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Abstract—The DistFlow model accurately represents power
flows in distribution systems, but the model’s nonlinearities result
in computational challenges for many optimization applications.
Accordingly, a linear approximation known as LinDistFlow is
commonly employed. This paper introduces an algorithm for
enhancing the accuracy of the LinDistFlow approximation, with
the goal of aligning the outputs more closely with those from
the nonlinear DistFlow model. Using sensitivity information, our
algorithm optimizes the LinDistFlow approximation’s coefficient
and bias parameters to minimize discrepancies in predictions of
voltage magnitudes relative to the nonlinear DistFlow model. The
algorithm employs the Truncated Newton Conjugate-Gradient
(TNC) optimization method to fine-tune coefficients and bias
parameters during an offline training phase in order to improve
the LinDistFlow approximation’s accuracy in optimization ap-
plications. Numerical results underscore the algorithm’s efficacy,
showcasing accuracy improvements in Li-norm and L..-norm
losses of up to 92% and 88%, respectively, relative to the
traditional LinDistFlow model. We assess how the optimized
parameters perform under changes in the network topology and
also validate the optimized LinDistFlow approximation’s efficacy
in a hosting capacity optimization problem.

Index Terms—DistFlow, LinDistFlow, machine learning, pa-
rameter optimization, distribution systems, hosting capacity.

I. INTRODUCTION

Power flow models relating power injections, line flows,
and voltages are central to the design and operation of
electric power systems [1]. The AC power flow equations
accurately model these relationships. Incorporating the AC
power flow equations into optimization problems can introduce
significant computational challenges due to these equations’
nonlinearity [2]-[4], even for the radial network topologies
that are typical of distribution systems [5]. These challenges
are particularly relevant to problems that are run online to
inform real-time decisions [6], [7], problems that consider
uncertainties [8], and problems that model discrete decisions
via mixed-integer nonlinear programming formulations [9]-
[12]. To address these challenges, engineers frequently turn
to linear power flow approximations that trade accuracy for
computational tractability [13].

With the rapid deployment of distributed energy resources,
power flow models of distribution systems are of paramount
importance. Distribution systems are often modeled using
an AC power flow formulation known as “DistFlow” [14]-
[16]. A linearization of the DistFlow model known as
“LinDistFlow” [14]-[16], or one of its variants [17]-[22], is
commonly employed to make distribution system optimization
problems tractable. The traditional LinDistFlow approximation
linearizes the DistFlow equations by assuming that the active
and reactive line losses are much smaller than the active and
reactive line flows. LinDistFlow has been used to site and
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size capacitors [14], [15], optimize the network topology [16],
compute inverter setpoints and perform Volt/VAr control [18],
[19], [23], [24], formulate stochastic problems [25], ensure
fairness in solar photovoltaic curtailments [26], and calculate
electricity prices [27], among many other applications. Despite
their extensive application in distribution network analysis, the
accuracy of such models can vary, particularly outside near-
nominal operating regions, as indicated in [19], [28].

Building on ideas from recently developed “adaptive” power
flow approximations [29]-[37], this paper proposes an algo-
rithm for optimizing the LinDistFlow parameter values to
improve the accuracy of this approximation. Adaptive power
flow approximations are linearizations that are tailored to a
specific system and operating range of interest. This contrasts
with traditional power flow approximations that are often
derived using general assumptions about broad classes of
systems or are based on a particular nominal operating point.
Adaptive power flow approximations invest computing time up
front to calculate linearization coefficients in order to achieve
increased accuracy when the approximations are deployed in
an optimization problem. Thus, adaptive approximations are
well suited for settings with both offline and online aspects
(e.g., using a day-ahead forecast to compute linearization
coefficients that are used for online computations in real-time
applications [6], [7]) as well as settings where a nonlinear
AC power flow model would lead to an intractable formula-
tion [8]-[12].

For instance, the cold-start DC power flow approxima-
tion [38] relies on assumptions of near-nominal voltage mag-
nitudes, negligible line resistances, and small phase angle dif-
ferences between connected buses. The accuracy of the cold-
start DC power flow approximation suffers upon deviations
from these assumptions. Hot-start variants of the DC power
flow incorporate information from a nominal AC operating
point [38], but accuracy still may suffer for deviations away
from this nominal point [39]. Our prior work in [40] proposes
an adaptive DC power flow approximation based on coefficient
and bias parameters that optimize accuracy for a particular
system over a specified operating range of interest. Other
adaptive power flow approximations minimize linearization
error in the worst-case [29] and in expectation [30] or leverage
sample-based regression approaches [31]-[33] including tech-
niques for constructing overestimating and underestimating
approximations [34]; see [35]-[37] for recent surveys.

While not using traditional machine learning models like
neural networks, the approach in [40] for optimizing the
DC power flow parameters draws inspiration from methods
for training machine learning models. Using analytically cal-
culated parameter sensitivities, an offline training algorithm
iteratively updates parameter values to minimize a loss func-
tion defined with respect to the AC power flow solutions
over a set of sampled operating points. Leveraging parameter



optimization methods developed for training machine learn-
ing models, we employ the Truncated Newton Conjugate-
Gradient (TNC) method to achieve scalability. The optimized
parameters are then used in online calculations for real-time
settings or in problems for which a nonlinear AC power
flow model would lead to intractability. Using a conceptually
similar approach, this paper optimizes the parameters of the
LinDistFlow approximation. In contrast to existing adaptive
power flow approximations [29]-[37], this approach maintains
the structure of the LinDistFlow approximation as dictated by
the network topology. Accordingly, the resulting parameter-
optimized LinDistFlow approximation has the key advantage
of being directly deployable in the many existing applica-
tions that rely on LinDistFlow (e.g., [14]-[16], [18], [19],
[23]-[27]). As an illustrative application, this paper uses the
optimized parameter values in a hosting capacity analysis.
Moreover, as this paper also demonstrates, maintaining the
underlying network structure enables straightforward modeling
of network topology changes. Numerical comparisons demon-
strate substantial accuracy advantages of our proposed ap-
proach compared to the traditional LinDistFlow approximation
as well as several recent LinDistFlow variants that also tune
parameter values [20]-[22].
To summarize, the key contributions of this paper are:

o Introducing an algorithm that optimizes the LinDistFlow
approximation’s coefficient and bias parameters.

¢ Training the model across diverse operating conditions
while employing the TNC optimization method to extend
the algorithm’s tractability.

o Conducting extensive evaluations of the proposed algo-
rithm in various loading conditions. These tests demon-
strate its improved performance over existing linear
power flow models.

« Demonstrating the algorithm’s capability to compute pa-
rameter values that provide improved accuracy across
multiple network topologies.

o Illustrating the efficacy of the optimized LinDistFlow
approximation in a hosting capacity problem.

The remainder of this paper is organized as follows. Sec-
tion II reviews the DistFlow model and LinDistFlow ap-
proximation. Section III introduces our proposed algorithm.
Section IV presents numerical experiments that evaluate the
performance of our algorithm. Section V concludes the paper.

II. POWER FLOW MODELING

This section introduces the DistFlow formulation and its
linear approximation, LinDistFlow. We first establish notation.
Let operators (-)~1, | -], (-)", and (-)~" denote the square
matrix inverse, the absolute value of a number, the transpose of
a matrix/vector, and the transpose of a square matrix inverse,
respectively. Let ' := {0,1,...,n} and & := {1,...,n}
denote the sets of buses and lines, respectively, in a distribution
network, where |£| = |N| — 1 for radial networks. Let
N' = N\ ref represent the set of all buses excluding the
substation bus. For each bus n € A and each line (m,,,n) € £,
V,, and V. represent voltages at the bus and its parent node,
Zn = T + jx, is the line impedance with resistance r,, and
reactance x,, where j := \/—1. Let I,, denote the current
of the line, and S,, = P, + j@,, the complex power flow of

the line. Note that lines are identified by their child nodes to
simplify notation. Net power injection at bus n is given by
Sn = Pn + jqn- Additional variables include squared voltage
and current magnitudes v, = |V,|? and ¢, = |I,|?. D, =
diag(r) and D, = diag(x) are diagonal matrices of resis-
tances and reactances, p = [p1,...,0n] 4 = [q1,.. ., qn] "
P=1[P,....,P,]", and Q = [Q1,...,Q,]" are vectors of
active/reactive power injections and flows. Furthermore, define
A = [ay A] as the |£] x |[N] branch-bus incidence matrix
describing the connections between the system’s buses and
branches, where ay is the length-|E| vector associated with the
substation bus and A is the reduced branch-bus matrix for all
buses besides the substation bus. Let v := [|V1|?,..., [V, 2] T
represent squared voltage magnitudes, and vy = |Vp|? cor-
responds to the substation bus. Bias parameters v, p, and @
formulated as vectors of length |[N| — 1 are optimized using
our proposed machine learning-inspired algorithm to enhance
voltage prediction accuracy.

[l

A. DistFlow Model

The DistFlow model [14]-[16] accurately represents volt-
age, current, and power flow relationships in radial distribution
networks, enabling analyses of low- and medium-voltage sys-
tems where line losses and voltage drops are important factors.
The two-bus subsystem depicted in Fig. 1 helps illustrate the
DistFlow model. The DistFlow model is:

Un = |‘/;L|27 gn = ‘In|2a Vn € N (1a)
> Po=pn+ Po—ruln, VneN (Ib)
k:in—k
Z QkZQn+Qn_J;n€n7 VneN (1c)
k:in—k
U = Vn, — 21y Po + 2,Qn) + (r2 + 22)L,, Yn € N (1d)

Vg, b = P24+ Q2, Vn e N (le)
Equation (la) defines variables for the squared voltage mag-
nitudes v,, and squared current flow magnitudes ¢,, which are
used in place of the voltage phasors V,, and current phasors
I,,. Equations (1b) and (1c) correspond to active and reactive
power balance at each bus. Equation (1d) models the change
in squared voltage magnitudes across lines. Equation (1e) uses
the definition of apparent power to relate the squared voltages
vy, squared currents £,,, and squared apparent power P2+ Q2.
The DistFlow model is nonlinear due to (le).

Vin V,
Sn = P+ jQn /
) ——

Zn = Tn + JTn
Sy = Dy + 34, Sp = DPn + Jqn

Fig. 1. A two-bus system representing distribution line n feeding bus n from
its parent bus 7y,



B. Traditional LinDistFlow Approximation

The LinDistFlow approximation linearizes the DistFlow
equations by neglecting the active and reactive line loss terms
rnly in (1b), 2,4, in (1c), and (12 4+ 22)¢, in (1d) [14]-[16].
Without these, the nonlinear equation (le) can be dropped,
with the remaining equations linearly relating the squared
voltage magnitudes, the power injections, and line flows:

Z Py =~ pn + Py, VneN (2a)
kn—k
> Q= gn+ Qn, VneN  (2b)
kn—k
Un =~ U'rrn - 2(Tnpn + ann)y VTL S N (20)

The LinDistFlow approximation can be equivalently repre-
sented in the following matrix form:

D, = diag(r), D, = diag(x), (3a)
p=ATP, (3b)
q=A"Q, (3¢)
Av 4+ vgag = 2D, P +2D,Q, (3d)

v=11+2A"'"D, A" Tp+2A"'D, A" Tq. (3e)

For radial networks where all lines have positive resistance
(rn, > 0) and reactance (z,, > 0), reference [41] analytically
demonstrates that the LinDistFlow approximation overesti-
mates the voltage magnitudes and underestimates the complex
power flows required to supply the loads. The following
section presents an approach to reduce this approximation
error by optimizing the LinDistFlow parameters.

III. OPTIMIZED LINDISTFLOW APPROXIMATION (OLDF)

We first generalize the LinDistFlow approximation by intro-
ducing bias parameters =, p, and g that offset the squared volt-
age magnitudes, active power injections, and reactive power
injections, respectively:

v=ul+2A"'D, A" (p+p)+
2A7'D, A " (q+0) +v. @

Appropriate selection of parameter values for D,., D, v, p,
and p can significantly improve the LinDistFlow approxima-
tion’s accuracy. We next introduce a machine learning-inspired
algorithm to optimize the D,., D, 7, p, and g parameters. Our
proposed algorithm seeks to reduce the discrepancy between
the voltages predicted by the LinDistFlow approximation (4)
and those from the DistFlow model (1).

A. Parameter Optimization Algorithm Overview

As illustrated in Fig. 2, we propose a two-phase algorithm
for parameter optimization with an initial offfine training phase
followed by an online application phase. The offline phase,
conducted once, optimizes the values for the parameters D,.,
D,, v, p, and g. This initial computation seeks to align
the LinDistFlow approximation with the DistFlow model’s
behavior across varied operational scenarios. This paves the
way for the online phase where the optimized parameters are
used to improve accuracy in various applications.

Update D, D.., p, g,
and -y parameters using
the sensitivities within
TNC method

i

Compute the derivative of

the loss function with L= 1 LDF DF||2
= — v -V

respect to the parameters Wi-1 Lines|[vm m Iz
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Fig. 2. Flowchart depicting the proposed optimization algorithm.

To optimize the parameters D,, D,, =, p, and p, this sec-
tion first formulates a loss function. The loss function gauges
the LinDistFlow approximation’s accuracy by comparing its
voltage predictions to those from the DistFlow model across
varied operational conditions. This section then analytically
derives the loss function’s sensitivities with respect to the co-
efficient and bias parameters. Informed by these sensitivities,
this section finally applies the TNC optimization method to
minimize the loss function. The TNC method approximates
the Hessian matrix based on the given gradients to achieve
computational scalability. The resulting optimized parameters
are used online for various applications of LinDistFlow, as we
will discuss and numerically benchmark in Section IV.

B. Formulation of the Loss Function

We define a loss function, £, formulated as the sum
of squared discrepancies (in the two-norm sense) between
the voltage solutions of the DistFlow model (v2¥) and
LinDistFlow approximation (viP) for a given set of load
scenarios M = {1,2,...,5}. This formulation, akin to strate-
gies prevalent in machine learning, is known for its numerical
robustness and analytical tractability. The loss function is:

D vt =vIrs,

1
[’(DT7D:C7’vaa Q) = A 1
WV -1
memM

> ol +2A7' D, A" T (p+ p)+
meM
2AT'D, A" (q+ o) +v—VvEEIB, )

1
| —

TN -1

where normalization by ﬁ adjusts for the system size.

This equation underscores how vEP¥ and consequently L,

are influenced by the coefficient and bias parameters. Using
two-norm discrepancies ensures that larger deviations are more
heavily penalized, aligning with typical operational priorities



where minimizing the most significant errors is often more
important than reducing numerous smaller inaccuracies.
The optimal LinDistFlow parameters are computed by min-
imizing this loss function:
min
D,,Ds,v,p,0

L(D,,D,,v,p,0). (6)

C. Parameter Sensitivity Analysis

We use the TNC optimization method to solve (6). This
method relies on the gradients of the loss function with respect
to the parameters, which we present next. We start with
sensitivities for D, and D,, represented by g”~ and g’
These sensitivities are calculated via the partial derivatives of
the loss function £ with respect to these parameters:

gPr = 2 oviPr (VLDF DF) (Ta)
‘N| TTLEM 8D7« LDF m 777. b
ovtPr ( LDF DF)

v -V , 7b

g” |N| % D, |ype Vi TV ) D)

LDF LDF . . .
where agD and aVD are obtained from the derivatives of

(4) with regpect to the coefficient parameters D, and D,:

o LDF T

s =2(AT(p+p) AT, (70)
o LDF T

(;D = 2<A_T(q+ g)) AL 7d)

The gradients of the loss function £ with respect to the bias
parameters v, p, and g are represented by g”, g”, and g¢,
respectively:

8VLDF

2
v _ LDF _ DF) 8a
8 ‘N| -1 m%/:\/l oy vLDF <Vm Vi ), (82)
2 ovLPE
o = Y LPF_vPF), (b
g |N| -1 m;/\/[ ap VLDF (vrn Vi ) (8b)
9 oy LDF
0 _ LDF _ VDF) 8¢
¥R X, g e () 6
LDF 6VLDF 8V DF
where 2 6 , and are calculated by taking the

derlvatlves of (4) w1th respect to bias parameters vy, p, and g:

8VLDF
=1, (8d)
Oy
LDF
8V8p —2A°'D, AT (8e)
LDF
8V89 —2A°'D, AT (8f)

where I is the identity matrix. These sensitivities enable
gradient-based methods such as TNC for optimizing the pa-
rameters D,., D,, v, p, and g, as we will describe next.

D. Implementation of the Optimization Solution

The gradients in Section III-C enable the application of
gradient-based optimization methods such as TNC [42], [43]
to solve the parameter optimization problem (6). The choice
of TNC as opposed to other gradient-based optimization
methods such as Broyden-Fletcher-Goldfarb-Shanno (BFGS)
and limited-memory BFGS [42], [43] is based on the TNC
method’s superior scalability in our empirical testing com-
pare to these alternatives. TNC iteratively approximates the
Hessian matrix’s inverse, efficiently managing memory and
computation even in high-dimensional spaces. TNC operates
by approximating the solution of Newton’s equations for a
given function’s local minimum, truncating the process early to
save computational resources while still moving significantly
towards the minimum. This method is particularly suited for
problems where the evaluation of the full Hessian matrix is
impractical due to computational constraints. We use SciPy’s
scipy.optimize.minimize TNC implementation. Our
termination criteria combine gradient norm thresholds and
iteration limits.

IV. NUMERICAL ANALYSIS

This section empirically benchmarks the proposed algorithm
“optimized LinDistFlow” (OLDF) against several other related
power flow linearizations. Specifically, in addition to the non-
linear DistFlow model (1) that provides the ground truth via
an AC power flow solution, we also benchmark our optimized
LinDistFlow against the traditional LinDistFlow approxima-
tion (LDF) [14]-[16], the parameterized linear power flow
(PLPF) approximation from [22], the Lossy DistFlow (LoDF)
approximation from [21], and the decoupled linear power
flow (DLPF) approximation from [20]. We use various test
systems and loading scenarios to replicate the methodologies
adopted in the referenced literature. The test cases include
the IEEE 33-bus, IEEE 69-bus, and modified IEEE
123-bus [44] systems as well as the 22-bus, 85-bus,
and 141-bus distribution test cases from MATPOWER [45].

A. Algorithm Training

We used 20 power injection scenarios during our al-
gorithm’s training phase. These scenarios were derived by
scaling the nominal power injections by multipliers at each
bus that follow normal distributions with a mean of one
and a standard deviation of 35%. The DistFlow problem
solutions were calculated using the PowerModels. j1 soft-
ware [46] on a computing node within the Partnership for
an Advanced Computing Environment (PACE) at Georgia
Tech with a 24-core CPU and 32 GB of RAM. The train-
ing algorithm is implemented in Python 3 in a Jupyter
Notebook environment using the TNC method from the
scipy.optimize.minimize library with (5) as the ob-
jective function, g = [gDTT,gDmT,gp—'—,gg—r,g"f—r]T as the
Jacobian, 1 x 10~ per unit as the convergence tolerance, and
100 as the iteration limit.

B. Performance Metrics

The linear power flow approximations’ accuracy was quan-
tified by comparing their voltage magnitude predictions (i.e.,
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Fig. 4. (a) Boxplots showing the distributions of the D, parameter values for multiple test cases. Each test case is represented by two boxplots indicating

the cold-start and optimal D, parameter values. (b) Scatter plots comparing the coefficient values

vlmedel] " where [model] is OLDF, PLPF, LoDF, LDF, or DLPF
for the various power flow approximations) against the true
values from the nonlinear DistFlow solutions returned by
PowerModels. jl (i.e., vPF). The discrepancies were mea-
sured using maximum and mean error metrics in the per unit
(p-u.) system, as defined by the following equations:

El[rr;:l())‘del] — Hv[model] _ VDF”00 9)
1

[model] _ [model] _  DF 10

Cavg |M‘(|N|*1)Hv v ||1 (10)

where |M]| denotes the number of testing samples, |A| — 1
represents the number of non-root nodes in the distribution
systems, || - ||o 18 the Loo-norm, and | - ||; is the L;-norm.

The results presented across Fig. 6 and Tables I, II, and
III demonstrate the efficacy of our parameter optimization
algorithm in enhancing the LinDistFlow approximation’s accu-
racy under various load scenarios. This section next provides
detailed examinations of these outcomes.

C. Parameter Optimization Analysis

We next present the results of the parameter optimiza-
tion across various test cases by plotting the parameter val-
ues from the traditional LinDistFlow approximation and the
LinDistFlow with optimized parameter values.

Figs. 3 and 4 utilize box plots to illustrate the distributions
of D, and D, parameter values, respectively, for the tradi-
tional LinDistFlow and our optimized parameters. Each box
plot captures the interquartile range (IQR) with the middle
50% of the data shown with a median line. The whiskers
extend to 1.5 times the IQR, with outliers represented as
individual points. The horizontal lines at the whiskers’ ends
indicate the 90" percentile of the data. For each test system,
the box plot figures display two distributions: the LinDistFlow
(DEPE or DLPF) and the results from our optimization
algorithm (D% and D9?). These boxplots reveal that the
distributions of the optimized parameter values align closely

t .
DLPF and DZP* for various test cases.

with those from existing heuristics for selecting D,. and D,.
This indicates that our algorithm yields parameter values
in a reasonable range with values that are consistent with
conventional well-established heuristics.

In addition, scatter plots accompanying these box plots
compare LinDistFlow (DLPF, DgDF ) and optimized (D%,
D2P') parameter values. The red dashed line at 45° in each
subplot signifies a one-to-one correlation in the parameter
values. These plots show that the optimized parameters are
broadly similar to those from existing heuristics, suggesting
an alignment with longstanding power engineering intuition
that the line resistances and reactances are key parameters
in dictating power flows. Despite the overall consistency
with traditional LinDistFlow parameter choices, our numerical
results show that the optimized parameters result in significant
accuracy improvements.

Fig. 5 showcases the distribution of bias parameters via
box plots across several test cases. Illustrated in Fig. Sa,
the optimal values of p°P* and @°P' are notably smaller in
magnitude when compared to those of v°Pt. Consequently,
Fig. 5b presents the p°P! and g°P! parameters separately to
highlight their distinct distributions. This disparity suggests the
feasibility of simplifying the model by focusing on optimizing
only three parameters: D,., D,, and =, for the LinDistFlow
approximation enhancement. Nonetheless, our experimental
results indicate that while this simplification yields comparable
outcomes for base and random load conditions, it falls short
under high-load scenarios. This underscores the importance of
including p and g to better address high-load conditions.

D. Algorithm Testing

We next characterize the optimized parameter values’ per-
formance relative to alternative LinDistFlow formulations un-
der three different types of load scenarios: base load, high
load, and random load.
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TABLE I
MODEL EVALUATION - BASE LOAD

e I A R A s i I S G LA G

22-bus 0.00023  0.00014  0.00236  0.00040 0.00001 | 0.00030 0.00025 0.00314 0.00066 0.00001

33-bus 0.00198  0.00080  0.00288 0.00368  0.00015 | 0.00284 0.00125 0.00402 0.00638 0.00025

69-bus 0.00119  0.00075  0.00112 0.00186  0.00023 | 0.00388 0.00290  0.00327 0.00766  0.00094

85-bus 0.00531 0.00180  0.00206 0.00942  0.00056 | 0.00663 0.00221  0.00261 0.01377  0.00075

123-bus 0.00218  0.00160  0.00494  0.00348  0.00018 | 0.00255 0.00186 0.00579 0.00460 0.00034

141-bus 0.00152  0.00071  0.00326  0.00280  0.00003 | 0.00207  0.00099  0.00409 0.00453  0.00004

The best performing method (smallest loss function) is bolded for each test case. All values are in per unit.

1) Base Load Evaluation: We first assess the LinDistFlow
approximation accuracy when using the optimized parameter
values on the base loading scenarios in the test cases. Table I
shows the OLDF performance metrics, notably the maximum
and average voltage magnitude estimation errors (emayx and
€avg)> compared to the alternative models PLPF, LoDF, LDF,
and DLPF. As shown in this table, the OLDF model consis-
tently outperforms its counterparts for all the test cases.

Detailing two examples, Fig. 6 shows the voltage profiles
for the 85-bus and 123-bus test cases with the base case
loading. While the voltages from the traditional LinDistFlow
overestimate the true values, the optimized parameters result
in a close alignment with the true DistFlow solution.

2) High Load Evaluation: Following the methodology de-
scribed in [22], we generated high-load scenarios by scaling
the base loads with a factor that ranges from [—2, —1] U [1, 2]
at a granularity of ﬁ, yielding 30 distinct test scenarios.
Table II presents a comparative performance analysis of vari-
ous algorithms under these loading conditions. Our proposed
OLDF algorithm consistently surpasses the others in reducing

the average voltage estimation error (€4,4) across nearly all

test scenarios with the exception of the 22-bus case. For
this case, our OLDF results were better than all, but the
PLPF approximation where the average error was still quite
close (0.00028 for PLPF versus 0.00020 per unit for OLDF).
Regarding the maximum errors in the high-load scenarios, no
individual approximation consistently dominated the others
across all test cases. However, we note that summing the
maximum errors across all test cases reveals that the OLDF
parameters lead to the best performance in aggregate for this
metric. These results show that OLDF parameters trained with
scenarios around base-load conditions nevertheless perform
well for high-load conditions. Furthermore, an advantage that
the OLDF has as an adaptive power flow approximation is the
ability to tailor the parameters to perform even better for these
conditions by including more training scenarios associated
with high loading.

3) Random Load Evaluation: The OLDF approximation’s
accuracy is further analyzed for random loading conditions
using 10, 000 scenarios generated from a uniform distribution
within the range (0,1.5 - Sif), where s signifies the base
load. Similar to the base load and high load conditions, the



TABLE II
MODEL EVALUATION - HIGH LOAD

e A A A A 1 I - G 7 S+ A
22-bus 0.00050  0.00020 0.00376  0.00091  0.00028 0.00132  0.00080 0.00733 0.00280  0.00097
33-bus 0.00418  0.00239 0.00556  0.00795  0.00224 | 0.01573 0.01018 0.01713 0.03133  0.01254
69-bus 0.00254  0.00199 0.00278  0.00403  0.00129 | 0.02253 0.01975 0.01926 0.03929 0.01572
85-bus 0.01156  0.00817 0.01037  0.02055 0.00719 | 0.04700 0.03471 0.02487  0.08027  0.03373
123-bus 0.00464  0.00301 0.00900  0.00555  0.00258 | 0.01294  0.00800 0.02017 0.02173  0.00766
141-bus 0.00323  0.00234 0.00601  0.00608  0.00182 | 0.01070 0.00648 0.01501 0.02134  0.00802

The best performing method (smallest loss function) is bolded for each test case. All values are in per unit.

performance metrics for the random load conditions detailed
in Table III also show the OLDF approximation’s dominance,
with this approximation having the smallest maximum and
average voltage magnitude estimation errors (Emax and €qy4).
Across all test cases, the OLDF accuracy improvement over
traditional LDF ranges from 40% to 91.67% for average error
(€avg) and from 53.67% to 87.78% for maximum error (&,,4.)-
Compared to the best of PLPF and LoDF, OLDF’s accuracy
improvement ranges from 10% to 80% for average error and
from 5.56% to 80.70% for maximum error.

E. Computational Efficiency

As shown in Fig. 2 and discussed in Section III, our
algorithm computes LinDistFlow parameters during an offline
phase where ample computing time is available. These param-
eters are then used in online applications where computing
time may be limited. Thus, the training process for our pro-
posed algorithm requires computational tractability consistent
with an offline context. As shown by the training times in
Table IV that range from 0.645 seconds for the 22-bus case
to 2.694 seconds for the 141-bus case, leveraging mature op-
timization methods like TNC enables acceptable scalability for
the training phase. Moreover, given the algorithm’s similarity
to training machine learning models, we anticipate that future
implementations of our method will be able to exploit the rapid
developments in both hardware and software acceleration for
machine learning.

The computation times for online uses of the optimized
LinDistFlow parameters depend on the particular application
for which they are employed. However, since the only changes
are to the parameter values and not the mathematical form of
the LinDistFlow expressions, online computation times with
our optimized parameters should be comparable to existing
LinDistFlow approximations. To illustrate this, at 0.0004 to
0.0014 seconds, the average calculation times for the 10,000
random load conditions for the experiment in Section IV-D3
were within 2% for the LinDistFlow with traditional parame-
ters versus our optimized parameters.

FE. Topology Analysis

Engineers may seek to optimize the topology of distribution
systems for a variety of purposes including voltage manage-
ment, loss minimization, and outage restoration [47]. Network
reconfiguration problems inherently involve discrete decisions
regarding the status of various switches. Linear power flow
approximations like LinDistFlow are essential for obtaining
tractable mixed-integer linear programming formulations for

Switchable lines

s Tie lines

Fig. 7. The IEEE 33-Dbus distribution network with three switchable lines
and five tie-lines.

these and other problems. Furthermore, the adaptability of
LinDistFlow parameters to topology changes is crucial. This
ensures their effectiveness across various configurations with-
out the need for retraining. Accordingly, this section next
explores the performance of our proposed OLDF parameters
with varying network topologies.

Addressing topology changes with the LinDistFlow ap-
proximation can be approached in various ways. For ex-
ample, the traditional LinDistFlow approximation allows for
straightforward topology adjustments by updating the D, and
D, matrices with new values corresponding to the altered
topology to calculate voltages. Similarly, in our optimization-
based algorithm, adjustments can be made by excluding
optimized parameters for removed lines and incorporating
original resistance and reactance values for new lines in D¢
and D2P!, without altering the bias parameters (y°Ff, p°Pt,
and °P'). Successfully maintaining performance with this
strategy indicates that our algorithm adapts well to different
network topologies, avoiding overfitting to a specific config-
uration. Alternatively, optimizing parameters specifically for
each topology through dedicated optimization could enhance
accuracy but at the cost of increased computational time and
storage for the additional parameters needed. Nevertheless,
such calculations could be efficiently executed in parallel for
a specified set of topologies, making this process suitable for
high-performance computing environments, as each topology’s
optimization process operates independently from others.

To explore these different approaches, we next describe
a small-scale experiment. Fig. 7 depicts the IEEE 33-bus
distribution system, as described in [16], which has 33 nodes
and 37 lines. As shown in Fig. 7, we consider a version of this
system with eight switchable lines (i.e., lines 4, 10, and 26 as
normally closed switches, NCS, and lines 33 to 37 as tie lines
or normally open switches, NOS). With these switchable lines,



TABLE III
MODEL EVALUATION - RANDOM LOAD
Testewe | bl eLh" ekt eOLPT | chBT  eLET ehPr  edkPT
22-bus 0.00024  0.00010  0.00220 0.00002 | 0.00090 0.00057 0.00477 0.00011
33-bus 0.00114  0.00051  0.00262 0.00019 | 0.00443 0.00312 0.00662 0.00124
69-bus 0.00077  0.00051  0.00101 0.00017 | 0.00918 0.00816 0.00476 0.00347
85-bus 0.00278  0.00056  0.00261 0.00031 | 0.00735 0.00321 0.00347 0.00257
123-bus 0.00120  0.00080  0.00392 0.00072 | 0.00300 0.00227 0.00624 0.00139
141-bus 0.00084  0.00035 0.00273 0.00013 | 0.00241 0.00108 0.00516 0.00102
The best performing method (smallest loss function) is bolded for each test case. All values are in per unit.
TABLE IV 1 T EEESE E E e EE BB
COMPUTATION TIMES IN SECONDS 2
3
4
Test case  22-bus  33-bus  69-bus  85-bus  123-bus  141-bus 5 ] [ ] B
6
tirain 0.6451 0.7852 8.1701 27182  2.3093 2.6942 ;
thase 0.0071  0.0092 0.0161 0.0174 0.0112 0.0114 9 [ ] .. || | |
10000 0.0004  0.0005 0.0008 0.0009 0.0006  0.0014 b -
124
= 134
8 14
TABLE V € 151
ToPOLOGY CHANGES: OPENED AND CLOSED LINES g i?
181
Opened  Closed | Opened Closed | Opened Closed ?;gl [ || H
- - 4,10) (34,35 | (10, 26) (35, 36) g 214 | m
@) (33) 4,100 (34,37) | (10, 26) (35, 37) Q3]
“4) (35) 4, 10) (35, 36) | (10, 26) (36, 37) 24 4 | | .. ||
4) 37 4, 10) (35, 37) | (4,10,26) (33, 34, 35) ;Z:
(10) (34) 4 10)  (36.37) | (4 10.26) (33,34 36) 267 .
(10) 35) (4, 26) (33,36) | (4,10,26) (33, 35, 36) 28
(10) (36) (4,26)  (33,37) | (4,10,26) (33,35, 37) 21 | W ||
(26) (36) (4, 26) (35, 36) | (4,10,26) (33, 36, 37) 314
(26) 37 (4, 26) (35, 37) | (4,10,26) (34, 35, 36) 321 | ..
(4, 10) (33, 34) | (4, 26) (36, 37) | 4, 10,26) (34, 35, 37) gij
4, 10) (33, 35) | (10,26) (34,35) | (4,10,26) (34, 36, 37) 35 4 | | ||
4, 10) (33,36) | (10,26) (34, 36)

These are all the valid switching combinations that lead to connected radial
configurations for the 33-bus test case shown in Fig. 7. Note that the table indicates
the changes from the configuration shown in Fig. 7.

we can create 35 distinct and valid (i.e., radial and connected)
topologies out of 56 possible topologies. Table V lists these
valid topologies for the IEEE 33-bus network.

We next evaluate the adaptability of optimized parameters,
i.e., assess how well parameters optimized for one topology
perform in others. To accomplish this, we performed the offline
training phase of our proposed algorithm using the same setup
as before across the 35 network topologies to obtain a dataset
with 35 sets of optimized coefficients and bias parameters. We
tested the performance of these optimized parameters using the
same 10,000 test samples as before on each topology.

Mlustrating this cross-topology assessment, Fig. 8 shows
the performance of optimized parameters considering all 35
topologies. Specifically, the heatmap at the top of this figure
shows the average error metric, €44, of the optimized param-
eters for a given topology (rows) when applied to different
topologies (columns). The horizontal vector plot at the bot-
tom of the figure shows the performance of the traditional
LinDistFlow approximation on the same 35 topologies. The
heatmap employs a logarithmic scale for color representation
to enable comparisons across a broad range of error magni-
tudes. The results underscore the variability in the algorithm’s
adaptability, with darker shades indicating lower errors (better
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Fig. 8. Heatmap visualization of average error metric (€qv4) across 35 topolo-
gies for the IEEE 33-bus test case, with a log-scaled color representation
to highlight performance variations. The accompanying vector plot below
the heatmap quantitatively assesses the LinDistFlow approximation’s baseline
performance across the same topologies, facilitating a direct comparison of
adaptability and optimization effectiveness.

performance) and lighter shades denoting higher errors. The
vector plot beneath the heatmap contrasts the overall baseline
performance of the traditional LinDistFlow approximation.
The matrix shown in Fig. 9 further illustrates the perfor-
mance of our optimized parameters relative to the traditional
LinDistFlow approximation (i.e., comparing each row from
heatmap in Fig. 8 to the horizontal vector plot at the bottom of
the figure). This matrix employs a binary color coding—green
for topologies where the optimized parameters outperform the
traditional LinDistFlow approximation and white where they
do not. For example, row 1 in this matrix shows that training
the parameters using the base topology results in the optimized
parameters outperforming the traditional LinDistFlow approx-
imation on topologies 1, 5, 6, 9, 19, 21, 24, 26, 29, and 31.
Furthermore, if we train the parameters using topology 2, it
will outperform the traditional LinDistFlow approximation on



Topology number

Fig. 9. Binary comparison matrix between the traditional LinDistFlow
approximation’s performance and optimized parameters from our proposed
algorithm across 35 topologies in the IEEE 33-bus test case. Each column
represents a topology, with green indicating that the optimized parameters for
the topologay associated with the corresponding row outperform the tradi-
tional LinDistFLow approximation and white indicating that the traditional
LinDistFlow approximation performance is better.

topologies {[2,4] U8U[10,15]U[17,18] U20, U[22,23]U25U
28 U 30U 33U 35}

These visualizations collectively shed light on the nuanced
performance of the optimized parameters vis-a-vis the tradi-
tional LinDistFlow approximation across diverse topologies.
Our future work aims to characterize clusters of topologies for
which jointly optimized parameter values can provide accurate
LinDistFlow approximations.

G. Application to Hosting Capacity

As an illustrative example application, this section demon-
strates the use of the proposed optimized LinDistFlow model
to determine the hosting capacity of inverter-based generation
units. Following [48], the hosting capacity problem is:

_— 2 2

min > ((p" —p)” gq") (11a)
Prsdn neN’ n 8n

st. 0<py <Pn, gu| < /52— P2 (11b)

vo=1, vy <v,<Tp (11c)

VP2+Q% <S8, (11d)

\/ P2+ Q%< Sr (11e)

Pr= > Po, Qr= Y, Qo (1D

n:(0,n)e€ n:(0,n)e€
LDF (3) or OLDF (4) (11g)

where N denotes the set of buses with inverter-based gen-
erators, p, and g, are the active and reactive power gen-
eration, p,, S, are their maximum capacities, and £ is a

weighting factor controlling the tradeoff between active power
and reactive power utilization. The constraints ensure adher-
ence to power generation limits (11b) and voltage regulation
requirements (11c) along with line (11d) and transformer
capacities (11e)—(11f).

An evaluation using the TEEE 33-bus test system illus-
trates the OLDF model’s effectiveness. We set 5,, = 0.6 MVA
with a 0.98 power factor, £ = 0.02, and voltage limits between
1.05 and 0.95 per unit, with a substation capacity of 10 MVA.

Upon solving (11) with both LDF and OLDF models, we
obtain the optimal active and reactive power settings for the
inverter-based generation units. By assessing these optimal
settings using the original nonlinear DistFlow model, we
compare the performance of the OLDF and LDF approxima-
tions. Fig. 10 shows that while the traditional LinDistFlow
approximation leads to voltage violations at certain buses
within the hosting capacity problem (11), the application of
the proposed OLDF model avoids such violations.
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Fig. 10. Voltage profile of the ITEEE 33-bus test case after feeding the
active/reactive power injections obtained from solving (11) with LDF (blue
curve) and OLDF (orange curve) into the DistFlow equations.

V. CONCLUSION

The LinDistFlow approximation is commonly used to im-
prove the computational tractability of optimization problems
for distribution systems. This paper presents a new algorithm
that significantly improves the accuracy of the LinDistFlow
approximation. Inspired by methods for training machine
learning models, the offline phase of the proposed algorithm
optimizes the LinDistFlow approximation’s coefficient and
bias parameters using analytically derived sensitivities within
the TNC optimization method. These optimized parameters
can then provide increased accuracy for many applications.
The results from numerical testing empirically confirm the
algorithm’s effectiveness, demonstrating substantially better
alignment with solutions to the nonlinear DistFlow equations
compared to both the traditional LinDistFlow approximation
as well as several recently proposed alternatives across a
range of test cases and operating conditions. Application to
a hosting capacity problem also illustrates the advantages of
the proposed optimized parameters.

Since our optimized formulation has the same linear mathe-
matical form as the traditional LinDistFlow approximation and
performs well for varying topologies, the accuracy advantages
of the proposed approach can be directly exploited in a wide
range of other applications such as those in [14]-[16], [18],
[19], [23]-[27]. Our future work aims to explore such applica-
tions. To enable broader applicability, our future work will also
build on publications such as [17], [24] to adapt our algorithm



to handle unbalanced three-phase distribution networks. While
this will increase problem size and complexity, we do not
anticipate any major conceptual challenges in performing this
extension to unbalanced three-phase networks.
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