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Optimizing Parameters of the LinDistFlow Power
Flow Approximation for Distribution Systems
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Abstract—The DistFlow model accurately represents power
flows in distribution systems, but the model’s nonlinearities
result in computational challenges for many applications. Ac-
cordingly, a linear approximation known as LinDistFlow (and
its three-phase extension LinDist3Flow) is commonly employed.
This paper introduces a parameter optimization algorithm for
enhancing the accuracy of this approximation for both balanced
single-phase equivalent and unbalanced three-phase distribution
network models, with the goal of aligning the outputs more
closely with those from the nonlinear DistFlow model. Using
sensitivity information, our algorithm optimizes the LinDistFlow
approximation’s coefficient and bias parameters to minimize
discrepancies in predictions of voltage magnitudes relative to
the nonlinear DistFlow model. The parameter optimization algo-
rithm employs the Truncated Newton Conjugate-Gradient (TNC)
method to fine-tune coefficients and bias parameters during an
offline training phase to improve the LinDistFlow approxima-
tion’s accuracy. Numerical results underscore the algorithm’s
efficacy, showcasing accuracy improvements in L1-norm and L∞-
norm losses of up to 92% and 88%, respectively, relative to the
traditional LinDistFlow model. We also assess how the optimized
parameters perform under changes in the network topology and
demonstrate the optimized LinDistFlow approximation’s efficacy
in a hosting capacity optimization problem.

Index Terms—DistFlow, LinDistFlow, machine learning, pa-
rameter optimization, distribution systems, hosting capacity.

I. INTRODUCTION

Power flow models relating power injections, line flows,
and voltages are central to power system design and oper-
ation [1]. The AC power flow equations accurately model
these relationships. Incorporating the AC power flow equations
into optimization problems introduces significant computa-
tional challenges due to these equations’ nonlinearity, even
for the radial networks of typical distribution systems [2].
These challenges are particularly relevant to problems that
are run online to inform real-time decisions [3], [4], consider
uncertainties [5], and model discrete decisions [6]–[9]. To
address these challenges, engineers frequently use power flow
approximations that trade accuracy for tractability [10].

Distribution systems are often modeled using an AC power
flow formulation known as “DistFlow” [11]–[13]. A lineariza-
tion of the DistFlow model known as “LinDistFlow” [11]–
[13], or one of its variants [14]–[19], is commonly employed to
make distribution system optimization problems tractable. An
extension known as LinDist3Flow is often used for unbalanced
three-phase distribution network models [14]. The traditional
LinDistFlow approximation linearizes the DistFlow equations
by assuming that the active and reactive line losses are much
smaller than the active and reactive line flows. LinDistFlow
has been used to site and size capacitors [11], [12], optimize
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the network topology [13], compute inverter setpoints and
perform Volt/VAr control [15], [16], [20], [21], formulate
stochastic problems [22], ensure fairness in solar photovoltaic
curtailments [23], and calculate electricity prices [24], among
many other applications. Despite their extensive applications,
the accuracy of such models can vary, particularly outside
near-nominal operating regions, as indicated in [16], [25].

Building on ideas from recently developed “adaptive”
power flow approximations [26]–[32], this paper proposes
an algorithm for optimizing the LinDistFlow parameters to
improve its accuracy. Adaptive power flow approximations
are linearizations that are tailored to a specific system and
operating range of interest. This contrasts with traditional
power flow approximations that are often derived using general
assumptions about broad classes of systems or are based on
a particular nominal operating point. Adaptive power flow
approximations invest computing time up front to calculate
linearization coefficients in order to achieve increased accuracy
when the approximations are deployed in an optimization
problem. Thus, adaptive approximations are well suited for
settings with both offline and online aspects (e.g., using a day-
ahead forecast to compute linearization coefficients that are
used for online computations in real-time applications [3], [4])
as well as settings where a nonlinear AC power flow model
would lead to an intractable formulation [5]–[9].

Our prior work in [33] proposes an adaptive DC power
flow approximation that optimizes parameters for a partic-
ular system over a specified operating range of interest.
Other adaptive power flow approximations minimize worst-
case error [26] and expected error [27] or leverage sample-
based regression approaches [28]–[30] including techniques
for constructing overestimating and underestimating approxi-
mations [31]; see [32] for a recent survey.

Contrasting with prior adaptive power flow approxima-
tions [26]–[32], this paper develops a parameter optimization
algorithm that maintains the structure of the LinDistFlow
approximation (and the unbalanced three-phase extension
LinDist3Flow) as dictated by the network topology. Thus,
the resulting parameter-optimized LinDistFlow approximation
has the key advantages of being directly deployable in the
many existing distribution system applications that rely on
LinDistFlow (e.g., [11]–[13], [15], [16], [20]–[24]) and en-
abling straightforward modeling of topology changes.

While not using traditional machine learning models like
neural networks, our parameter optimization algorithm draws
inspiration from methods for training machine learning mod-
els. We define a loss function that compares the AC power flow
solutions to the approximation’s outputs over a set of sampled
power injections. With analytically calculated parameter sensi-
tivities, an offline training phase computes the parameter val-
ues that minimize this loss function using a Truncated Newton
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Conjugate-Gradient (TNC) method. Using linear programming
or mixed-integer linear programming solvers, the optimized
parameters are then used in online calculations for real-time
settings or in problems for which a nonlinear AC power flow
model would lead to intractability. The proposed approach is
conceptually similar to our previous work for optimizing the
parameters of the DC power flow approximation [33], but is
applicable to unbalanced three-phase distribution systems.

Numerical comparisons demonstrate substantial accuracy
advantages of our proposed algorithm compared to the tra-
ditional LinDistFlow/LinDist3Flow approximation as well as
several recent LinDistFlow variants that also tune parameter
values [17]–[19]. We also study how the approximation ac-
curacy is affected by changes in network topology. Finally, to
illustrate the benefits of our algorithm, we apply the optimized
LinDistFlow parameters in a hosting capacity analysis.

To summarize, the key contributions of this paper are:
• Introducing an algorithm that optimizes the LinDistFlow

and LinDist3Flow approximations’ coefficients and bias
parameters to improve their accuracy.

• Training the model across diverse operating conditions
while employing the TNC optimization method to extend
the algorithm’s tractability.

• Conducting extensive evaluations of the proposed param-
eter optimization algorithm in various loading conditions.
These tests demonstrate improved performance over ex-
isting linear power flow models.

• Demonstrating the algorithm’s capability to compute pa-
rameter values that provide improved accuracy across
multiple network topologies.

• Illustrating the efficacy of the optimized LinDistFlow
approximation in a hosting capacity problem.

The remainder of this paper is organized as follows: Sec-
tion II reviews the DistFlow model and LinDistFlow approx-
imation. Section III introduces our proposed algorithm. Sec-
tion IV extends the algorithm to three-phase network models.
Section V presents numerical experiments that evaluate the
performance of our algorithm. Section VI concludes the paper.

II. POWER FLOW MODELING

This section introduces the DistFlow formulation and its
linear approximation, LinDistFlow. We focus on a balanced
single-phase equivalent model to present the key concepts and
then extend to unbalanced three-phase networks in Section IV.

We first establish notation. Let operators ( · )−1, | · |, ( · )⊤,
and ( · )−⊤ denote the square matrix inverse, the absolute
value of a number, the transpose of a matrix/vector, and
the transpose of a square matrix inverse, respectively. Let
N := {0, 1, . . . , n} and E := {1, . . . , n} denote the sets of
buses and lines, respectively, in a distribution network, where
|E| = |N| − 1 for radial networks. Each bus n ∈ N has a
voltage Vn. Let N′ = N \ {0} represent the set of all buses
excluding the substation (bus 0). Each bus n ∈ N′ has a
parent (upstream) bus denoted as πn. Each line (πn, n) ∈ E
(connection between bus n and its parent πn) has impedance
zn = rn + jxn with resistance rn and reactance xn, where
j :=

√
−1. (Note that lines are identified by their child buses

to simplify notation; see Fig. 1.) Let In and Sn = Pn + jQn

denote the current and complex power flows, respectively,
on line (πn, n). The net power injection at bus n is sn =

Fig. 1. A 2-bus system with line (πn, n) feeding bus n from its parent πn.

pn + jqn. Additional variables include squared voltage and
current magnitudes vn = |Vn|2 and ℓn = |In|2. Dr = diag(r)
and Dx = diag(x) are diagonal matrices of resistances
and reactances, and p = [p1, . . . , pn]

⊤, q = [q1, . . . , qn]
⊤,

P = [P1, . . . , Pn]
⊤, and Q = [Q1, . . . , Qn]

⊤ are vectors of
active/reactive power injections and flows. Define Â = [a0 A]
as the |E| × |N| branch-bus incidence matrix describing the
connections between the system’s buses and branches, where
a0 is the length-|E| vector associated with the substation bus
and A is the reduced branch-bus matrix for all buses besides
the substation bus. Let v := [|V1|2, . . . , |Vn|2]⊤ represent
squared voltage magnitudes and v0 = |V0|2 correspond to
the substation bus. Bias parameters γ, ρ, and ϱ formulated
as vectors of length |N|− 1 are optimized using our proposed
algorithm to enhance voltage approximation accuracy.

A. DistFlow Model for Single-Phase Equivalent Networks

The DistFlow model [11]–[13] accurately represents volt-
age, current, and power flow relationships in radial distribution
networks. The DistFlow model is:

vn = |Vn|2, ℓn = |In|2, ∀n ∈ N, (1a)∑
k:n→k

Pk = pn + Pn − rnℓn, ∀n ∈ N, (1b)∑
k:n→k

Qk = qn +Qn − xnℓn, ∀n ∈ N, (1c)

vn = vπn
− 2(rnPn + xnQn) + (r2n + x2

n)ℓn, ∀n ∈ N, (1d)

vπn
ℓn = P 2

n +Q2
n, ∀n ∈ N. (1e)

Equation (1a) defines variables for the squared voltage mag-
nitudes vn and squared current flow magnitudes ℓn which are
used in place of the voltage phasors Vn and current phasors
In. Equations (1b) and (1c) correspond to active and reactive
power balance at each bus. Equation (1d) models the change
in squared voltage magnitudes across lines. Equation (1e) uses
the definition of apparent power to relate the squared voltages
vn, squared currents ℓn, and squared apparent power P 2

n+Q2
n.

The DistFlow model is nonlinear due to (1e).
B. Traditional LinDistFlow Approximation

The LinDistFlow approximation linearizes the DistFlow
equations by neglecting the line loss terms rnℓn in (1b), xnℓn
in (1c), and (r2n +x2

n)ℓn in (1d) [11]–[13]. Without these, the
nonlinear equation (1e) can be dropped, with the remaining
equations linearly relating the squared voltage magnitudes, the
power injections, and the line flows:∑

k:n→k

Pk ≈ pn + Pn, ∀n ∈ N, (2a)∑
k:n→k

Qk ≈ qn +Qn, ∀n ∈ N, (2b)

vn ≈ vπn
− 2(rnPn + xnQn), ∀n ∈ N. (2c)
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A matrix form of the LinDistFlow approximation is:

Dr = diag(r), Dx = diag(x), (3a)

p = A⊤P, (3b)

q = A⊤Q, (3c)
Av + v0a0 = 2DrP+ 2DxQ, (3d)

v = v01+ 2A−1DrA
−⊤p+ 2A−1DxA

−⊤q. (3e)

For radial networks where all lines have positive resistance
(rn ≥ 0) and reactance (xn ≥ 0), the LinDistFlow approxima-
tion overestimates the voltage magnitudes and underestimates
the complex power flows required to supply the loads [34].
The following section presents an algorithm to reduce this ap-
proximation error by optimizing the LinDistFlow parameters.

III. OPTIMIZED LINDISTFLOW APPROXIMATION (OLDF)

We first generalize the LinDistFlow approximation by in-
troducing bias parameters γ, ρ, and ϱ that offset the squared
voltage magnitudes and active and reactive power injections:

v = v01+ 2A−1DrA
−⊤(p+ ρ)+

2A−1DxA
−⊤(q+ ϱ) + γ. (4)

Appropriate selection of parameter values for Dr, Dx, γ, ρ,
and ϱ can significantly improve the LinDistFlow approxima-
tion’s accuracy. We next introduce a machine learning-inspired
algorithm which optimizes these parameters to reduce the
discrepancy between the voltages output by the LinDistFlow
approximation (4) and the DistFlow model (1).

As shown in Fig. 2, we propose a two-phase algorithm for
parameter optimization with an offline training phase followed
by an online application phase. The offline phase, conducted
once, optimizes the values for the parameters Dr, Dx, γ, ρ,
and ϱ. This initial computation seeks to align the LinDistFlow
approximation with the DistFlow model’s behavior across
varied operational scenarios. The optimized parameters are
then used in the online phase to improve accuracy in vari-
ous applications while enabling tractable solution with linear
programming and mixed-integer linear programming solvers.

To optimize the parameters Dr, Dx, γ, ρ, and ϱ, Sec-
tion III-A first formulates a loss function that gauges the
approximation’s accuracy by comparing its voltage predictions
to those from the DistFlow model across sampled operational
conditions. Section III-B then analytically derives the loss
function’s sensitivities with respect to the coefficient and
bias parameters. Informed by these sensitivities, Section III-C
applies the TNC optimization method to minimize the loss
function. The resulting optimized parameters are used online
for various applications, as benchmarked in Section V.

A. Formulation of the Loss Function

We define a loss function, L, as the mean square error be-
tween the voltage solutions of the DistFlow model (vDF

m ) and

Fig. 2. Flowchart depicting the proposed parameter optimization algorithm.

our optimized LinDistFlow approximation (vOLDF
m ) across a

given set of load scenarios M = {1, 2, . . . , S}:

L(Dr,Dx,γ,ρ,ϱ) =
1

|M||N′|
∑
m∈M

||vOLDF
m − vDF

m ||22,

=
1

|M||N′|
∑
m∈M

||v01+ 2A−1DrA
−⊤(p+ ρ)+

2A−1DxA
−⊤(q+ ϱ) + γ − vDF

m ||22, (5)

where normalization by 1
|M||N′| adjusts for the system size

and number of samples. Using mean square error ensures that
larger deviations are more heavily penalized, aligning with
typical operational priorities where minimizing the most sig-
nificant errors is often more important than reducing numerous
smaller inaccuracies.

The optimal LinDistFlow parameters minimize L:

min
Dr,Dx,γ,ρ,ϱ

L(Dr,Dx,γ,ρ,ϱ). (6)

B. Parameter Sensitivity Analysis

We use the TNC optimization method to solve (6). This
method relies on the gradients of the loss function with respect
to the parameters, which we present next. We start with the
sensitivities for the parameters, represented generically by gη ,
where η can be any of the parameter sets Dr,Dx,γ,ρ, and
ϱ. These sensitivities are calculated as follows:

gη =
2

|M||N′|
∑
m∈M

∂vOLDF

∂η

∣∣∣∣
vOLDF
m

(
vOLDF
m − vDF

m

)
,

(7a)
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where η ∈ {Dr,Dx,γ,ρ,ϱ}. The partial derivatives are:

∂vOLDF

∂Dr
= 2
(
A−⊤(p+ ρ)

)⊤
A−1, (7b)

∂vOLDF

∂Dx
= 2
(
A−⊤(q+ ϱ)

)⊤
A−1, (7c)

∂vOLDF

∂γ
= I, (7d)

∂vOLDF

∂ρ
= 2A−1DrA

−⊤, (7e)

∂vOLDF

∂ϱ
= 2A−1DxA

−⊤. (7f)

Here, I is the identity matrix. These sensitivities enable
gradient-based methods such as TNC for optimizing the pa-
rameters Dr, Dx, γ, ρ, and ϱ, as we will describe next.

C. Implementation of the Optimization Solution

The gradients in Section III-B enable the application of
gradient-based optimization methods such as TNC [35], [36]
to solve the parameter optimization problem (6). The choice
of TNC as opposed to other gradient-based optimization
methods such as Broyden-Fletcher-Goldfarb-Shanno (BFGS)
and limited-memory BFGS [35], [36] is based on the TNC
method’s superior scalability in our empirical testing.

As illustrated in Algorithm 1, TNC iteratively uses Hessian-
vector products to approximate the Newton direction, ef-
fectively managing memory and computation even in high-
dimensional spaces. TNC operates by approximating the so-
lution to Newton’s equations for a function’s local mini-
mum, truncating early to conserve computational resources
while still moving significantly towards the minimum. This is
particularly advantageous for problems where evaluating the
full Hessian matrix is difficult. To compute (6) in order to
find the optimal LinDistFlow parameters, we utilize SciPy’s
scipy.optimize.minimize TNC implementation with
the sensitivities from Section III-B, using gradient norm
thresholds and iteration limits as termination criteria.

IV. THREE-PHASE LINDISTFLOW (LINDIST3FLOW)

We next discuss extensions to unbalanced three-phase distri-
bution systems [14]. The equivalent of (4) for LinDist3Flow is:

V = V01+ A−1
3 bdiag(HP )A−⊤

3 (P+ ρ3)+

A−1
3 bdiag(HQ)A−⊤

3 (Q+ ϱ3) + γ3. (8)

where V =
[
va1 vb1 vc1 · · · van vbn vcn

]⊤
is the vector

of squared of voltage magnitudes for each phase (a, b, c),
A3 is the network incidence matrix, bdiag( · ) is the block
diagonal operator, P =

[
pa1 pb1 pc1 · · · pan pbn pcn

]⊤
and Q =

[
qa1 qb1 qc1 · · · qan qbn qcn

]⊤
are the active

and reactive power injection vectors, and the H matrices for
each line (i, j) ∈ E are:

HP
ij =

 −2raaij rabij −
√
3xab

ij racij +
√
3xac

ij

rbaij +
√
3xba

ij −2rbbij rbcij −
√
3xbc

ij

rcaij −
√
3xca

ij rcbij +
√
3xcb

ij −2rccij

 (9)

Algorithm 1: Truncated Newton (TNC) Method
Input: x0 = [D⊤

r ,D⊤
x ,γ⊤,ρ⊤,ϱ⊤]⊤: Initial guess

ϵ: Tolerance for convergence
max iter: Maximum iterations
L(xk): Loss function
∇L(xk)= g = [gDr

⊤
,gDx

⊤
,gγ⊤,gρ⊤,gϱ⊤]⊤

M: Preconditioning matrix (often a diagonal matrix)
H: Hessian or its approximation function
α1: Armijo condition constant, small (e.g., 10−4)
α2: Curvature condition constant, between α1 and 1

Output: Optimized parameters x∗

1 Initialize xk ← x0
2 k ← 0
3 while k ≤ max iter and ∥∇L(xk)∥ > ϵ do
4 g← ∇L(xk) // Compute the gradient at xk

5 z←M−1g // Apply the preconditioner
6 r← −g , p← z
7 ρold ← r⊤z
8 while ∥r∥ > ϵ do
9 q← Hp // Hessian-vector product

10 α← ρold
p⊤q

11 p← z+ ηp
12 r← r− αq
13 z←M−1r
14 ρnew ← r⊤z
15 η ← ρnew

ρold
16 ρold ← ρnew

// Wolfe Line Search to determine β
17 β ← 1 // Initial step length
18 while True do
19 if L(xk + βp) ≤ L(xk) + α1βg⊤p and

∥∇L(xk + βp)⊤p∥ ≤ α2∥g⊤p∥ then
20 Break

21 β ← β/2

22 xk+1 ← xk + βp // Update the parameter vector
23 k ← k + 1

24 x∗ ← xk

HQ
ij =

 −2xaa
ij xab

ij +
√
3rabij xac

ij −
√
3racij

xba
ij −

√
3rbaij −2xbb

ij xbc
ij +

√
3rbcij

xca
ij +

√
3rcaij xcb

ij −
√
3rcbij −2xcc

ij

 (10)

Analogous to the single-phase algorithm, we train the pa-
rameters HP

ij , HQ
ij , ρ3, ϱ3, and γ3 for three-phase networks.

Parameters ρ3, ϱ3, and γ3 are the three-phase versions of ρ,
ϱ, and γ, respectively. To this end, we rewrite the loss function
(5) as:

L(HP ,HQ,γ3,ρ3,ϱ3) =
1

|M||3N′|
∑
m∈M

||VOLDF
m − VDF

m ||22,

=
1

|M||3N′|
∑
m∈M

||V01+ A−1
3 bdiag(HP )A−⊤

3 (P+ ρ3)+

A−1
3 bdiag(HQ)A−⊤

3 (Q+ ϱ3) + γ3 − VDF
m ||22. (11)

The sensitivity of the loss function (11) with respect to the
HP

ij , HQ
ij , ρ3, ϱ3, and γ3 parameters, necessary for gradient-

based optimization methods such as TNC, can be computed
similarly to the single-phase case as in (7). This yields:

gη =
2

|M||3N′|
∑
m∈M

∂VOLDF

∂η

∣∣∣∣
VOLDF

m

(
VOLDF

m − VDF
m

)
,

(12a)
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where η ∈ {bdiag(HP ), bdiag(HQ),γ3,ρ3,ϱ3}, i.e., the pa-
rameters to be optimized. The partial derivatives are:

∂VOLDF

∂bdiag(HP )
=
(
A−⊤

3 (P+ ρ3)
)⊤

⊗ A−1
3 , (12b)

∂VOLDF

∂bdiag(HQ)
=
(
A−⊤

3 (Q+ ϱ3)
)⊤

⊗ A−1
3 , (12c)

∂VOLDF

∂γ3

= I, (12d)

∂VOLDF

∂ρ3

= A−1
3 bdiag(HP )A−⊤

3 , (12e)

∂VOLDF

∂ϱ3

= A−1
3 bdiag(HQ)A−⊤

3 . (12f)

Here, ⊗ denotes the Kronecker product.

V. NUMERICAL ANALYSIS

This section empirically benchmarks the proposed algorithm
“optimized LinDistFlow” (OLDF) against several other related
power flow linearizations. Specifically, in addition to the non-
linear DistFlow model (1) that provides the ground truth via
an AC power flow solution, we also benchmark our optimized
LinDistFlow against the traditional LinDistFlow approxima-
tion (LDF) [11]–[13], the parameterized linear power flow
(PLPF) approximation from [19], the Lossy DistFlow (LoDF)
approximation from [18], and the decoupled linear power flow
(DLPF) approximation from [17]. We use various test distribu-
tion systems and loading scenarios to replicate the benchmark-
ing methodologies adopted in this literature. These include the
balanced single-phase equivalent test cases IEEE 33-bus,
IEEE 69-bus, and modified IEEE 123-bus from [37] as
well as the 22-bus, 85-bus, 141-bus, case533mt-hi,
and case-eu906 systems from MATPOWER [38]. For three-
phase distribution networks, we use the IEEE 13-bus,
IEEE 37-bus, and IEEE 123-bus test cases.

A. Algorithm Training

As in [19], we use 20 power injection scenarios during
our algorithm’s training phase. These scenarios scale the
nominal power injections at each bus by normally distributed
multipliers with mean of one and standard deviation of 35%.
For the nonlinear DistFlow solutions, we use PowerMod-
els.jl [39] and OpenDSS with the OpenDSSDirect.py package
for single- and three-phase networks, respectively, on a PACE
computing node at Georgia Tech with a 24-core CPU and
32 GB of RAM. The training algorithm is implemented in
Python 3 in a Jupyter Notebook using the TNC method from
scipy.optimize.minimize with objective function (5), Jacobian
g = [gDr

⊤
,gDx

⊤
,gγ⊤,gρ⊤,gϱ⊤]⊤, convergence tolerance

of 1× 10−6 per unit, and iteration limit of 100.1

B. Performance Metrics

We quantify approximation accuracy by comparing the
voltage magnitude outputs (denoted v[model], where [model] is

1Code is available at https://github.com/BabakTaheri1/OLDF

OLDF, PLPF, LoDF, LDF, or DLPF for the various approx-
imations) against the nonlinear DistFlow solutions (denoted
vDF ). We use max and mean error metrics in per unit (p.u.):

ε[model]
max = ∥v[model] − vDF ∥∞ (13)

ε[model]
avg =

1

|M||N′|
∥v[model] − vDF ∥1 (14)

where |M| is the number of testing samples, |N′| is the number
of non-root nodes in the distribution systems, ∥·∥∞ is the L∞-
norm, and ∥ · ∥1 is the L1-norm.

C. Parameter Optimization Analysis
We next present the results of the parameter optimiza-

tion across various test cases by plotting the parameter val-
ues from the traditional LinDistFlow approximation and the
LinDistFlow with optimized parameter values.

The box plots in Figs. 3 and 4 show the distributions of
Dr and Dx parameter values, respectively, for the traditional
LinDistFlow and our optimized parameters. Each box plot
captures the interquartile range (IQR) with a median line. The
whiskers extend to 1.5 times the IQR, with outliers represented
as individual points. The horizontal lines at the whiskers’ ends
indicate the 90th percentile. For each test case, the box plots
display two distributions: the LinDistFlow (DLDF

r or DLDF
x )

and the results from our optimization algorithm (Dopt
r and

Dopt
x ). The optimized parameter values’ distributions align

closely with those from existing heuristics for Dr and Dx.
This indicates that our algorithm yields parameter values in a
reasonable range, consistent with conventional heuristics.

Additionly, scatter plots accompanying these box plots
compare LinDistFlow (DLDF

r , DLDF
x ) and optimized (Dopt

r ,
Dopt

x ) parameter values. The red dashed line at 45◦ in each
subplot signifies a one-to-one correlation in the parameter
values. These plots also show that the optimized parameters
are broadly similar to those from existing heuristics, thus
aligning with longstanding power engineering intuition that the
line resistances and reactances are key parameters in dictating
power flows. Despite the overall consistency with traditional
LinDistFlow parameter choices, our results show that the
optimized parameters yield significant accuracy improvements.

The box plots in Fig. 5 show the distribution of the bias
parameters. Illustrated in Fig. 5a, the optimal values of ρopt

and ϱopt are notably smaller in magnitude when compared
to those of γopt. Consequently, Fig. 5b presents the ρopt

and ϱopt parameters separately to highlight their distinct
distributions. This disparity suggests simplifying the model
by focusing on optimizing only three parameters: Dr, Dx,
and γ. However, our experimental results indicate that this
simplification performs poorly for high-load scenarios. We
therefore recommend optimizing all of the parameters.

D. Algorithm Testing
We next characterize the optimized parameter values’ per-

formance relative to alternative LinDistFlow formulations un-
der three types of load scenarios: base, high, and random load.

1) Base Load Evaluation: We first assess the LinDistFlow
approximation accuracy when using the optimized parameter
values on the base loading scenarios in the test cases. Table I
shows the OLDF performance metrics, notably the maximum
and average voltage magnitude estimation errors (εmax and
εavg), compared to the alternative models PLPF, LoDF, LDF,

https://github.com/BabakTaheri1/OLDF
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Fig. 6. Voltage profiles for the base case using the nonlinear DistFlow (OpenDSS in black), LinDistFlow with initial parameters (LDF in green), and
LinDistFlow with optimized parameters (OLDF in red).

and DLPF. As shown in this table, the OLDF model consis-
tently outperforms its counterparts for all the test cases.

Detailing two examples, Fig. 6 shows the voltage profiles
for the 37-bus and the modified 123-bus test cases with
the base case loading. While the voltages from the traditional
LinDistFlow overestimate the true values, the optimized pa-
rameters result in a close alignment with the true DistFlow
solution.

2) High Load Evaluation: Following the methodology de-
scribed in [19], we generated high-load scenarios by scaling
the base loads with a factor that ranges from [−2,−1]∪ [1, 2]
at a granularity of 1

14 , yielding 30 distinct test scenarios. As
shown in Table II, our proposed OLDF algorithm surpasses

the others in reducing the average voltage estimation error
(εavg) across nearly all scenarios with the exception of the
22-bus case. For this case, our OLDF results were better than
all except the PLPF approximation where the average error
was still quite close (0.00028 p.u. for PLPF vs. 0.00020 p.u.
for OLDF). Regarding the maximum errors in the high-load
scenarios, no individual approximation consistently dominated
the others across all test cases. However, we note that summing
the maximum errors across all test cases reveals that the OLDF
parameters lead to the best performance in aggregate for this
metric. These results show that OLDF parameters trained with
scenarios around base-load conditions nevertheless perform
well for high-load conditions. Furthermore, as an adaptive
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TABLE I
MODEL EVALUATION - BASE LOAD

Test case εLDF
avg εPLPF

avg εLoDF
avg εDLPF

avg εOLDF
avg εLDF

max εPLPF
max εLoDF

max εDLPF
max εOLDF

max

1
ϕ

22-bus 0.00023 0.00014 0.00236 0.00040 0.00001 0.00030 0.00025 0.00314 0.00066 0.00001

33-bus 0.00198 0.00080 0.00288 0.00368 0.00015 0.00284 0.00125 0.00402 0.00638 0.00025

69-bus 0.00119 0.00075 0.00112 0.00186 0.00023 0.00388 0.00290 0.00327 0.00766 0.00094

85-bus 0.00531 0.00180 0.00206 0.00942 0.00056 0.00663 0.00221 0.00261 0.01377 0.00075

123-bus 0.00218 0.00160 0.00494 0.00348 0.00018 0.00255 0.00186 0.00579 0.00460 0.00034

141-bus 0.00152 0.00071 0.00326 0.00280 0.00003 0.00207 0.00099 0.00409 0.00453 0.00004

533-bus 0.00031 - - - 0.00001 0.00079 - - - 0.00005

906-bus 0.02552 - - - 0.00037 0.02566 - - - 0.00119

3
ϕ

13-bus 0.02642 - - - 0.00901 0.05899 - - - 0.03558

37-bus 0.02022 - - - 0.00325 0.03435 - - - 0.00710

123-bus 0.01388 - - - 0.00340 0.03707 - - - 0.01322

1ϕ stands for balanced single-phase equivalent networks, and 3ϕ stands for unbalanced three-phase networks.
The best performing method (smallest loss function) is bolded for each test case. All values are in per unit.

TABLE II
MODEL EVALUATION - HIGH LOAD

Test case εLDF
avg εPLPF

avg εLoDF
avg εDLPF

avg εOLDF
avg εLDF

max εPLPF
max εLoDF

max εDLPF
max εOLDF

max

1
ϕ

22-bus 0.00050 0.00020 0.00376 0.00091 0.00028 0.00132 0.00080 0.00733 0.00280 0.00097
33-bus 0.00418 0.00239 0.00556 0.00795 0.00224 0.01573 0.01018 0.01713 0.03133 0.01254
69-bus 0.00254 0.00199 0.00278 0.00403 0.00129 0.02253 0.01975 0.01926 0.03929 0.01572

85-bus 0.01156 0.00817 0.01037 0.02055 0.00719 0.04700 0.03471 0.02487 0.08027 0.03373
123-bus 0.00464 0.00301 0.00900 0.00555 0.00258 0.01294 0.00800 0.02017 0.02173 0.00766

141-bus 0.00323 0.00234 0.00601 0.00608 0.00182 0.01070 0.00648 0.01501 0.02134 0.00802
533-bus 0.00067 - - - 0.00037 0.00362 - - - 0.00278

906-bus 0.02501 - - - 0.00358 0.02571 - - - 0.00949

3
ϕ

13-bus 0.06549 - - - 0.05147 0.18626 - - - 0.14138

37-bus 0.06294 - - - 0.05907 0.22921 - - - 0.20931

123-bus 0.03884 - - - 0.02379 0.13387 - - - 0.12065

1ϕ stands for balanced single-phase equivalent networks, and 3ϕ stands for unbalanced three-phase networks.
The best performing method (smallest loss function) is bolded for each test case. All values are in per unit.

power flow, the OLDF approximation has the ability to tailor
the parameters to perform even better for these conditions by
including more training scenarios associated with high loading.

3) Random Load Evaluation: The OLDF approximation’s
accuracy is further analyzed for random loading conditions
using 10, 000 scenarios sampled from a uniform distribution
of 0% to 150% of the base load. Similar to the base and
high load conditions, the performance metrics for the random
load conditions detailed in Table III also show the OLDF
approximation’s dominance, with this approximation having
the smallest max and average voltage magnitude errors (εmax

and εavg). Across all test cases, the OLDF accuracy improve-
ment over traditional LDF ranges from 26.42% to 91.67%
for average error (εavg) and from 20.94% to 87.78% for
maximum error (εmax). Compared to the best of PLPF and
LoDF, OLDF’s improvement ranges from 10% to 80% for
average error and from 5.56% to 80.70% for max error.

E. Computational Efficiency

As shown in Fig. 2, our algorithm computes LinDistFlow
parameters during an offline phase where ample computing
time is available. These parameters are then used in online
applications where computing time may be limited. Thus, the
training process for our proposed algorithm requires computa-
tional tractability consistent with an offline context. As shown
by the training times in Table IV that range from 0.6451
seconds for the 22-bus case to 25.3917 seconds for the
123-bus case, leveraging mature optimization methods like
TNC enables acceptable scalability for the training phase.

The computation times for online uses of the optimized
LinDistFlow parameters depend on the particular application
for which they are employed. However, since the only changes
are to the parameter values and not the mathematical form of
the LinDistFlow expressions, online computation times with
our optimized parameters should be comparable to existing
LinDistFlow approximations. To show this, the average calcu-
lation times for the 10, 000 random load scenarios in the exper-
iment in Section V-D3 ranged from 0.0004 to 0.1156 seconds,
with differences of less than 2% between the LinDistFlow
using traditional parameters and our optimized parameters.

2 3 4 5 6 7 8 9 10 11

26 27 28

29
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16

30 333231

14

1312
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s33
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s10

s34

s36s37

s26

1

Fig. 7. The IEEE 33-bus system with 3 switchable lines and 5 tie-lines.

F. Topology Analysis
Engineers frequently need to both assess the impacts of

topology changes for contingency assessments and optimize
the topology of distribution systems for voltage management,
loss minimization, outage restoration, etc. [40]. Thus, it is im-
portant to study the OLDF model’s accuracy across topologies.
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TABLE III
MODEL EVALUATION - RANDOM LOAD

Test case εLDF
avg εPLPF

avg εLoDF
avg εOLDF

avg εLDF
max εPLPF

max εLoDF
max εOLDF

max

1
ϕ

22-bus 0.00024 0.00010 0.00220 0.00002 0.00090 0.00057 0.00477 0.00011

33-bus 0.00114 0.00051 0.00262 0.00019 0.00443 0.00312 0.00662 0.00124

69-bus 0.00077 0.00051 0.00101 0.00017 0.00918 0.00816 0.00476 0.00347

85-bus 0.00278 0.00056 0.00261 0.00031 0.00735 0.00321 0.00347 0.00257

123-bus 0.00120 0.00080 0.00392 0.00072 0.00300 0.00227 0.00624 0.00139

141-bus 0.00084 0.00035 0.00273 0.00013 0.00241 0.00108 0.00516 0.00102

533-bus 0.00018 - - 0.00013 0.00097 - - 0.00061

906-bus 0.02548 - - 0.00051 0.02569 - - 0.00265

3
ϕ

13-bus 0.02703 - - 0.01335 0.13930 - - 0.08872

37-bus 0.01438 - - 0.01058 0.07639 - - 0.05453

123-bus 0.01274 - - 0.00637 0.05455 - - 0.03506

1ϕ stands for balanced single-phase equivalent networks, and 3ϕ stands for unbalanced three-phase networks.
The best performing method (smallest loss function) is bolded for each test case. All values are in per unit.

TABLE IV
COMPUTATION TIMES IN SECONDS

Test
case

22-
bus

33-
bus

69-
bus

85-
bus

123-
bus

141-
bus

533-
bus

906-
bus

13-
bus

37-
bus

123-
bus

ttrain0.6451 0.7852 4.9879 2.7182 2.3093 2.6942 3.4019 7.1058 1.2611 6.7772 25.3917
tbase 0.0071 0.0092 0.0161 0.0174 0.0112 0.0114 0.1025 0.3061 0.0006 0.0539 1.1495
t100000.0004 0.0005 0.0008 0.0009 0.0006 0.0014 0.0023 0.0042 0.0182 0.0362 0.1156

ttrain: Offline computation time to train the parameters.
tbase: Online computation time for the base case loading (i.e., one scenario).
t10000: Online per-scenario time averaged over 10, 000 random scenarios.

TABLE V
TOPOLOGY CHANGES: OPENED AND CLOSED LINES

Opened Closed Opened Closed Opened Closed

- - (4, 10) (34, 35) (10, 26) (35, 36)
(4) (33) (4, 10) (34, 37) (10, 26) (35, 37)
(4) (35) (4, 10) (35, 36) (10, 26) (36, 37)
(4) (37) (4, 10) (35, 37) (4, 10, 26) (33, 34, 35)
(10) (34) (4, 10) (36, 37) (4, 10, 26) (33, 34, 36)
(10) (35) (4, 26) (33, 36) (4, 10, 26) (33, 35, 36)
(10) (36) (4, 26) (33, 37) (4, 10, 26) (33, 35, 37)
(26) (36) (4, 26) (35, 36) (4, 10, 26) (33, 36, 37)
(26) (37) (4, 26) (35, 37) (4, 10, 26) (34, 35, 36)
(4, 10) (33, 34) (4, 26) (36, 37) (4, 10, 26) (34, 35, 37)
(4, 10) (33, 35) (10, 26) (34, 35) (4, 10, 26) (34, 36, 37)
(4, 10) (33, 36) (10, 26) (34, 36)

These are all the valid switching combinations that lead to connected radial
configurations for the IEEE 33-bus test case shown in Fig. 7. Note that the table
indicates the changes from the configuration shown in Fig. 7.

Addressing topology changes with the LinDistFlow ap-
proximation can be approached in various ways. For ex-
ample, the traditional LinDistFlow approximation allows for
straightforward topology adjustments by updating the Dr and
Dx matrices with new values corresponding to the altered
topology to calculate voltages. Similarly, in our optimization-
based algorithm, adjustments can be made by excluding
optimized parameters for removed lines and incorporating
original resistance and reactance values for new lines in Dopt

r

and Dopt
x , without altering the bias parameters (γopt, ρopt,

and ϱopt). Successfully maintaining performance with this
strategy indicates that our algorithm adapts well to different
network topologies, avoiding overfitting to a specific config-
uration. Alternatively, optimizing parameters specifically for
each topology through dedicated optimization could enhance
accuracy at the cost of increased computational time and
storage for the additional parameters needed. Nevertheless,
such calculations could be efficiently executed in parallel for
a specified set of topologies, making this process suitable for
high-performance computing environments, as each topology’s
optimization process operates independently from others.
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Fig. 8. Heatmap visualization of average error metric (εavg) across 35 topolo-
gies for the IEEE 33-bus test case, with a log-scaled color representation
to highlight performance variations. The accompanying vector plot below
the heatmap quantitatively assesses the LinDistFlow approximation’s baseline
performance across the same topologies, facilitating a direct comparison of
adaptability and Optimization effectiveness.

To explore these different approaches, we describe a small-
scale experiment. Fig. 7 depicts the IEEE 33-bus distribu-
tion system, as described in [13], which has 33 nodes and
37 lines. We consider a version of this system with eight
switchable lines, specifically, lines 4, 10, and 26 are normally
closed switches (NCS) and lines 33 to 37 are tie lines or
normally open switches (NOS). With these switchable lines,
we can create 35 distinct and valid (i.e., radial and connected)
topologies out of 56 possible topologies, as listed in Table V.

We next evaluate the adaptability of optimized parameters,
i.e., assess how well parameters optimized for one topology
perform in others. To accomplish this, we performed the offline
training phase of our proposed algorithm using the same setup
as before across the 35 network topologies to obtain a dataset
with 35 sets of optimized coefficients and bias parameters. We
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Fig. 9. Binary comparison matrix between the traditional LinDistFlow
approximation’s performance and optimized parameters from our proposed
algorithm across 35 topologies in the IEEE 33-bus test case. Each column
represents a topology, with green indicating that the optimized parameters
for the topology associated with the corresponding row outperform the tra-
ditional LinDistFLow approximation and white indicating that the traditional
LinDistFlow approximation performance is better.

tested the performance of these optimized parameters using the
same 10, 000 test samples as before on each topology.

Illustrating this cross-topology assessment, Fig. 8 shows
the performance of optimized parameters considering all 35
topologies. Specifically, the heatmap at the top of this figure
shows the average error metric, εavg , of the optimized param-
eters for a given topology (rows) when applied to different
topologies (columns). The horizontal vector plot at the bot-
tom of the figure shows the performance of the traditional
LinDistFlow approximation on the same 35 topologies. The
heatmap employs a logarithmic scale for color representation
to enable comparisons across a broad range of error magni-
tudes. The results underscore the variability in the algorithm’s
adaptability, with darker shades indicating lower errors (better
performance) and lighter shades denoting higher errors. The
vector plot beneath the heatmap contrasts the overall baseline
performance of the traditional LinDistFlow approximation.

The matrix in Fig. 9 further illustrates the performance
of our optimized parameters relative to the traditional
LinDistFlow approximation (i.e., comparing each row from
heatmap in Fig. 8 to the horizontal vector plot at the bottom of
the figure). This matrix employs a binary color coding—green
for topologies where the optimized parameters outperform the
traditional LinDistFlow approximation and white where they
do not. For example, row 1 in this matrix shows that training
the parameters using the base topology results in the optimized
parameters outperforming the traditional LinDistFlow approx-
imation on topologies 1, 5, 6, 9, 19, 21, 24, 26, 29, and 31.
As another example, training the parameters using topology
2 leads to superior performance on topologies {[2, 4] ∪ 8 ∪
[10, 15] ∪ [17, 18] ∪ 20,∪[22, 23] ∪ 25 ∪ 28 ∪ 30 ∪ 33 ∪ 35}.

These visualizations show the nuanced performance of the
optimized parameters vis-à-vis the traditional LinDistFlow

approximation across topologies. Our future work aims to
cluster topologies for which jointly optimized parameter values
can provide accurate LinDistFlow approximations.

G. Illustrative Application: Hosting Capacity Computation

As an illustrative example application, this section demon-
strates the use of the proposed optimized LinDistFlow model
to determine the hosting capacity of inverter-based generation
units. Following [41], the hosting capacity problem is:

min
pg
n,q

g
n

∑
n∈N̂

(
(pgn − pgn)

2

pgn
+ ξ

qgn
2

sgn

)
(15a)

s.t. 0 ≤ pgn ≤ pgn, |qgn| ≤
√

sgn
2 − pgn

2
, ∀n ∈ N̂ (15b)

v0 = 1, vn ≤ vn ≤ vn, ∀n ∈ N′ (15c)√
P 2
n +Q2

n ≤ Sn, ∀n : (πn, n) ∈ E (15d)√
P 2
T +Q2

T ≤ ST , (15e)

PT =
∑

n:(0,n)∈E

P0n, QT =
∑

n:(0,n)∈E

Q0n, (15f)

LDF (3) or OLDF (4), (15g)

where N̂ is the set of buses with inverter-based generators,
pgn and qgn are the active and reactive power generation, pgn
and sgn are their maximum capacities, Sn and ST are the
upper bounds on the line and transformer flows, and ξ is
a weighting factor controlling the tradeoff between active
power and reactive power utilization. The constraints ensure
adherence to power generation limits (15b) and voltage regula-
tion requirements (15c) along with line (15d) and transformer
capacities (15e)–(15f).

An evaluation using the IEEE 33-bus test system illus-
trates the OLDF model’s effectiveness. We set sgn = 0.6 MVA
with a 0.98 power factor, ξ = 0.02, and voltage limits between
1.05 and 0.95 per unit, with a substation capacity of 10 MVA.

Upon solving (15) with both LDF and OLDF models, we
obtain the optimal active and reactive power settings for the
inverter-based generation units. By assessing these optimal
settings using the original nonlinear DistFlow model, we
compare the performance of the OLDF and LDF approxima-
tions. Fig. 10 shows that while the traditional LinDistFlow
approximation leads to voltage violations at certain buses
within the hosting capacity problem (15), the application of
the proposed OLDF model avoids such violations.
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Fig. 10. Voltage profile of the IEEE 33-bus test case after feeding the
active/reactive power injections obtained from solving (15) with LDF (blue
curve) and OLDF (orange curve) into the DistFlow equations.
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VI. CONCLUSION

The LinDistFlow approximation is often used to improve
the computational tractability of optimization problems in dis-
tribution systems. This paper introduces a new algorithm that
enhances the accuracy of the LinDistFlow approximation for
single- and three-phase network models. Inspired by machine
learning methods, the algorithm’s offline phase optimizes
the approximation’s coefficients and biases using analytically
derived sensitivities within the TNC optimization method.
These optimized parameters then provide increased accuracy
when used in various applications. Numerical tests demon-
strate the algorithm’s effectiveness, showing better alignment
with nonlinear DistFlow solutions compared to the traditional
LinDistFlow and other recent alternatives. Application to a
hosting capacity problem further highlights its advantages.

Since our optimized formulation has the same linear form
as the traditional LinDistFlow approximation and performs
well for varying topologies, the accuracy advantages of the
proposed approach can be directly exploited in a wide range
of other applications such as those in [11]–[13], [15], [16],
[20]–[24]. Our future work aims to explore such applications.
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