ̃k(ω)
))

(2a)

q̃i(ω) = ṽi(ω)

n
∑

k=1

ṽk(ω)
(

Gik sin
(

θ̃i(ω)− θ̃k(ω)
)

−Bik cos
(

θ̃i(ω)− θ̃k(ω)
))

(2b)

where G and B denote the real and imaginary components,

respectively, of the network admittance matrix. The power

injections are p̃i = p̃G,i(ω) + pD,i and q̃i = q̃G,i(ω) + qD,i,

where pD,i and qD,i are the active and reactive demand at

bus i. Note that the power injections and voltages vary with

the realization of the uncertain injections ω. These changes are

necessary to maintain power balance, e.g., through automatic

generation control (AGC), and the desired voltage profile.

These changes are modelled as described in [23].

The remaining equations are generation constraints for

active and reactive power (1c)–(1f), constraints on the voltage

magnitudes at each bus (1g), (1h), and transmission constraints

in the form of flow limits on the current magnitudes ĩ(ω)
(1i). These constraints are affected by the realization of the

uncertainty, and cannot be directly enforced in a similar

way as deterministic constraints. Instead, we formulate these

constraints as chance constraints with acceptable violation

probabilities of ǫP , ǫQ, ǫV , and ǫI . These chance constraints

limit the probability of constraint violations for each constraint

separately. Some of the constraints, such as the transmission

constraints, are inherently soft constraints that can be violated

for a limited period of time without causing problems to the

system. If ǫI , ǫV are chosen sufficiently small, it is unlikely

that the constraints will be violated for an extended period of

time. Other constraints, such as the generation constraints, are

inherently hard constraints, which are physically impossible

to violate. For the generation constraints, we interpret the

violation probability ǫP , ǫQ as the probability that the operator

will need to take unplanned emergency control actions (e.g.

deploy emergency reserves to maintain system balance).

C. Chance-constraint reformulation

The chance constraints given in (1c)–(1i) require reformu-

lation to become tractable. As an example, we review the

analytical chance-constraint reformulation proposed in [19],

[26], which is based on a linearization of the AC power flow

equations around the forecasted operating point.

We use the current flow constraint (1i) for line ij as an ex-

ample. Denoting the sensitivity factors based on the linearized

AC power flow equations as ΓI and the scheduled operating

point by x = (p, q, v, θ), we express the chance constraint as

the sum between the current flows at the forecasted operating

point and approximate changes due to the fluctuations:

P(iij(x) + ΓI(ij,·)(x)ω ≤ imax
ij ) ≥ 1− ǫI , ∀ij∈L. (3)

Note that the sensitivity factor ΓI(ij,·)(x) relating the uncer-

tainty ω in the power injections to iij is a function of the

decision variables x. The exact expressions for ΓI(ij,·)(x) can

be found in [23].

With the partial linearization, the approximated chance

constraint (3) depends linearly on ω. Using this fact and

assuming that ω follows a multivariate normal distribution with

zero mean and covariance matrix ΣW , we can reformulate (3)

in the following expression:

iij(x) + Φ−1(1−ǫI)‖Σ
1/2
W ΓI(ij,·)(x)

T ‖2≤ imax
ij (4)

where Φ−1(.) represents the inverse cumulative distribution

function of the standard normal distribution, Σ
1/2
W denotes

the matrix square root of ΣW , and ‖ · ‖2 denotes the two-

norm. We observe that the chance constraint is equivalent to

a tightened version of the deterministic constraint,

iij(x) ≤ imax
ij − λI,ij(x) (5)

where the tightening

λI,ij(x) = Φ−1(1− ǫI)‖Σ
1/2
W ΓI,i(x)

T ‖2 (6)

represents a reduction in the available transmission capacity.



D. Reformulated chance-constrained AC optimal power flow

Performing the analytical reformulation for all chance con-

straints, we can rewrite the CC-AC OPF problem (1) as

min
x

∑

i∈G

(

c2,ip
2
G,i + c1,ipG,i + c0,i

)

(7a)

s.t. f (x) = 0 (7b)

pmin
G + λP (x) ≤ pG ≤ pmax

G − λP (x) (7c)

qmin
G + λQ(x) ≤ qG ≤ qmax

G − λQ(x) (7d)

vmin + λV (x) ≤ v(x) ≤ vmax − λV (x) (7e)

i(x) ≤ imax − λI(x), (7f)

where the tightenings λP (x), λQ(x), and λV (x) have similar

expressions as λI(x) in (6). They also depend on the scheduled

operating point, and their exact expressions can be found

in [23].

E. Iterative algorithm to solve the chance-constrained AC

optimal power flow

Attempting to solve the optimization problem (7) in one

shot is possible, but can lead to long convergence times and

numerical issues due to the complexity of the expressions for

the tightenings λP (x), λQ(x), λV (x), and λI(x) [23]. One

way of circumventing this problem is to solve the problem

using an iterative algorithm.

Instead of solving (7) as one combined optimization prob-

lem, the iterative algorithm alternates between solving an AC

OPF problem (optimizing over x) corresponding to a fixed

vector of tightenings λ̂,

min
x

(1a) (8a)

s.t. (7b) (8b)

pmin
G + λ̂P ≤ pG ≤ pmax

G − λ̂P (8c)

qmin
G + λ̂Q ≤ qG ≤ qmax

G − λ̂Q (8d)

vmin + λ̂V ≤ v ≤ vmax − λ̂V (8e)

i(x) ≤ imax − λ̂I , (8f)

and then determining the value of λ̂ for the corresponding x,

λ̂ = λ(x). (9)

The algorithm is deemed to have converged when the tighten-

ings have converged (within a specified tolerance η) to fixed

values. When this happens, we know that the obtained solution

is a feasible solution to the original problem (7). A schematic

representation of the iterative algorithm is given in Fig. 2.

F. Benefits of the iterative algorithm

In [23], the iterative algorithm was found to be very effective

in solving AC OPF problems. For the considered cases, the

iterative algorithm converged to the same solution obtained

by a local solver applied to the coupled problem (7), but

with lower computational time. Further, when implemented

using the interior point solver in the MATPOWER package [27],

the iterative algorithm was computationally tractable for large

Initialize iteration count k = 0
and constraint tightenings λ̂0 = 0

Solve deterministic AC OPF:

x
k = argminx (8)

Compute constraint tightenings:

λ̂k = λ(xk)

Check convergence:

Is max(|λ̂k+1 − λ̂k|) ≤ η ?

Secure solution found!

New iteration:

k = k + 1

Yes

No

Fig. 2. Iterative algorithm for solving chance-constrained AC OPF problems.

problems (e.g., solving the Polish grid cases with 2383 buses

and 941 uncertain loads required less than a minute on a

normal desktop computer).

One important characteristic of the iterative algorithm is

that it allows us to decouple the tasks of solving the optimiza-

tion problem and assessing the impact of uncertainty. This

decoupling enables the use of more general assessments of

the uncertainty’s impact such as, e.g., sample-based methods

to evaluate the chance-constraints as in [23].

The decoupling through the iterative algorithm further af-

fords the ability to exploit the robustness and scalability of

existing and emerging power flow optimization algorithms,

and hence leverage decades of progress in solving deter-

ministic AC OPF problems. Since first being formulated by

Carpentier in 1962 [28], the solution of deterministic AC OPF

problems has been an important research topic. There exist

a wide variety of relatively mature solution algorithms for

AC OPF problems, including gradient methods, Newton’s

method, successive quadratic programming, interior point al-

gorithms, etc. [29]–[31]. Many recent efforts have focused

on convex relaxation techniques to obtain lower bounds on

the optimal objective values and, in some cases, the global

optima of AC OPF problems [32]–[37]. Since each iteration

only requires the solution of a standard deterministic AC OPF

problem, any algorithm from this body of research can be

easily extended to consider uncertainty via the iterative al-

gorithm discussed in this paper. For instance, convex relax-

ation techniques (possibly in combination with local solution

algorithms [38]) provide a mechanism for obtaining (at least

nearly) globally optimal solutions to the deterministic AC OPF

problems (8) despite the presence of, e.g., a disconnected

feasible space. Other emerging AC OPF solution techniques,

such as algorithms based on penalization methods [39] and

continuation methods [40], can also be applied as they mature.



PART I: EXTENSIONS TO MORE GENERAL PROBLEM

FORMULATIONS

The benefits described in Section II-F make the iterative

algorithm valuable in more general contexts than chance-

constrained optimal power flow. Most importantly, the iterative

algorithm decouples the optimization and uncertainty assess-

ment, which enables the use of established, more accurate,

and computationally intensive techniques for each of the two

steps. In particular, the iterative algorithm has the ability to

solve a range of other optimization problems involving AC

power flow physics. The iterative algorithm further facilitates

the use of alternative ways of considering uncertainty beyond

chance constraints. The following two sections discuss some

generalizations of the iterative algorithm to handle a broader

class of problems.

III. EXTENSIONS TO DISTRIBUTIONALLY ROBUST AND

WEIGHTED CHANCE CONSTRAINTS

An important benefit of decoupling the optimization and

uncertainty assessment is the flexibility to adopt more general

definitions of the constraint tightenings without any major

change to the overall solution approach. For example, we can

apply uncertainty quantification methods with higher accuracy,

but also higher computational complexity (e.g., Monte Carlo

simulations [23]), or extend the algorithm beyond chance-

constraints to a much larger class of problems that address

feasibility and risk of operation under uncertainty (such as

weighted chance constraints [21]). In this section, we show

how the iterative algorithm can be adapted to enforce (1)

distributionally robust versions of the chance constraint, (2) a

sample-based chance constraint evaluation of the tightenings,

and (3) weighted chance constraints which are also evaluated

using samples.

A. Distributionally Robust Chance Constraint Evaluation

In many cases, only limited information about the uncer-

tainty distribution is available. To ensure that the violation

probability remains below the threshold in this case, we can

enforce distributionally robust chance constraints which hold

for a family of distributions. There are several ways in which

we can robustify our chance constraints against uncertainty

about the distribution. In [41], the chance constraints are

robustified against uncertain distributional parameters (i.e., the

mean µ and the variance Σ of the normal distribution are not

exactly known, but fall within a certain range). Refs. [18],

[42] assume that while the distributional parameters µ, Σ are

known, the distribution itself can be any distribution with the

same µ and Σ. In the following, we will enforce the latter kind

of distributional robustness, where the ambiguity is related to

the type of distribution rather than its parameters.

The distributionally robust chance constraints are imple-

mented using a similar analytical reformulation as in Sec-

tion II-C, which is based on a linearization around the expected

operating point. However, while Section II-C provides an

example based on the assumption of a normal distribution,

similar distributionally robust analytical reformulations only
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Fig. 3. Values of f−1
P

(1 − ǫ) for the different reformulations [42]. The
different lines correspond to the normal distribution (black), the Student t
distribution with ν = 4 degrees of freedom (green), symmetric, unimodal
distributions (dark blue), unimodal distributions (light blue), and the reformu-
lation based on mean and covariance (red). The left part shows the values for
security levels in the range 0 ≤ 1 − ǫ ≤ 1, while the right part shows the
values for high security levels 1− ǫ ≥ 0.9 in more detail.

assume limited information about the probability distribution.

The most general reformulation based on the one-sided version

of the Chebyshev inequality only requires information about

the mean and variance of the probability distribution,1 while

other reformulations can use additional assumptions such as

symmetry or unimodality of the distribution. The examples

below are based on the analytical reformulations that were

derived and applied to DC power flow in [42].

The general form remains the same as in (6), with the

inverse cumulative distribution function Φ−1(1 − ǫ) replaced

by a more general function f−1
P

(1− ǫ),

λI,ij(x) + f−1
P

(1−ǫI)‖Σ
1/2
W ΓI(ij,·)(x)

T ‖2 (10)

Some possible choices for f−1
P

(1 − ǫ) can be found in

Table I. Here, reformulation 1) corresponds to assuming a

normal distribution as in Section II-C, while the expressions

for 2)–4) correspond to distributionally robust reformulations

that hold for all distributions that satisfy certain conditions.

Reformulation 2) is valid for all distributions that share the

same mean and variance, and in addition are symmetric

and unimodal. Reformulation 3) holds for a larger group

of distributions as it does not require symmetry (but still

assumes unimodality). Reformulation 4) is the most general,

as it holds for all distributions that share the same mean

and variance. The value of f−1
P

(1 − ǫ) for different values

of (1 − ǫ) is plotted in Fig. 3.2 Note that the reformulations

which guarantee the chance constraint with less knowledge

(i.e., more distributionally robust) have larger values for

f−1
P

(1 − ǫ), indicating that a larger tightening is required to

limit the violation probability. A more through discussion

of the different reformulations and a derivation of the

expressions for f−1
P

(1− ǫ) can be found in [42].

1Note that the probability distribution here refers to the output distribu-
tions, i.e., the distribution of the generator outputs, current flows or voltage
magnitudes, and not to the input distribution, i.e., the distribution of ω.

2The figure also includes the tightenings corresponding to a Student t
distribution, which provides additional security compared with the normal
distribution for small violation probabilities ǫ and can be used to model heavy-
tailed distribution.



TABLE I
EXPRESSIONS FOR f−1

P
(1− ǫ) [42].

1) Normal f−1
Φ (1− ǫ) = Φ−1(1− ǫ)

Φ: CDF of the standard normal distribution

2) Symmetry,

Unimodality
f−1
S

(1− ǫ) =



























√

2
9ǫ

for 0 ≤ ǫ ≤ 1
6

√
3(1− 2ǫ) for 1

6
< ǫ < 1

2

0 for 1
2
≤ ǫ ≤ 1

3) Unimodality f−1
U

(1− ǫ) =











√

4
9ǫ

− 1 for 0 ≤ ǫ ≤ 1
6

√

3(1−ǫ)
1+3ǫ

for 1
6
< ǫ ≤ 1

4) Mean,

Variance
f−1
C

(1− ǫ) =
√

1−ǫ
ǫ

for 0 ≤ ǫ ≤ 1

B. Sample-Based Chance Constraint Evaluation

Since the calculation of the tightenings happens outside

of the optimization problem, closed form expressions for the

constraints are not required and we need to evaluate them less

often. This opens the possibility of defining the tightenings

using more computationally burdensome, yet possibly more

accurate methods such as Monte Carlo simulations. The sec-

tion below summarizes the sample-based evaluation approach

proposed in [23].

The chance constraint tightening can be understood as an

uncertainty margin, i.e., a security margin against uncertainty,

which allows the constrained value (e.g., current magnitude)

to change within some range without violating the defined

limit. For any given choice of ǫ, the corresponding uncertainty

margin can be understood as the difference between the

forecasted value and the (1− ǫ) quantile of the distribution.3

While the analytical reformulation determines the necessary

uncertainty margin using closed form expressions, the Monte

Carlo simulation defines the tightening by constructing the

empirical distribution based on samples and empirically eval-

uating the (1− ǫ) quantiles.

To illustrate the calculation of Monte Carlo-based tight-

enings, we use a the current magnitude constraint (5) as an

example. A Monte Carlo simulation based on a large number

of samples for the uncertainty distribution is used to construct

the empirical distribution function of the current magnitude

around the forecasted solution iij(x). Based on the empirical

distribution, we determine the (1 − ǫ) quantile, denoted by

i1−ǫ
ij . The required constraint tightening is then

λ̂U
I,ij = i1−ǫ

ij − iij(x). (11)

Note that the Monte Carlo approach requires neither a

linearization around the expected operating point, nor any

particular assumption about the underlying probability

3If the forecasted value of sufficiently far away from the actual limit, there
will be a small probability of constraint violation. More specifically, if the
(1 − ǫ) quantile is at the limit, there will be exactly ǫ probability that the
limit will be violated.
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Fig. 4. Example severity functions for the weighted chance constraint [21].
The step function (left) corresponds to a standard chance constraint. The
linear weight function (middle) evaluates the expected overload, whereas the
quadratic weight function (right) reflects a situation in which large violations
incur a higher penalization than small violations.

distribution. This makes it a potentially more accurate

approach than the analytical reformulation, although the

accuracy depends on the availability of a large number

of representative samples, particularly for small violation

probabilities.

C. Weighted Chance Constraints

In addition to different methods for determining the con-

straint tightenings, the iterative algorithm also allows for

different formulations of the chance constraints themselves.

In many cases, not only the probability of constraint violation

but also the magnitude of the constraint violation influences

operational risk. One possibility to limit the constraint vio-

lation magnitude is by enforcing so-called weighted chance

constraints, which limit the expected severity (or risk) of

constraint overload [21]. Different weight functions can be

defined based on how the operator prefers to model risk, with

some examples given in Fig. 4. The step function χ(y), given

by

χ(y) =

{

0 for y ≤ 0
1 for y > 0

, (12)

corresponds to the standard chance constraint. Choosing an

increasing weight function, such as a linear or quadratic

function, allows us to assign a higher risk to larger deviations.4

As an example, we show how to compute tightenings that

correspond to a weighted chance constraint on the current

4The linear and quadratic severity functions are also convex, which makes it
easier to maintain convexity of the constraints. This property has been used in
[21], [22] to model advanced recourse policies and devise efficient solution
schemes for problems based on the DC power flow model. For AC power
flow, the constraints will in any case be non-convex due to the non-convex
power flow equations, so convexity of the weight function might be less of a
concern.



magnitude. We will assume a linearly increasing weight func-

tion,

f(iij(x, ω)) = (iij(x, ω)− imax
ij )χ(iij(x, ω) ≥ imax

ij ), (13)

where χ(y) again represents the step function. The linear

weight function essentially imposes a limit on the expected

overload magnitude [22]. The weighted chance constraint is

given by
∫ ∞

−∞

f(iij(x, ω))P (ω)dω =

∫ ∞

−∞

(iij(x, ω)− imax
ij )χ(iij(x, ω) ≥ imax

ij )P (ω)dω ≤ ρ ,

(14)

where P (ω) is the joint probability distribution of the random

variables ω. The parameter ρ corresponds to the risk limit (i.e.,

the limit on the expected overload), and is given in the same

units as iij [kA].
Similar to the chance constraints, it is possible to evaluate

the weighted chance constraints using either a linearization

around the expected operating point and the expressions from

[21] (originally derived for DC power flow), or using samples.

In this paper, we propose to use a sample-based method since

the weighted chance constraint requires the evaluation of the

integral in (14). This integral depends on the actual values

in the tail of the distribution, which makes the evaluation of

weighted chance constraints sensitive to linearization errors

and incorrect assumptions about the distribution. This is dif-

ferent from the standard chance constraint, which only counts

the number of violations and disregards the magnitude.
We evaluate (14) using a Monte Carlo simulation, where we

calculate iij(x, ω) for N samples of the uncertain realizations.

For each sample m, we calculate the (empirically observed)

expected severity ρ̂m of loading larger than imij . Note that

we do not consider the actual limit imax
ij in the calculation

of the tightenings. Instead, we are looking for the current

value imij (belonging to the sample m) above which we would

observe ρ̂m = ρ. The difference between this value imij and

the forecasted value iij(x) is then defined as the tightening.
The empirically observed overload for each sample is com-

puted by evaluating the following relation

ρ̂m =
1

N

N
∑

k=1

(ikij − imij )χ(i
k
ij ≥ imax

ij ), (15)

where the step function χ(ikij ≥ imij ) ensures that only samples

with current magnitudes larger than imij contribute to the risk

ρ̂m. After the evaluation, we identify the sample where the

empirical overload ρ̂m is closest to the acceptable expected

overload ρ, i.e. where ρ̂m = ρ. The tightening is then defined

as the difference between the expected current iij(x) and the

current imij for which ρ̂m = ρ,

λI,ij = imij − iij(x). (16)

Similar to the chance constraint tightening based on Monte

Carlo simulations, the accuracy of this approach depends on

the availability of a large number of representative samples.

D. Comparison of tightening methods

Above, we have defined tightenings corresponding to (i) an-

alytical chance-constraint reformulations both for the normal

distribution and for the distributionally robust case, (ii) chance

constraint reformulation based on Monte Carlo simulation, and

(iii) reformulation of weighted chance constraints based on

Monte Carlo simulation. One of the benefits of the iterative

algorithm is the ease of modifying the tightening approach in

order to assess the impacts on solution cost and security.

In the following, we compare the tightenings as well as the

cost and security of the solutions. We use the IEEE RTS96

system, as distributed with MATPOWER [27], as a test case.

To model uncertainty, we assume that renewable generation is

connected at lower voltage levels, such that the uncertainty is

observed as an fluctuations in the net load. The variations in

load are modeled using independent normal distributions with

zero mean and standard deviations σ = 10% of the forecasted

load. In addition, the generation limits are increased by a factor

of 1.5 compared to the standard IEEE RTS96 case. We enforce

the chance constraints with an acceptable violation probability

ǫ = 0.1 and a maximum expected overload of ρI = 0.1 kA

for current constraints, ρP = ρQ = 0.1 MVA for active and

reactive power constraints and ρV = 0.001 p.u. for voltage

constraints.

Fig. 5 show the calculation of the different tightenings. In

the upper part of the plot, we see the tightening based on the

analytical reformulation for the normal distribution (in pink),

followed by the distributionally robust reformulations (in light,

medium, and dark blue). Note that the tightenings get larger

as we assume less and less knowledge about the distribution,

such that the tightening based only on knowledge of the mean

and variance is 2.5 times larger than the one that assumes a

normal distribution.

The chance-constraint tightening which was calculated

based on the Monte Carlo simulation (in light green) is

close to the analytical tightening for the normal distribution.

This is as expected, since the samples used in the Monte

Carlo simulation were drawn from a normal distribution.

The tightening for the weighted chance constraint (in dark

green) is not directly comparable to the other tightenings,

as it aims to enforce a limit on the expected overload ρ

(determined as the average loading within the dark green

region) rather than a violation probability. In particular, we

observe that the empirical distribution calculated based on the

samples has a quite long tail, i.e., there is a relatively large

number of samples with high current values, which contribute

significantly to the expected overload. For constraints where

the empirical distribution is centered closer to the mean, the

tightening of the weighted chance constraint might be smaller

than the tightening of the standard chance constraint.

In Table II, we list the objective function cost of each

optimization problem solution (top), in addition to the maxi-

mum violation probability and maximum expected overloads

observed among any single constraint for both an in-sample

evaluation (middle) and an out-of-sample evaluation (bottom).



Fig. 5. A conceptual illustration for the computation of the tightenings λI for
an example current magnitude constraint. The tightenings are derived using
the analytical reformulation for a normal distribution (first), and the ana-
lytical, distributionally reformulations for symmetric, unimodal distributions
(second), unimodal distributions (third), and based only on the mean and
covariance (fourth). The two last tightenings are computed based a Monte
Carlo simulation and correspond to tightenings that are necessary to enforce
a chance constraint (second to last) and the weighted chance constraint (last).
For the chance constraints, the acceptable violation probability was ǫ = 0.1
(i.e., 10%), whereas the weighted chance constraint allowed for an expected
overload of ρ = 0.1 kA.

Note that the out-of-sample evaluation uses a different set of

samples for the optimization and evaluation, but still assumes

perfect knowledge of the distribution (i.e., the optimization

and evaluation samples are drawn from the same multivariate

normal distribution).

First, we observe that the costs for the analytical reformu-

lations are increasing as we decrease the knowledge about the

distribution (corresponding to an increase in the tightenings).

The solution for the normal distribution increases cost by

4.5% relative to the deterministic OPF solution, whereas the

distributionally robust solution that only assumes known mean

and variance increases cost by 13.1%. The chance constraint

reformulation based on the Monte Carlo simulation is the

cheapest (+4.4%), while the weighted chance constraint has

a slightly higher cost (+6.0%).

Looking at the maximum observed violation probabilities,

we observe that the lower-cost solutions lead to higher vio-

lation probabilities (due to the smaller tightenings). This is

true for both the in-sample and out-of-sample tests. However,

we observe that the tightenings based on the Monte Carlo

approach achieves exactly ǫ = 0.1 in the in-sample test,

whereas the highest observed violation probability is higher,

0.116, in the out-of-sample test, indicating a sensitivity of the

method to the chosen samples. The most frequently violated

constraint after the reformulation based on weighted chance

constraints is violated in around 50% of the cases. That it

is possible to violate the constraint so frequently without

violating the expected overload constraint indicates that there

are frequent, but very small violations.

This observation is confirmed by looking at the maximum

observed overloads. Those overloads are not exceeding ρ =
0.1 for the weighted chance constraints in the in-sample test,5

while the less-conservative chance constraints (with similar

costs) have much larger expected violations. This illustrates

the difference between the weighted and standard chance

constraints. While the standard chance constraints focus on

limiting the frequency of constraint violations, the weighted

chance constraints limit the violations’ size.

IV. EXTENSIONS TO POWER FLOW OPTIMIZATION

PROBLEMS WITH INTEGER VARIABLES

In addition to enabling various types of uncertainty rep-

resentations, the iterative algorithm could also be extended

to other power system optimization problems such as unit

commitment, transmission switching, and long-term planning,

as well as more general AC OPF problems with detailed device

models, such as switched capacitors. Discrete variables are

commonly used in these problems to represent such phenom-

ena as on/off state of equipment and investment decisions.

Nonlinear problems with integer constraints are particularly

challenging to solve [43], and there exists very little literature

on how to solve power system optimization problems with

discrete variables, uncertainty, and AC power flow constraints.

Recently, [5] proposed a two-stage stochastic program to

minimize the expected cost of the unit commitment with

uncertain wind power injections and a relaxed version of the

AC power flow constraints, which was solved using Benders’

decomposition. In [24], an adjustable robust formulation for

the AC unit commitment with interval uncertainty was solved

as a tri-level program. Both of the approaches rely on the use

of either a DC power flow or a convex relaxation to solve the

problems and have not yet been shown to be applicable to

larger systems.

We next discuss how the iterative algorithm can be applied

to solve power flow optimization problems with integer vari-

ables, using a single-period chance constrained AC unit com-

mitment problem (CC-AC UC) as an example. This problem

can be formulated as an AC OPF problem with additional

5In the out-of-sample test, the weighted chance constraints experience
expected overloads that are 70% higher than prescribed in the worst, which
indicates that the computation of weighted chance constraint tightenings are
relatively sensitive to the drawn samples.



TABLE II
COST AND OBSERVED VIOLATIONS FOR DIFFERENT REFORMULATIONS.

Analytical Chance-Constraints Monte Carlo Monte Carlo

Normal Dist. Robust Dist. Robust Dist. Robust Chance- Weighted Chance-

Distribution Symmetry, Unimodality Unimodality Mean, Variance Constraints Constraints

Cost [$] 38 503 38 819 39 373 41 574 38 404 38 983

(% increase relative to (+4.7%) (+5.6%) (+7.1%) (+13.1%) (+4.4%) (+6.0%)
deterministic solution)

TABLE II (A)

IN-SAMPLE TEST OF VIOLATIONS (USING SAME SAMPLES FOR OPTIMIZATION AND EVALUATION)

Max. Violation Probability

Empirical ǫ [-] 0.111 0.089 0.040 0.006 0.101 0.497

Max. Expected Overload

Active power [MW] 0.37 0.27 0.10 0.003 0.44 0.10

Reactive power [MVAr] 0.52 0.45 0.20 0.02 0.56 0.10

Current [kA] 0.66 0.52 0.14 0 0.85 0.10

Voltage [p.u.] 0 0 0 0 0 0

TABLE II (B)

OUT-OF-SAMPLE TEST OF VIOLATIONS (USING DIFFERENT SAMPLES FOR OPTIMIZATION AND EVALUATION)

Max. Violation Probability

Empirical ǫ [-] 0.1080 0.080 0.050 0.003 0.116 0.507

Max. Expected Overload

Active power [MW] 0.33 0.25 0.10 0.00 0.48 0.17

Reactive power [MVAr] 0.62 0.41 0.18 0.00 0.38 0.14

Current [kA] 0.70 0.49 0.14 0.00 0.76 0.11

Voltage [p.u.] 0 0 0 0 0 0

binary variables in (17c)–(17f) that allow the generators to be

switched off:

min
pG,qG,v,θ,z

∑

i∈G

(

c2,ip
2
G,i + c1,ipG,i + zic0,i

)

(17a)

s.t. f
(

θ̃(ω), ṽ(ω), p̃(ω), q̃(ω)
)

= 0, ∀ω (17b)

P(p̃G,i(ω) ≤ zip
max
G,i ) ≥ 1− ziǫP , ∀i ∈ G (17c)

P(p̃G,i(ω) ≥ zip
min
G,i ) ≥ 1− ziǫP , ∀i ∈ G (17d)

P(q̃G,i(ω) ≤ ziq
max
G,i ) ≥ 1− ziǫQ, ∀i ∈ G (17e)

P(q̃G,i(ω) ≥ ziq
min
G,i ) ≥ 1− ziǫQ, ∀i ∈ G (17f)

P(ṽj(ω) ≤ vmax
j ) ≥ 1− ǫV , ∀j ∈ N (17g)

P(ṽj(ω) ≥ vmin
j ) ≥ 1− ǫV , ∀j ∈ N (17h)

P(̃iij(ω) ≤ imax
ij ) ≥ 1− ǫI , ∀ij ∈ L (17i)

θslack = 0 (17j)

zi ∈ {0, 1} , ∀i ∈ G (17k)

The binary decision variable zi ∈ {0, 1} represents the status

of the generator at bus i, and constraints (17c)–(17f) ensure

that the power output of a generator is set to zero with

probability one when the generator is turned off.6 Observe that

the objective function (17a) is modified such that generators

which are turned off do not contribute to the operating cost.

6More general formulations of the unit commitment problem consider
multiple time periods, ramp constraints, start-up and shut-down cost, etc.
However, the prototypical unit commitment formulation (17) suffices to
illustrate the handling of binary variables described in this section.

Initialize iteration count k = 0
and constraint tightenings λ̂0 = 0

Solve Deterministic

AC Unit Commitment Problem:

(xk, zk) = argminx,z (17)

Compute constraint tightenings:

λ̂k = λ(xk, zk)

Check convergence:

Is max(|λ̂k+1 − λ̂k|) ≤ η ?

Secure solution found!

New iteration:

k = k + 1

Yes

No

Fig. 6. Conceptual description of the iterative algorithm for solving chance-
constrained AC unit commitment problems.

An iterative algorithm analogous to that described in Sec-

tion II-E for the CC-AC OPF problem (1) is applicable to the

CC-AC UC problem (17). In other words, one may replace the

deterministic AC OPF problem in Fig. 2 with a deterministic

unit commitment problem to obtain an iterative algorithm for

solving the CC-AC UC problem. A conceptual representation

of this approach is shown in Fig. 6.

While the iterative approach described in Fig. 6 is conceptu-



ally straightforward, the introduction of discrete variables can

cause computational problems, as the optimal solution of the

deterministic problem can be expected to change more signifi-

cantly between iterations. The constraint tightenings evaluated

at one integer solution might no longer be representative of the

tightenings associated with a different integer solution, which

could possibly lead to, e.g., convergence problems as discussed

in the next section.

PART II: PERFORMANCE ASSESSMENT OF THE

ALGORITHM

The iterative algorithm seems to perform well in most

practical cases tested so far, and is known to return a se-

cure solution to the stochastic problem (7) in cases where

the algorithm converges.7 However, we have also observed

instances where the algorithm fails to find a solution, and

beyond chance-constraint satisfaction, little is known about the

quality of the obtained solution. There are several aspects that

require a more through analysis to appropriately understand

the behavior of the algorithm:

A. Optimality: If the algorithm converges, is the result a

(locally) optimal solution? Could there be other, lower-

cost solutions to the problem that we do not discover?

B. Infeasibility: What does it mean if the optimization prob-

lem is infeasible at some iteration in the algorithm?

C. Convergence: Under which conditions does the iterative

algorithm converge or fail to converge? Can we modify

the algorithm to handle the non-convergent cases?

The following sections discusses each of these points based on

empirical studies and theoretical considerations. In thees first

part, we analyze the iterative algorithm as applied to continous

optimization problems, whereas the second part summarizes

our current experiments on problems which also include

integer variables. Note that while the numerical examples are

currently based on the linearized, analytical chance constraints

described in Section II, important characteristics such as the

non-convergence phenomenon described below are attributed

primarily to the geometry of the feasible region. Other ap-

proaches that can be interpreted in terms of a constraint

tightening (e.g., the sample-based evaluation of the chance

constraints and weighted chance constraints mentioned in

Section III-A) can be expected to perform similarly. Thus, the

following analysis and suggested modifications are applicable

to the iterative algorithm in the context of many problem

formulations.

V. PERFORMANCE ASSESSMENT FOR PROBLEMS WITH

CONTINUOUS VARIABLES

A. Optimality of the solution

The solution obtained with the iterative algorithm is guaran-

teed to provide a feasible solution to the original problem when

the algorithm converges. As described in Section II-E, the

7The security of the solution is defined by the method that is used to
compute the tightenings, whether that is a violation probability of a chance
constraint or an expected overload.

algorithm is declared to have converged once the tightenings

(6) no longer change across iterations and have reached a fixed

point λ̂∗. By design, the solution to the OPF corresponding to

this fixed point satisfies

x
∗ = argmin

x
(8) and (18a)

λ̂∗ = λ(x∗). (18b)

which is a feasible point of the original problem.

In addition to feasibility, optimality of the solution is also

an important concern. In previous work [23], the algorithm has

been found to converge to a solution which corresponds to the

locally optimal solution8 found by solving the full problem (7).

The aim of this section is to analyze how reliably the algorithm

converges to such a locally optimal solution and whether there

are any theoretical guarantees for optimality of the algorithm.

One way to assess the robustness of the algorithm’s con-

vergence is to check whether it finds the same solution when

the tightenings are initialized to different values. To test how

sensitive the algorithm is to different starting points, we run

several CC-AC OPFs with different initializations of the tight-

enings. The different initializations are obtained by randomly

perturbating the load profile, running the CC-AC OPF with

tightenings initialized to zero, and recording the resulting

tightening values. The load perturbations were created by

drawing uniform random numbers in the range from ±100%
of the initial load.9 The resulting tightenings were then used

as initializations for the CC-AC OPF with the base case load

profile. In Fig. 7, we show the results obtained for the IEEE

RTS96 case described in Section III-D. We observe that the

initial tightenings are quite different, which leads to different

costs and different changes in the tightenings in the first

iteration. Despite the initial differences, the results rapidly

converge to similar tightenings and similar costs. All final

solutions have the same cost.

These results indicate that the algorithm reliably converges

to the same solution despite differences in the initialization.

Although results are shown only for the IEEE RTS96 case,

similar observations were made for the IEEE 118-bus and

IEEE 300-bus test cases (as described in [23]), indicating that

the algorithm performs well for practical systems.

The good empirical performance of the iterative algorithm

in solving CC-AC OPF raises the question of whether there

are any theoretical guarantees for convergence to an optimal

solution. Since the CC-AC OPF problem is hard to analyze

theoretically and computationally due to its non-convexity, we

ran simulations consisting of a sequence of randomly created

linear programs where the standard linear constraints Ax ≤ b

are augmented with linear tightenings, i.e.,

min
x

c⊺x (19a)

s.t. Ax ≤ b− T x (19b)

8There are no guarantees of global optimality, as the problem is non-convex.
9Some of the load perturbations lead to infeasible CC-AC OPF problems,

but we still recorded the tightenings that the algorithm produced at the points
returned by the solver for the infeasible problems.



1 2 3 4

Iteration Number

4

4.02

4.04

C
o

s
t 

[$
]

104

1 2 3 4

Iteration Number

0

0.05

0.1

M
a

x
. 

C
h

a
n

g
e

in
 T

ig
h

te
n

in
g

 [
p

.u
]

1 2 3 4
Iteration Number

1.6

1.8

2

S
iz

e
 o

f 
T

ig
h

te
n

in
g

(2
-N

o
rm

) 
[p

.u
.]

Fig. 7. Convergence of algorithm for different starting points (each line
corresponds to a different initialization). The results are for the IEEE RTS96
system, with cost (top), maximum change in tightening between iterations
(middle) and the 2-norm of the tightening vector (bottom). The algorithm
convergences to the same solution in not more than 5 iterations, independent
of the initialization of the tightenings.

where the matrix T are the coefficients of the linear function

τ = Tx which defines the constraint tightenings. To obtain

different instances, the problem parameters c, A, b, and T

were generated at random. For the analysis, we solved the

linear program (19) two times, using (1) a standard linear

programming solver, which is guaranteed to find the globally

optimal solution and can be used as a benchmark, and (2) the

iterative algorithm, with tightenings given by τ = T x such

that we iterate between solving a linear program

min
x

c⊺x, s.t. Ax ≤ b− τ (20a)

and evaluating the tightenings

τ = Tx. (20b)

Applying iterative solution algorithm to the linear program

led to three different outcomes: (i) convergence to the optimal

solution, (ii) convergence to a suboptimal solution, and (iii)

non-convergence due to cycling (i.e., the algorithm indefinitely

repeated a sequence of tightenings). We designed the programs

to be feasible, and infeasibility was never encountered in any

intermediate iteration. In cases where the tightenings were

small (i.e., the magnitudes of the entries τi were much less

than the magnitudes of the entries in the corresponding row of

the A matrix, Ai·), the algorithm converged more frequently

to the optimal solution. When the tightenings were relatively

large, cycling over several iterations and convergence to non-

optimal solutions were observed more often.

While the simulations for the randomized linear programs

show that the iterative algorithm is not able to reliably solve

general optimization problems, the empirical evidence from

our current results implies that the algorithm works much

better for the CC-AC OPF than for the randomly generated

linear programs. There might be several reasons for this.

First, the iterative linear problem (20) may have more fixed

points than typical non-linear CC-AC OPF problems, leading

to more frequent convergence to sub-optimal points. Further,

the solution to the linear program is not a continuous function

of the problem parameters, as it might jump between differ-

ent corners of the feasible space, which can induce cycles.

Additional analysis and experimentation is required to check

if the convergence properties of, e.g., a randomized quadratic

program are better.

B. Infeasibility of the stochastic OPF problem

It is plausible that in one of the iterations of the iterative

algorithm, the AC OPF is found to be infeasible. If this occurs

in the first iteration, where the tightenings are zero, then one

can safely conclude that the corresponding CC-AC OPF is also

infeasible,10 since the tightenings λ̂ are always non-negative.

However, AC OPF infeasibility in an intermediate iteration

may or may not imply infeasibility of the CC-AC OPF. The

tightenings oscillate across iterations, and although one point

in the feasible space might have sufficiently large tightenings

to make the corresponding deterministic AC OPF infeasible,

other feasible points with smaller tightenings might exist.

Even if the algorithm encounters intermediate feasibility in

one of the iterations, it is typically possible to evaluate the

tightenings for the obtained infeasible point xinf , particularly

if this point is a close to feasible solution of the AC power flow

equations. In our experiments, the algorithm was always able

to evaluate the tightenings λ(x), even for infeasible solutions

x
inf . In some cases with such intermediate infeasibility, all

subsequent iterations were infeasible, and the algorithm did

not converge. However, in many cases, the next iteration did

produce feasible OPF solutions, and the algorithm converged.

Particularly for the cases where we started with large, non-

zero initializations of the tightenings (as in the convergence

experiments for the RTS96 system described in Section V-A),

the iterative algorithm typically required a few iterations

before it reached feasibility, after which it converged to the

same solution as the instances which were initialized with

tightenings equal to zero.

In the current experiments, we directly used the infeasible

point produced by the solver to evaluate the tightenings

λ(xinf ). This infeasible point might or might not be close to a

feasible AC OPF solution, depending on the problem and the

choice of solver. A more rigorous analysis of the algorithm

in case of intermediate infeasibility requires a more precise

definition of what it means that the infeasible point is “close”

to a feasible solution. One possibility would be to run a second

10Certifying infeasibility of a deterministic AC OPF problem is
NP-Hard [44]; however, convex relaxations can provide sufficient conditions
for AC OPF infeasibility [32], [34], [35], [37].



OPF problem where the objective is to minimize the violation

of constraints on generator outputs, voltage magnitudes, and

line flows while obtaining a feasible solution to the AC power

flow equations. In this case, the resulting solution would

violate the engineering constraints in the problem but still obey

the physics of the AC power flow.

C. Convergence of the algorithm

The iterative algorithm described in Section II has been

successfully demonstrated on a range of practical problems.

Based on previous experimentation, the algorithm appears to

work well for problems where the AC OPF solution does not

experience significant, sudden changes between iterations. In

this case, the variation in the tightening is typically small, and

convergence is reached within a few iterations.

To demonstrate these observations, we run the CC-AC OPF

algorithm for the IEEE RTS96, IEEE 118-bus and IEEE

300-bus systems for different violation probabilities ǫ. The

resulting number of iterations to convergence and the final

cost are shown in Fig. 8. For each system, we observe

that the algorithm requires fewer iterations as ǫ increases

and the tightening decreases. Furthermore, the final cost is

monotonically decreasing as ǫ increases and the tightening

is reduced. Note that this smooth reduction in cost indicates

that the solutions we obtain are close to each other, with a

similar set of active constraints. This once again demonstrates

that the algorithm consistently converges to a similar local

minimum, instead of converging to very different solutions for

each value of ǫ. The cost in Fig. 8 are plotted relative to the

deterministic cost. Note that the impact of uncertainty on cost

varies between different systems, with the IEEE RTS96 system

experiencing the largest relative cost increase. The relative cost

increase is indeed case specific, and depends on a combination

of the set of active constraints and the size and location of the

fluctuations.

However, despite often being successful, the algorithm does

not have a convergence guarantee and non-convergence has

been observed for some AC OPF test cases. One mechanism

for non-convergence is related to the existence of several local

optima for the AC OPF problem. In this case, subsequent

iterates in the algorithm might cycle between repeated points

that have large differences in the associated tightenings. This

section illustrates the cycling phenomenon using a small test

case, and further describes a “cut-and-branch” modification

which interrupts the cycling and results in convergence.

1) Illustrative example of a non-convergent CC-AC OPF

test case: A variety of research efforts have investigated

the non-convexity of the feasible spaces associated with de-

terministic power system optimization problems [45]–[49].

The feasible spaces of AC OPF problems can have multiple

disconnected regions, each of which contain one or more local

optima. The test case described in this section illustrates how

these disconnected regions of the feasible space may result in

non-convergence of the iterative algorithm.

We consider the five-bus test case in [48] with an uncertain

load at bus 4 that has a normal distribution with standard
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Fig. 8. A comparison of the number of iterations (top) and cost relative to
the deterministic solution (bottom) for three different test systems and varying
acceptable violation probability ǫ. We observe that the number of iterations
decreases as ǫ increases and the tightening becomes smaller. Further, we see
that the cost is consistently decreasing as ǫ increases, which suggests that the
optimization algorithm converges to a similar local minima.

Fig. 9. A projection of the feasible space for the five-bus system from [48].
The colored area represents the feasible space, which has two disconnected
regions, and the colors themselves represent the generation cost. The initial
deterministic OPF problem has a solution and initial limit qmin

G,5 denoted
by the light-blue triangle and the black line. The following iterations have
solutions denoted by the blue square and the red diamond with corresponding
limits qmin

G,5 + λ̂k=1
Q,5 and qmin

G,5 + λ̂k=2
Q,5 denoted by the blue dashed line and

the red dotted line. Each pair of subsequent iterations cycles between points on
the left and right sides of the feasible space, resulting in the algorithm failing
to converge. The cut-and-branch modification creates two subproblems with
feasible spaces that are either to the left or to the right of the vertical orange
dashed line. The subproblem to the right is infeasible while the subproblem
on the left converges to the green star.

deviation σ = 6%. The deterministic problem (i.e., λ̂0 = 0
in (8)) has a feasible space with two disconnected components.

Fig. 9 shows the projection of (a subset of) the feasible

space for the deterministic problem in terms of reactive power

generation, computed using the approach in [49]. The OPF

problem specifies a lower reactive power limit of −30 MVAr

for the generator at bus 5 (visualized as the solid black line).

The colors in Fig. 9 show the generation cost. Observe that
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Fig. 10. A projection of the feasible space for the five-bus system from [48].
The colors represent the tightening of the lower reactive power generation
limit at bus 5, λ̂Q,5, computed by the analytic reformulation of the chance
constraints as a function of the operating point. The difference in the tightening
between the disconnected regions on the left and right sides of the feasible
space leads to the cycling phenomenon observed for this test case.

the small region on the right side of Fig. 9 has the lowest

cost, so the global solution to the deterministic problem is at

the light-blue triangle in this region. Also observe in Fig. 10

that the values for the reactive power tightening λ̂Q5 have a

non-negligible variation with location in the feasible space.

Using an acceptable violation probability ǫQ = 0.05, the

second iteration of the algorithm tightens the reactive power

limit from −30 MVAr to −27.26 MVAr, which restricts the

feasible space to the region above the blue dashed line and

therefore cuts off the region on the right side of Fig. 9.

The solution to the OPF problem for this iteration is thus at

the blue square on the left side of Fig. 9. The linearization

computed at the blue square results in a less-stringent limit of

−27.51 MVAr for the third iteration. This expands the feasible

space to the region above the red dotted line, thus restoring

feasibility of the region on the right side of Fig. 9 to yield

the solution at the red diamond. The fourth iteration of the

algorithm results in a stricter tightening that again eliminates

the region of the feasible space on the right side of Fig. 9,

returning the OPF solution for this iteration to the region on

the left side of the figure. For all subsequent iterations, the

algorithm cycles between the same two points, eliminating and

restoring the region of the feasible space on the right side of

Fig. 9. Thus, the algorithm fails to converge, and neither point

in the cycle is a feasible solution to the chance-constrained

AC OPF problem.

2) Cut-and-branch modification to avoid cycles and achieve

convergence: This section proposes one possible modification

which eliminates the cycling phenomenon observed for the

five-bus test case, resulting in convergence of the iterative

algorithm. Specifically, a “cut-and-branch” modification to the

iterative algorithm keeps a history of the tightenings computed

at each iteration.11 If any iteration repeats the tightenings

from a previous iteration, indicating the start of a cycle, the

modification introduces a constraint that “cuts” the feasible

space to create two subproblems in order to interrupt the cycle.

While there are many possible cuts, we suggest using the

simple approach of adding a constraint on the active or reactive

power injection that has the largest difference in value between

any pair of points in the cycle. Two subproblems are created

by forcing this power injection to be either greater than or less

than the midpoint of the distance between the power injections

associated with this pair of points. With cycling precluded by

this constraint, the iterative algorithm is applied to separately

solve each subproblem. This process is potentially repeated to

further split the subproblems if cycling is again detected at

later iterations.
In the context of the five-bus test case, the cut shown

by the vertical orange dashed line creates two subproblems

containing the regions on either the left or the right side of

Fig. 9. Applying the iterative algorithm to each subproblem

results in infeasibility for the subproblem on the right, with

the tightening computed at the red diamond cutting off this

portion of the feasible space. For the subproblem on the left,

the algorithm converges to the solution at the green star.
While this cut-and-branch modification successfully results

in convergence for this test case, further work is needed

to characterize the convergence behavior of the modified

algorithm for other problems. Future research is also required

to identify whether there exist other causes of non-convergence

and to suggest ameliorating modifications as needed.

VI. PERFORMANCE ASSESSMENT FOR PROBLEMS WITH

INTEGER VARIABLES

As discussed in Section IV, it is conceptually straightfor-

ward to apply the iterative algorithm to power flow optimiza-

tion problems with integer variables. The “only” difference

is that the algorithm would solve a mixed-integer non-linear

program with AC power flow constraints in each iteration

instead of a continuous AC OPF.
While the iterative algorithm can be directly applied, there

are several reasons to expect differences in performance be-

tween the continuous AC OPF problem and related power

system optimization problems that include integer variables.

Not only are integer optimization problems generally difficult

to solve due to the combinatorial nature of the solutions, the

integer variables also introduce an increased number of local

minima and additional disconnected regions of the feasible

space. As opposed to the continuous AC OPF problem, which

has been studied in literature for many decades and for which

efficient local solvers exist, the literature on deterministic

power system optimization problems with both integer vari-

ables and AC power flow models is relatively limited. There

11The cut-and-branch algorithm proposed in this paper is similar to “spa-
tial branch-and-bound” techniques used in global optimization solvers (see,
e.g., [50]–[52]) in that both separate the feasible space into multiple disjoint
regions. However, unlike spatial branch-and-bound algorithms, the iterative
algorithm does not attempt to guarantee obtaining a globally optimal solution
and therefore does not employ bounding techniques.



are only a few solvers that are applicable to the corresponding

non-convex, mixed-integer optimization problems. Integration

of the integer variables in the algorithm is hence a practical

challenge.

Theoretically, the integer variables make it harder to analyze

the solution optimality, as the analysis must now consider

large set of integer solutions.12 Moreover, the integer variables

might induce significant changes in the tightenings as the

solution jumps from one integer solution to the next, making

the iterative algorithm more prone to cycling and less likely

to escape intermediate infeasibility.

Due to the relative immaturity of mixed-integer non-convex

programming solvers, the iterative algorithm for optimization

problems with integer variables problem has not been tested

as extensively as the algorithm for the continuous AC OPF

problem. However, small test cases are tractable by enumerat-

ing each combination of the binary variables to obtain a set of

deterministic AC OPF problems, solving these deterministic

AC OPF problems, and selecting the solution with minimum

objective value.

This section uses the chance-constrained AC unit commit-

ment (CC-AC UC) problems described in Section IV in order

to illustrate the convergence characteristics of the iterative

algorithm for integer-constrained problems. Application to

several small test cases suggests that the iterative algorithm for

CC-AC UC problems has similar behavior as for CC-AC OPF

problems in that the algorithm tends to converge when the

tightenings are relatively consistent across the low-cost region

of the feasible space. However, while the iterative algorithm

for CC-AC UC problems typically converged for the small

test cases considered thus far, existing numerical experiments

are too limited to confidently make conclusions on algorithmic

performance more generally.

A. Illustrative example of a non-convergent CC-AC UC test

case

The five-bus test case discussed in Section V-C1 demon-

strates the possibility for non-convergence of the iterative CC-

AC OPF algorithm due to cycling behavior. For the five-bus

test case, the cycling behavior is associated with multiple local

optima for the deterministic AC OPF problem. Despite often

converging for small test cases, power system optimization

problems with discrete variables, such as unit commitment

(UC), can also exhibit similar cycling behavior and thus fail

to converge. This will be demonstrated by solving the CC-

AC UC (17) for a small test case.

We consider a modified version of the six-bus, three-

generator system from [53]. (This test case is known as

“case6ww” in MATPOWER [27].) The load and generator

parameter values are unchanged. The voltage magnitudes at

all buses are constrained to be within 0.95 and 1.10 per unit.

Apparent power flow limits of 0.90 per unit are specified

for each line. The constant in the cost function for each

12Note that it is challenging to obtain rigorous lower and upper bounds for
the objective function due to the problem non-convexity.

generator (17a) is c0,i = 250$, ∀i ∈ G, with the other cost

coefficients remaining unchanged from the values specified

in the test case. For this example, the acceptable violation

probability is ǫ = 0.005 and the tightenings are computed

using the analytic reformulation for a normal distribution, as

discussed in Section II-C.

Fig. 12 shows the feasible space of the six-bus system

and illustrates the application of the iterative algorithm to

the CC-AC UC problem for this test case. The feasible space

of the initial iteration is shown in Fig. 12a. The feasible

space consists of four disconnected regions, each of which

corresponds to a different combination of the generators’

statuses. The initial solution of the deterministic unit com-

mitment problem is at the light-blue triangle in Fig. 12a. The

tightenings computed at the light-blue triangle eliminate the

regions of the feasible space for which either generator 1 or

generator 3 is turned off. The lowest-cost point remaining in

the feasible space is at the blue square in Fig. 12b, which is

contained in the region with generator 2 off. The tightenings

computed at the blue square are such that there exist feasible

points for which generator 1 is off. The lowest cost solution

with these tightenings is at the red diamond in Fig. 12c. The

tightening at this point again eliminates any solution with

generator 1 off. All subsequent iterations cycle between the

blue square in Fig. 12b and the red diamond in Fig. 12c.

Thus, the iterative algorithm fails to converge for this test

case. Note that other parameter choices can result in even more

complicated cycling behavior, including cycles that include at

least four different points.

1) Cut-and-branch modification to for problems with in-

teger variables: A similar approach to the “cut-and-branch”

modification employed for the CC-AC OPF can be applied

to eliminate the cycling behavior. For specified values of

the binary decision variables z, observe that the CC-AC UC

problem (17) is equivalent to a CC-AC OPF (1) problem.

Similar to the cuts in Section V-C2, specifying a combination

the generators’ statuses in the CC-AC UC problem can isolate

disconnected regions of the feasible space and preclude the

cycling behavior. Thus, rather than iterating between solving

deterministic AC unit commitment problems and computing

constraint tightenings as shown in Fig. 6, an alternate approach

for the CC-AC UC problem considers different combinations

of the generators’ statuses and solves the CC-AC OPF for this

combination. This alternate approach is outlined in Fig. 11.

If the problem is sufficiently small, we are able to solve for

each possible combination of the generators’ on/off statuses,

and select the lowest-cost solution selected as the overall

solution to the CC-AC UC problem.13 See Fig. 13 for a

conceptual description of the implementation of the alternate

approach using the modified six-bus system.

Fig. 14 further illustrates the workings of this alternate algo-

rithm using the feasible space of the six-bus system. Choosing

13If needed, the cut-and-branch modification described in Section V-C2
may be used to encourage convergence of the iterative algorithm applied to
the continuous CC-AC OPF problems formulated for each combination of the
generators’ statuses.



Initialize outer iteration m = 0
and integer variables z = z0

Initialize inner iteration k = 0
and tightenings λ̂0 = 0

Solve AC OPF:

x
k = argminx (8)

Compute tightenings:

λ̂k = λ(xk)

Check convergence:
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Fig. 11. Conceptual description of the alternate iterative algorithm for solving
chance-constrained AC unit commitment problems.

a certain combination of the generators’ statuses restricts the

feasible space to one of the regions identified by the dashed

lines in Fig. 14. The iterative algorithm reports infeasibility for

the CC-AC OPF problems corresponding to combinations of

the generators’ statuses where either generator 1 or generator 3
is turned off. The iterative algorithm converges to the green

stars in Fig. 14 for the CC-AC OPF problems corresponding

to combinations of the generators’ statuses with either all

generators are on or only generator 2 turned off. The green star

at
[

PG1 PG2 PG3

]⊺

=
[

1.43 0 0.76
]⊺

per unit, which

corresponds to the case where generator 1 is off, has lowest

cost and is therefore selected as the solution to the CC-AC UC

problem.

For the six-bus test case with the alternate approach de-

scribed in Fig 13, the iterative algorithm for the CC-AC OPF

problems either converges or is infeasible for each com-

bination of the generators’ statuses. This suggests that the

convergence failure when applying the iterative CC-AC UC

algorithm in Fig. 6 is a result of the disconnected feasible

space created by the binary variables in combination with the

relatively large change in tightenings associated with a change

in the generators’ statuses.

The number of possible combinations of the generators’

on/off statuses increases combinatorially with the number

of generators. Thus, solving the CC-AC UC problem by

exhaustive search over all possible combinations is only com-

putationally tractable for systems with a small number of gen-

erators. Defining good heuristics to identify promising integer

solutions and discard others constitutes the most important step

towards improving computational tractablity of this approach,

and is an important subject for future work. One possible

direction is to employ a branch-and-bound framework in order

to eliminate many possible combinations of the generators’

statuses from explicit consideration.

VII. OUTLOOK

This paper summarizes important aspects of an iterative

algorithm for solving power system optimization problems

with AC power flow constraints and uncertainty. By decou-

pling the optimization and the assessment of the uncertainty’s

impact, the iterative algorithm is able to utilize existing

implementations of deterministic power system optimization

problems as well as sophisticated tools to characterize the

impact of uncertainty. The paper discusses opportunities and

limitations with respect to solving general power system

optimization problems under uncertainty, including different

versions of probabilistic constraints and handling of problems

with integer variables. On the other hand, the paper also

describes important algorithmic aspects such as convergence to

optimal solutions, handling of infeasibility and non-converging

cases. The algorithm was found to extend to a large class of

power system optimization problems under uncertainty and to

perform well in most practical cases. However, the algorithm

is not guaranteed to converge to a (local) optimum. Further, it

was demonstrated that the existence of several local minima

can lead to non-convergence of the algorithm in specific

cases. Further investigation is required to fully understand the

properties of the algorithm and the quality of the obtained

solution.
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