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Improving the Accuracy of DC Optimal Power
Flow Formulations via Parameter Optimization

Babak Taheri and Daniel K. Molzahn

Abstract—DC Optimal Power Flow (DC-OPF) problems op-
timize the generators’ active power setpoints while satisfying
constraints based on the DC power flow linearization. The
computational tractability advantages of DC-OPF problems come
at the expense of inaccuracies relative to AC Optimal Power
Flow (AC-OPF) problems which accurately model the nonlinear
steady-state behavior of power grids. This paper proposes an
algorithm that significantly improves the accuracy of the genera-
tors’ active power setpoints from DC-OPF problems with respect
to the corresponding AC-OPF problems over a specified range of
operating conditions. Using sensitivity information in a machine
learning-inspired methodology, this algorithm tunes coefficient
and bias parameters in the DC power flow approximation to
improve the accuracy of the resulting DC-OPF solutions. Employ-
ing the Truncated Newton Conjugate-Gradient (TNC) method—
a Quasi-Newton optimization technique—this parameter tuning
occurs during an offline training phase, with the resulting
parameters then used in online computations. Numerical results
underscore the algorithm’s efficacy with accuracy improvements
in squared two-norm and ∞-norm losses of up to 90% and 79%,
respectively, relative to traditional DC-OPF formulations.

Index Terms—DC optimal power flow (DC-OPF), AC-OPF,
machine learning, parameter optimization.

NOMENCLATURE

N Set of buses
E Set of branches
j Imaginary unit j =

√
−1

sd Complex power demand; sd = pd + jqd

Y s Bus shunt admittance
Y Complex branch line admittance
Y c Complex branch shunt admittance
s̄ Thermal branch limit
sg, sg Complex power generation bounds
V,V Voltage magnitude bounds
z Branch impedance; z=r+ jx

A Branch-bus incidence matrix
sg Complex power generation; sg=pg + jqg

S Complex power flow; S = P+ jQ

V Complex voltage; V = |V|∠θ
c Active power generation cost vector
b DC power flow coefficient parameter vector
γ,ρ DC power flow bias parameter vectors

I. INTRODUCTION

Optimal Power Flow (OPF) is a fundamental tool for power
system design and operation. OPF problems optimize system
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performance (e.g., minimizing generation costs or reducing
voltage deviations) while satisfying both equality constraints
from a power flow model and inequality constraints from
operational limits. In addition to significant economic impli-
cations [1], OPF problems are at the heart of many algorithms
for addressing uncertainty [2], planning infrastructure invest-
ments [3], improving stability margins [4], etc.

The AC power flow equations accurately model the steady-
state behavior of power systems by relating the complex
power injections and line flows with the voltage phasors.
This motivates solution of AC Optimal Power Flow (AC-OPF)
problems that incorporate the AC power flow equations. How-
ever, AC-OPF problems are computationally challenging, with
these problems being non-convex and NP-hard in the worst-
case [5]–[7]. These challenges are exacerbated for extensions
of OPF problems that consider discrete characteristics, such
as those related to transmission switching [8], [9] and unit
commitment [10], as well as uncertainties due to variable
renewable energy generation and flexible loads [2].

Since first being formulated by Carpentier in 1962 [11],
OPF algorithms have undergone continual development [12]–
[15]. Most existing methods seek a local optimum due to
the nonconvex nature of OPF problems that results from the
AC power flow equations. Machine learning (ML) techniques
are emerging as tools to address OPF challenges, offering
computational speedups but often lacking interpretability and
consistency with physical intuition [16].

Due to these challenges, engineers often employ power
flow approximations [17] to obtain more tractable convex
OPF formulations, sometimes by optimizing the linearization
point to account for supply and demand uncertainty [18].
Using a common linear approximation known as the DC
power flow [19] yields the DC Optimal Power Flow (DC-
OPF) problem, which is widely used for both short- and long-
term planning purposes. However, the DC-OPF problem’s
tractability advantages come with the drawback of inaccuracies
relative to the AC-OPF problem. DC power flow approxi-
mations linearize the AC power flow equations by assuming
a flat voltage profile, applying a small-angle approximation
of the sine function, and neglecting reactive power flows
and network losses, thus introducing approximation errors
when these assumptions do not hold. Inaccuracies from these
assumptions are particularly pronounced when reactive power
flows and voltage variations play a significant role, such as
in heavily loaded systems or systems with high penetrations
of renewable generators. In such cases, the DC-OPF problem
may not adequately capture the complex behavior of the
power system, leading to suboptimal or infeasible decisions
in operational and planning contexts [8], [20]–[22].

These limitations motivate enhancements to the DC-OPF
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problem that aim to improve accuracy while maintaining
tractability. The DC power flow approximation is founda-
tional to the DC-OPF problem. This approximation relates
active power flow between buses i and j, denoted pij , to
the phase angle difference θi − θj through a proportionality
coefficient bij : pij = bij(θi − θj). While typically derived
from line parameters such as resistance rij and reactance
xij via various heuristics, tailoring these parameter values
to specific system and operating range characteristics can
yield significant accuracy improvements. Common heuristics
choose bij = 1/xij or bij = −ℑ(1/(rij + jxij)), where
ℑ(·) extracts the imaginary part of a complex argument. When
resistance is nonzero (rij ̸= 0), these choices for bij produce
slightly different results, impacting the accuracy of the DC
power flow approximation. Selecting the optimal bij for a
given application is not straightforward and depends on system
characteristics and objectives [19].

Additionally, the introduction of bias parameters allows
further flexibility by adjusting power injections and flows
to account for shunts, HVDC infeeds, phase shifts, and line
losses [19]. Two variants of the DC power flow—cold-start and
hot-start—differ in their reliance on prior information when
determining the bij coefficients and bias parameters.

Our previous work in [23] introduced an algorithm that opti-
mizes both the coefficient and bias parameters to improve DC
power flow accuracy across a range of operating conditions.
This optimization selects the DC power flow parameter values
which minimize the mismatch between the line flows from the
DC and AC power flow models over a training set of scenarios.

While this previous paper focused on optimizing the coef-
ficients and biases within the DC power flow approximation
itself [23], specialization of the parameters to specific applica-
tions can yield even larger accuracy advantages. Accordingly,
this paper extends the concepts from [23] to optimize parame-
ters for the DC power flow approximation in order to improve
accuracy of DC-OPF solutions relative to AC-OPF solutions
(as opposed to the focus on DC power flow versus AC power
flow in our prior work). Specifically, we seek the DC power
flow parameters which best reduce the discrepancies of the
generator active power setpoints associated with the DC-OPF
solutions relative to those from the AC-OPF solutions across a
range of load demands. This introduces new challenges since
the loss function considers the optimal operational decisions
from the DC-OPF problem, resulting in a bilevel structure.

To address these challenges, this paper introduces a new
algorithm for the adaptive selection of coefficients bij and bias
parameters within the context of the DC-OPF problem. Build-
ing on the approach from our previous work [23], we focus on
enhancing the DC-OPF model by leveraging machine learning-
inspired techniques for parameter optimization. The algorithm
performs offline fine-tuning of bij and bias parameters using
a large training dataset of AC-OPF solutions under various
operating conditions. Leveraging differentiable optimization
techniques originally developed for deep learning architec-
tures [24], [25], we compute the sensitivities of the DC-OPF
solution with respect to these parameters. This enables us to
iteratively adjust the parameter values during an offline com-
putation phase by using a gradient-based optimization method,
specifically the Truncated Newton Conjugate-Gradient (TNC)

algorithm, to minimize the difference between DC-OPF’s gen-
erator active power setpoints and their AC-OPF counterparts
across the training dataset. The resulting optimized parameter
values are then applied to improve the accuracy of the DC-
OPF problems during online computations.

To summarize, the main contributions of this paper are:
1) Introducing an optimization algorithm designed to adap-

tively choose the coefficients bij and bias parameters
of the DC power flow inside the DC-OPF problem.
These parameters are instrumental in modeling line losses
and incorporating factors such as shunts, HVDC infeeds,
phase shifts, and line losses.

2) Computing gradients for the DC-OPF solution with re-
spect to both coefficient and bias parameters to obtain
sensitivities of the generator set points as well as our
defined loss function.

3) Utilizing a quasi-Newton method (TNC) to scale our
proposed algorithm to large power systems.

4) Providing numerical results that demonstrate the superior
accuracy of our proposed algorithm over a range of
operating conditions.

The rest of the paper is structured as follows. Section II re-
views the AC-OPF and DC-OPF problems. Section III presents
our algorithm for optimizing parameters of DC-OPF problems.
Section IV provides numerical results to demonstrate the
algorithm’s performance. Section V concludes the paper.

II. OPTIMAL POWER FLOW PROBLEM

To introduce notation and necessary background material,
this section describes the AC-OPF formulation and the DC-
OPF linear approximation that simplifies the AC-OPF problem
to improve tractability at the cost of accuracy. Buses, lines
and generators in the network are denoted by the sets N , E
and G, respectively. Each bus i ∈ N has a voltage phasor
Vi with phase angle θi, along with a shunt admittance Y S

i ,
complex power demand sd

i = pd
i +jqdi , and generated complex

power sg
i = pg

i + jqg
i , where j is the imaginary unit j =

√
−1.

Buses without generators are modeled as having upper and
lower generation limits of zero. The complex power flows
entering each end of line (j, k) ∈ E are represented by Sjk

and Skj . Series admittance parameters for each line (j, k) are
Yjk and Ykj and the line’s shunt admittance is Y c

jk. The real
and imaginary components of a complex number are indicated
by ℜ( · ) and ℑ( · ), respectively, ∥ · ∥∞ denotes the L∞-norm,
and ∥ · ∥2 denotes the L2-norm. The complex conjugate and
the transpose of a matrix are denoted by ( · )⋆ and ( · )⊤,
respectively, and ∠( · ) is the angle of a complex argument.
Upper and lower limits are represented by ( · ) and ( · ).

A. The AC-OPF Problem
Model 1 presents the AC-OPF formulation. The objec-

tive (1a) minimizes the total generation cost by summing the
costs for each generator i ∈ N , modeled as quadratic functions
(with coefficients c2i, c1i, and c0i) of the real part of the
complex power generation sg

i . Constraint (1b) ensures that all
voltage magnitudes are within specified limits. Constraint (1c)
bounds the complex power outputs of each generator within
its feasible operating range, where inequalities on complex
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Model 1 The AC-OPF Problem

min
sg
i,Vi

∑
i∈N

c2i(ℜ(sg
i ))

2 + c1iℜ(sg
i ) + c0i (1a)

s.t. (∀i ∈ N , ∀(j, k) ∈ E)
Vi ≤ |Vi| ≤ Vi (1b)
sg
i ≤ sg

i ≤ sg
i (1c)

|Sjk| ≤ Sjk, |Skj | ≤ Sjk (1d)

sg
i − sd

i − (Y s
i )

⋆|Vi|2 =
∑

(i,j)∈E

Sij +
∑

(k,i)∈E

Ski

(1e)
Sjk = (Yjk + Y c

jk)
⋆VjV

⋆
j − Y ⋆

jkVjV
⋆
k (1f)

Skj = (Ykj + Y c
kj)

⋆VkV
⋆
k − Y ⋆

kjVkV
⋆
j (1g)

θref = 0 (1h)

− θjk ≤ ∠(VjV
⋆
k ) ≤ θjk (1i)

variables : sg
i (∀i ∈ N ), Vi (∀i ∈ N )

quantities are interpreted as bounds on the real and imaginary
parts. Constraint (1d) ensures that the power flows into each
line terminal do not exceed the line’s thermal limits.

The constraint (1e) ensures power balance for the power
generated, consumed, and flowing through the network at each
bus. Constraints (1f) and (1g) represent the power flow in
each line of the network. The voltage angle at the reference
bus is set to zero in (1h). Finally, constraint (1i) limits the
phase angle difference across each line (often used as a proxy
for transient stability). The AC-OPF problem is inherently
nonlinear and non-convex due to the quadratic nature of the
power flow equations. Using nonlinear optimization techniques
such as interior-point methods, AC-OPF algorithms frequently
find high-quality solutions [12]–[15].

B. The DC-OPF Problem
The DC-OPF problem is a linear approximation of the

AC-OPF problem that assumes uniform voltage magnitudes
(typically normalized to one per-unit), small voltage angle
differences, negligible losses, and ignores reactive power [19].
These assumptions are most relevant to transmission systems.
The DC-OPF model underlies various applications within
electricity markets and is widely used in unit commitment,
transmission network expansion planning, and optimal trans-
mission switching problems [9], [22], [26]–[29].

Model 2 presents the DC-OPF problem. Analogous to (1a),
the objective (2a) minimizes the total generation cost by
summing quadratic functions of the generators’ active power
outputs. Similarly, (2b) bounds the generators’ active power
outputs, reminiscent of the dispatch bounds (1c). Analogous
to (1d), constraint (2c) enforces thermal limits on transmission
lines. Analogous to (1e), constraint (2d) balances active power
at each bus by equating the net power injection with the net
branch power flow. Constraint (2e) linearizes the line flow
expressions by relating branch power flows to voltage angle
differences according to the DC power flow approximation,
thus offering a simplified counterpart to (1f) and (1g). Fi-
nally, (2f) sets the reference bus angle to zero. Note that

Model 2 The DC-OPF Problem

min
pg
i,θi

∑
i∈N

c2i(p
g
i )

2 + c1ip
g
i + c0i (2a)

s.t. (∀i ∈ N , ∀(j, k) ∈ E)
pg
i
≤ pg

i ≤ pg
i (2b)

|Pjk| ≤ S̄jk (2c)

pg
i − pd

i − γi =
∑

(i,j)∈E

Pij +
∑

(k,i)∈E

Pki (2d)

Pjk = bjk(θk − θj) + ρjk (2e)
θref = 0 (2f)

variables : pg
i (∀i ∈ N ), θi (∀i ∈ N )

Model 3 The DC-OPF-M Problem

min
pg,θ

pg⊤diag(c2)pg + c⊤1 p
g +

∑
i∈N

c0i (3a)

s.t.
pg ≤ pg ≤ pg (3b)

pg − pd − γ = A⊤
(

diag(b)Aθ + ρ
)

(3c)

|diag(b)Aθ + ρ| ≤ S̄ (3d)
θref = 0 (3e)

variables : pg,θ

(2d) and (2e) include parameters γ and ρ. The parameter γi
accounts for losses from shunts, HVDC infeeds, and injections
modeling phase shifts and branch losses for lines connected to
bus i. The parameter ρij account for losses in line (i, j) ∈ E .

Model 3 equivalently rewrites Model 2 in a more notation-
ally friendly matrix form. In Model 3, we define A as the
|E|×|N | incidence matrix describing the connections between
the system’s buses and branches and diag(b) as a diagonal
matrix having the entries of b on its diagonal.

The DC-OPF problem’s accuracy relative to the AC-OPF
problem is dictated by the parameters b, γ, and ρ. Tradition-
ally, there are two DC-OPF versions, cold-start and hot-start,
that rely on different amounts of prior information to select
these parameters.

1) Cold-start DC-OPF: In this version, the coefficient and
bias parameters are selected without relying on a nominal
operating point. For instance, the coefficient values bij can
be selected as the imaginary part of the line susceptance:

bcoldij = ℑ
(

−1

rij + jxij

)
. (4)

We note that the alternative selection of bcoldij = 1/xij yields
very similar numerical results to the choice of bcoldij in (4), so
we only present results for the latter for the sake of brevity.

The cold-start version assigns values of zero to the bias
parameters γ and ρ. The simplicity provided by the cold-start
DC-OPF problem comes at the cost of accuracy in settings
where information on a nominal operating point is available.
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2) Hot-start DC-OPF: Hot-start DC-OPF problems lever-
age information from a nominal AC power flow solution to
improve accuracy. There are many hot-start DC-OPF vari-
ants [19]; for example, the “localized loss modeling” variant
of the hot-start DC power flow model in [19] selects the
coefficient and bias parameters as:

bhotij = bijv
•
i v

•
j sin(θ

•
i − θ•j )/(θ

•
i − θ•j ), (5a)

γhot
i =

∑
(i,j)∈E

ℜ(Yij)v
•
i (v

•
i − v•j cos(θ

•
i − θ•j )), (5b)

ρhotij = ℜ(Yij)v
•
i (v

•
i − v•j cos(θ

•
i − θ•j )), (5c)

where the notation ( · )• signifies quantities associated with
a nominal AC power flow solution. The bias γhot aims to
capture the effects of branch losses on phase angles and ρhot

incorporates the branch losses in the line flow expressions.
3) Optimized Parameters for DC Power Flow (DCPF) [23]:

Our recent work in [23] proposes an alternative for selecting
the b, γ, and ρ parameters by solving an optimization prob-
lem. Providing a conceptual foundation for the approach we
will propose in this paper, the algorithm in [23] also optimizes
these parameters over a range of operation. However, there
is a key distinction between the algorithm in [23] and the
parameter optimization algorithm in this paper. Specifically,
the approach in [23] does not explicitly consider the impacts
of the optimized parameters on the solution to a DC-OPF
problem, but rather seeks to balance the DC power flow’s
accuracy with respect to all operating points within a specified
range. Conversely, our proposed algorithm in this paper lever-
ages machine learning techniques for training models with
differentiable optimization layers to tailor the DC power flow
parameter values so that the DC optimal power flow solutions
align with the AC-OPF solutions. As shown numerically
in Section IV, this enables further accuracy improvements
relative to [23] in settings where the optimized DC power flow
parameters are used in optimization problems like DC-OPF.

We next introduce our machine learning-inspired algorithm
for optimizing the coefficient (b) and bias (γ and ρ) parame-
ters. Our algorithm seeks to match the generators’ active power
outputs from the DC-OPF solution to corresponding values
from the AC-OPF problem.

III. PARAMETER OPTIMIZATION ALGORITHM

Our parameter optimization algorithm, depicted in Fig. 1,
has offline and online phases. The offline phase computes
DC-OPF parameters (b, γ, and ρ) to achieve a high-fidelity
approximation of the AC-OPF solution over a range of opera-
tional conditions. The online phase employs these parameters
to efficiently solve DC-OPF problems in various applications.
While our numerical results focus on DC-OPF problems, the
optimized DC-OPF parameters are applicable to many com-
putationally intensive optimization problems that incorporate
DC power flow models, such as unit commitment [9], [26],
expansion planning [3], and grid reliability enhancement [30].

Our algorithm minimizes a loss function that quantifies the
discrepancy between DC-OPF and AC-OPF generator active
power setpoints over various load scenarios. To perform this
minimization, we compute the loss function’s gradients with
respect to the parameters b, γ, and ρ for use in a nonlinear

Fig. 1. Flowchart of the proposed algorithm.

optimization method. Based on our numerical tests comparing
various nonlinear optimization methods, the TNC optimization
method best used these gradients to achieve scalable and effec-
tive parameter optimization. TNC’s capability to approximate
the Hessian matrix from gradient information ensures efficient
handling of large-scale power systems.

A. Loss Function

We first introduce a loss function L that is the sum
of squared two-norm discrepancies between the generators’
active power setpoints obtained from the AC-OPF problems
(pg,AC

m ) and the DC-OPF problems (pg
m) across a specified set

of load scenarios M:

L(b,γ,ρ) = 1

|G| × |M|
∑

m∈M
||pg

m(b,γ,ρ)− pg,AC
m ||22, (6)

where the constant 1
|G|×|M| normalizes this function based

on the number of generators and load scenarios. As shown
in (6), pg

m (and thus L(b,γ,ρ)) is a function of the coefficient
parameters b and the bias parameters γ and ρ.

We note that this two-norm loss formulation is typical
in machine learning for its robustness and differentiability.
Moreover, this loss function penalizes larger deviations more
heavily, which is well aligned with typical applications where
a small number of severe approximation errors would be more
problematic than a large number of minor errors. One could
instead use other norms without major conceptual changes.

With this loss function, the optimization problem to find the
best coefficient and bias parameters is formulated as:

min
b,γ,ρ

L(b,γ,ρ). (7)

Using the sensitivity analysis which we describe in the next
subsection, we adjust the coefficient and bias parameters (b,
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Model 4 Optimizing DC-OPF Problem

min
b,γ,ρ

L =
1

|G| × |M|
∑

m∈M
||pg

m(b,γ,ρ)− pg,AC
m ||22 (8a)

s.t.

min
pg

m,θm

pg
m

⊤diag(c2)pg
m + c⊤1 p

g
m +

∑
i∈G

c0i (8b)

s.t.

pg
m − pd

m − γ = A⊤
(

diag(b)Aθm + ρ
)

(8c)

|diag(b)Aθm + ρ| ≤ S̄ (8d)
pg ≤ pg

m ≤ pg (8e)

θref = 0 (8f)
∀m ∈ M

γ, and ρ) to optimize the DC-OPF problem’s parameters. As
detailed in Model 4, this task takes the form of a bilevel opti-
mization problem, with the upper-level fine-tuning parameters
based on outcomes from lower-level DC-OPF problems under
a variety of operational scenarios.

B. Sensitivity Analysis of Coefficient and Bias Parameters
This subsection describes the sensitivity analyses crucial for

our parameter optimization algorithm. We utilize a gradient-
based method, TNC, which requires the gradient of the loss
function with respect to b, γ, and ρ. These gradients, denoted
as gb, gγ , and gρ, are computed as follows:

gb =
∂L
∂b

=
2

|G| × |M|
∑

m∈M

∂pg

∂b

∣∣∣∣
pg

m

(
pg
m − pg,AC

m

)
, (9a)

gγ =
∂L
∂γ

=
2

|G| × |M|
∑

m∈M

∂pg

∂γ

∣∣∣∣
pg

m

(
pg
m − pg,AC

m

)
, (9b)

gρ =
∂L
∂ρ

=
2

|G| × |M|
∑

m∈M

∂pg

∂ρ

∣∣∣∣
pg

m

(
pg
m − pg,AC

m

)
. (9c)

The derivatives ∂pg

∂b , ∂pg

∂γ , and ∂pg

∂ρ are computed from the KKT
conditions of the lower-level DC-OPF problems (8b)–(8f) in
Model 4. Differentiating through convex optimization prob-
lems like DC-OPF involves implicit differentiation of their op-
timality conditions [24], [31], [32]. To perform these implicit
derivative computations, we leverage techniques developed for
embedding convex optimization layers within deep learning
architectures; specifically, we utilize cvxpylayers [25],
which allows for automatic differentiation through convex
optimization problems. This integration facilitates efficient and
scalable gradient computations necessary for our optimization
framework. In detail, we define the DC-OPF problem using
CVXPY’s modeling syntax, specifying the objective function
and constraints as per Model 3. This CVXPY model is then
converted into a differentiable layer using cvxpylayers,
enabling it to be embedded within our optimization pipeline.
During the forward pass, cvxpylayer solves the DC-OPF prob-
lem to obtain pg. In the backward pass, cvxpylayer automat-
ically computes the derivatives ∂pg

∂b , ∂pg

∂γ , and ∂pg

∂ρ , leveraging

Algorithm 1: Truncated Newton (TNC) Method
Input: x0 = [b⊤

0 ,γ
⊤
0 ,ρ⊤

0 ]
⊤: Initial guess

ϵ: Tolerance for convergence
max iter: Maximum iterations
L(xk): Loss function
∇L(xk) = g
M: Preconditioning matrix (often diagonal)
H: Hessian or its approximation function
α1: Armijo condition constant (e.g., 10−4)
α2: Curvature condition constant, between α1 and 1

Output: Optimized parameters x∗

1 Initialize xk ← x0, k ← 0
2 while k ≤ max iter and ∥∇L(xk)∥ > ϵ do
3 g← ∇L(xk)
4 r← −g
5 z←M−1r
6 p← z
7 s← 0
8 ρold ← r⊤z
9 while ∥r∥ > ϵ do

10 q← Hp
11 α← ρold

p⊤q

12 s← s+ αp
13 r← r− αq
14 z←M−1r
15 ρnew ← r⊤z
16 η ← ρnew

ρold
17 p← z+ ηp
18 ρold ← ρnew

// Wolfe Line Search to determine β
19 β ← 1
20 while True do
21 if L(xk + βs) ≤ L(xk) + α1βg

⊤s and
∥∇L(xk + βs)⊤s∥ ≤ α2∥g⊤s∥ then

22 break
23 β ← β/2

24 xk+1 ← xk + βs
25 k ← k + 1

26 x∗ ← xk

automatic differentiation provided by cvxpylayers; we
refer the reader to [24], [25] for further details and efficient
computational implementations.

Next, we will use the collected gradient information defined
as ∇L(b,γ,ρ) = g = [gb⊤,gγ⊤,gρ⊤]⊤ in the TNC opti-
mization method to update the coefficient and bias parameters.

C. Optimization Formulation and Solution Method
To solve Model 4, we employ the gradient-based TNC

optimization method that uses the calculated parameter sensi-
tivities [33], [34]. TNC combines the advantages of Newton’s
method for fast convergence with the conjugate gradient
approach to efficiently handle large-scale problems without the
need for explicit Hessian computations. Compared to alterna-
tives such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) and
limited-memory BFGS [34], the TNC method demonstrates
superior performance in speed and reliability for our purposes.

As shown in Algorithm 1, the TNC method iteratively
updates the solution vector by approximating the Newton
direction using truncated conjugate gradients with precon-
ditioning. The process begins with an initial guess for the



6

solution vector, followed by the preparation of an initial diag-
onal approximation to the Hessian matrix. At each iteration,
the gradient of the objective function is computed, and the
conjugate gradient method is applied to approximate the New-
ton direction while ensuring that the preconditioner improves
numerical stability and accelerates convergence. The stopping
criterion for the inner conjugate gradient loop is based on the
reduction of the gradient’s magnitude. The optimal step length
along the search direction is then determined using a line
search that satisfies the Wolfe conditions, ensuring sufficient
decrease in the objective function. The solution vector is
updated accordingly, and the process repeats until the outer
convergence criteria are satisfied.

Note that we use a standard implementation of the TNC al-
gorithm to solve the bilevel optimization problem in Model 4.
Other optimization methods could be used without conceptual
changes. The novelty of this work lies in the formulation and
overall solution approach for the bilevel problem, rather than
the application of TNC itself. For a more detailed discussion
on the standard TNC method, refer to [33].

IV. NUMERICAL EXPERIMENTS

Using systems from the PGLib-OPF test case archive [35],
including IEEE 14-bus, EPRI 39-bus, IEEE 57-bus,
IEEE 118-bus, Illinois 200-bus, and Texas
2000-bus [35], this section numerically evaluates
our parameter optimization algorithm’s performance via
comparison against traditional DC-OPF and AC-OPF models.
For each test case, we generated 2,020 load scenarios,
allocating 20 for offline training and 2, 000 for testing, by
multiplicatively scaling the nominal loads with normally
distributed random variables, each load independently by
its own variable, with mean µ = 1 and standard deviation
σ = 15%. The active and reactive power demands at each
bus were scaled by the same multiplicative factor to maintain
the loads’ nominal power factors.

All computations were conducted on a 24-core, 32 GB
RAM computing node at Georgia Tech’s Partnership for an
Advanced Computing Environment (PACE). The AC-OPF
problems were solved using PowerModels.jl [36], and we
implemented our algorithm in PyTorch with derivatives ∂pg

∂b ,
∂pg

∂γ , and ∂pg

∂ρ calculated via cvxpylayers [25]. The TNC op-
timization method from the scipy.optimize.minimize
library was used to minimize the loss function (6) based on
the sensitivities gb, gγ , and gρ.

We benchmark the accuracy achieved by our optimized
parameters by comparing the generators’ active power set-
points across different DC-OPF models (i.e., p[model] where
[model] stands for either the optimized parameters from our
proposed algorithm, the cold-start DC-OPF (4), the hot-start
DC-OPF (5), or the optimized DC power flow (DCPF) pa-
rameters from [23]) against the true values from the AC-OPF
solutions (i.e., pg, AC). The discrepancies are measured using
both the mean square error (MSE) as defined in the loss
function (6) and the maximum error metric, with all values

in the per unit (p.u.) system with a 100 MVA base power:

ε
[model]
MSE =

1

|G| × |M|
∑

m∈M
∥p[model]

m − pg,AC
m ∥22, (10)

ε[model]
max = ∥p[model]

m − pg, AC
m ∥∞, (11)

where ∥ · ∥∞ is the L∞-norm, and ∥ · ∥2 is the L2-norm.

A. Comparison of Parameter Values Across Selection Methods
This section presents the distributions of the cold-start, hot-

start, and optimized parameters b, γ, and ρ for different test
systems using box plots and scatter plots. The box plots show
the spread of parameter values across the buses and lines in
the system, providing insight into how the parameter values
vary within the system. The scatter plots compare the hot-start
and optimized parameters for each bus or line, demonstrating
the consistency of the optimized parameters with those used
in a common DC power flow approximation.

1) Box Plot Analysis: Fig. 2 illustrates the distribution
of the parameter values using box plots. The interquartile
range (IQR), which represents the middle 50% of the data, is
shown in each box, with the central line marking the median
value. Whiskers extend to 1.5 times the IQR, and data points
outside this range are considered outliers, marked individually.
The box plots for each test system capture the cold-start
values (bcold), hot-start values (bhot, γhot, and ρhot), and
the optimized values (bopt, γopt, and ρopt). All values are
presented on a logarithmic scale to accommodate variations
across multiple orders of magnitude. The box plots in Fig. 2
show that the optimized parameter values closely align with
those derived from traditional heuristics, particularly for the
coefficient parameters. This suggests consistency with long-
standing power engineering intuition, where line susceptances
are known to be a key factor in determining power flows.

2) Scatter Plot Analysis: Complementing the box plots,
the scatter plots (Fig. 3) directly compare the hot-start and
optimized parameter values. Each plot includes a 45◦ red
dashed line to indicate one-to-one correspondence. Data points
falling along this line suggest a close match between the
hot-start and optimized values, while deviations highlight
discrepancies. Fig. 3a compares the coefficient values bhot

and bopt, while Fig. 3b compares the injection bias values
γhot and γopt, and Fig. 3c compares the flow bias values
ρhot and ρopt. These scatter plots reveal that the optimized
parameters align well with hot-start values, except for a few
outliers where targeted adjustments to b, γ, and ρ improve
the DC-OPF approximation’s accuracy.

Table I gives the squared two-norm and ∞-norm errors for
several test cases when using the optimized and conventional
DC-OPF parameters over 2, 000 testing scenarios. Notably, in
the 118-bus test case, our algorithm achieved a substantial
reduction in the squared two-norm loss to 0.0123, compared
to the cold-start, hot-start, and optimized DCPF parameters
with 0.1295, 0.1221, and 0.1251, respectively. This represents
an order of magnitude improvement over all prior methods,
highlighting the effectiveness of the proposed algorithm.

The improvement column in Table I shows the percentage
improvement from using the optimized parameters in the DC-
OPF models compared to using the cold-start and hot-start pa-
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(c) Flow bias values ρ

Fig. 2. Boxplots showing the distributions of the parameter values (b, γ, and ρ) across various test cases for cold-start, hot-start, DCPF, and optimal methods.

rameters. The results show up to 90% and 79% improvements
in the squared two-norm and ∞-norm errors, respectively.

The box plot in Fig. 4 compares the mean generator outputs
for the IEEE 118-bus system across five formulations:
cold-start, hot-start, DCPF, DC-OPF with optimal parameters,
and AC-OPF. The vertical axis represents the generator output
in per unit, and the horizontal axis shows the different pa-
rameter choices. Each box illustrates the distribution of mean
generator outputs for non-zero generators across 2,000 test
scenarios, highlighting the variability and median for each
method. The figure shows that the DC-OPF with optimized
parameters (bopt, γopt, and ρopt) aligns closely with the AC-
OPF, as indicated by similar medians and ranges.

The graphical analyses provided in Figs. 5 and 6 offer fur-
ther insights into the performance of the proposed algorithm.
In Fig. 5, the generator setpoints for the IEEE 118-bus
test system are presented, where we compare the AC-OPF
solutions (i.e., pg,AC) with the DC-OPF solutions derived
from models with cold-start, hot-start, DCPF, and optimized
DC-OPF parameters. Fig. 5a displays the setpoints of indi-
vidual generators, excluding those that consistently reached
their maximum output limits across all parameter choices.

The alignment of setpoints with the 45-degree equality line
demonstrates how closely the DC-OPF models, particularly
the one with optimized parameters, mimic the AC-OPF re-
sults. Fig. 5b shows the average generator setpoints (p.u.)
with standard deviation ellipses across 2, 000 scenarios. These
ellipses illustrate the variability and performance of each DC-
OPF method, highlighting the consistency of the optimized
DC-OPF in closely matching the AC-OPF setpoints. The
inset focuses on generators with lower setpoints, providing a
detailed view of their alignment and variability. These results
demonstrate that our optimized DC-OPF parameters achieve
setpoints comparable to the more complex AC-OPF while
offering enhanced computational efficiency.

Fig. 6 shows the cumulative proportion of the absolute
errors between AC-OPF and DC-OPF solutions for the IEEE
118-bus system. The graph compares four scenarios: usage
of cold-start b, hot-start bhot, γhot, ρhot, DCPF bDCPF ,
γDCPF , ρDCPF , and optimized bopt, γopt, ρopt parameters,
shown on a logarithmic scale. Points located towards the upper
left represent better performance, indicating a larger proportion
of smaller errors, which demonstrates the improved accuracy
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Fig. 3. Scatter plots comparing hot-start (bhot, γhot, ρhot) and optimized (bopt, γopt, ρopt) parameter values across various test cases. The red dashed
line indicates a one-to-one correspondence.
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Fig. 4. Comparison of the generator outputs for the IEEE 118-bus system
over 2, 000 test scenarios. The box plot compares the performance of the
AC-OPF vs DC-OPF with four parameter sets: cold-start (bcold, γcold, and
ρcold), hot-start (bhot, γhot, and ρhot), DCPF-based parameters (bDCPF ,
γDCPF , and ρDCPF ), and optimized parameters (bopt, γopt, and ρopt).

of the DC-OPF solutions using the optimized parameters.
Observe that the maximum errors are less than 1.918 per

unit for the solution obtained from the optimized DC-OPF
model versus errors up to 3.133, 3.170, and 3.146 per unit
resulting from the cold-start DC-OPF with bcold, the hot-
start DC-OPF with bhot, γhot, and ρhot, and the DCPF with
bDCPF , γDCPF , and ρDCPF , respectively.

Finally, Table II summarizes the training, testing, and AC-
OPF model computation times. Training times, denoted as
ttrain, range from 13 to 9, 357 seconds. This represents a
one-time, upfront effort that is within reasonable ranges for
offline computations (minutes to hours for larger systems). We
note that the primary bottlenecks in training computations are
solving the DC-OPF problems and computing the gradients of
the loss function with respect to the parameters. On average,
solving the DC-OPF problems accounts for approximately
45% of the total training time, while computing the gradi-
ents contributes to 55% of the training time. We note that
an implementation that utilizes a stochastic gradient descent
method, as is often employed when training machine learning
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TABLE I
SQUARED TWO-NORM AND ∞-NORM LOSS FUNCTIONS USING 2, 000 TEST SCENARIO DATASET

Test case Squared Two-Norm Loss ∞-Norm Loss

εcoldMSE εhotMSE εDCPF
MSE [23] εoptMSE Improv. (%) εcoldmax εhotmax εDCPF

max [23] εoptmax Improv. (%)

14-bus 0.0070 0.0069 0.0069 0.0030 (57, 57, 57) 0.590 0.590 0.590 0.590 (0, 0, 0)
39-bus 0.3223 0.4248 0.3046 0.3029 (6, 28, 1) 5.877 6.215 5.784 5.585 (5, 10, 3)
57-bus 0.7445 0.6311 0.2054 0.1765 (76, 72, 14) 4.671 4.590 3.658 3.120 (33, 32, 15)
118-bus 0.1295 0.1221 0.1251 0.0123 (90, 90, 90) 3.133 3.170 3.146 1.918 (39, 39, 39)
200-bus 0.0031 0.0003 0.0003 0.0002 (93, 33, 33) 0.145 0.033 0.035 0.031 (79, 6, 11)
500-bus 0.0073 0.0069 0.0054 0.0030 (59, 56, 44) 1.356 1.000 0.950 0.890 (34, 11, 6)
2000-bus 0.0149 0.0161 0.0156 0.0069 (54, 57, 56) 0.829 1.024 0.967 0.623 (25, 39, 36)

(a) Generator setpoints
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Fig. 5. (a) Generator setpoints (p.u.) obtained by solving the AC-OPF problem and DC-OPF problems with cold-start, hot-start, DCPF, and optimized
parameters for the IEEE 118-bus test system. Generators that consistently reached their maximum limits across all models are excluded. The 45-degree
equality line indicates perfect alignment between the AC-OPF and DC-OPF setpoints, serving as a benchmark for comparison. (b) Average generator setpoints
(p.u.) with standard deviation ellipses across 2,000 scenarios.
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Fig. 6. Cumulative proportion of the absolute error between AC-OPF and DC-OPF (in per unit) for the IEEE 118-bus system over 2, 000 test scenarios.
The graph compares four scenarios: usage of cold-start (bcold, γcold, and ρcold), hot-start (bhot, γhot, and ρhot), DCPF (bDCPF , γDCPF , and ρDCPF ),
and optimized (bopt, γopt, and ρopt) parameters, shown on a logarithmic scale.

models, could reduce both components of the training time.

Post-training, the solution times for the DC-OPF model

(tDCOPF ) range from 0.009 to 1.304 seconds per scenario,
significantly faster than the AC-OPF model due to the sim-
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TABLE II
CPU TIME IN SECONDS

Test case 14-bus 39-bus 57-bus 118-bus 200-bus 500-bus 2000-bus

ttrain 13 17 41 52 58 903 9357

tDCOPF 0.009 0.021 0.024 0.064 0.055 0.354 1.304

tACOPF 0.030 0.071 0.091 0.295 0.289 1.650 8.708

ttrain: Offline computation time to train the parameters.
tDCOPF : Online per-scenario computation time averaged over 100 scenarios.
tACOPF : Online per-scenario computation time averaged over 100 scenarios.

plicity of solving linear programs versus nonlinear programs.
Moreover, the variation in DC power flow parameters does
not impact DC-OPF solution times, which remain consistent
to within 2% across different parameter choices.

V. CONCLUSION

This paper presented an optimization algorithm for sig-
nificantly enhancing the accuracy of DC-OPF problems by
selecting coefficient and bias parameters in the DC power
flow approximation based on a sensitivity analysis. Employing
the TNC method for optimization alongside efficient gradient
computation techniques, an offline training phase refines DC
power flow parameters across a range of loading scenarios.
With squared two-norm and ∞-norm losses of up to 90% and
79%, respectively, lower than traditional parameter selection
methods for DC-OPF problems, our numerical tests demon-
strate a substantial improvement in DC-OPF solution accuracy
relative to the AC-OPF problem.

Our future work is evaluating the performance of the opti-
mized parameters in other applications, such as optimal trans-
mission switching, unit commitment, and infrastructure hard-
ening. Additionally, we plan to explore security-constrained
variants of these problems, with a particular focus on how well
the trained parameters generalize across related topologies,
such as those associated with the N − 1 line contingencies.
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