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Abstract— Despite their wide-scale deployment and ability to
make accurate, high-frequency voltage measurements, commu-
nication network limitations have largely precluded the use of
smart meters for real-time monitoring purposes in electric dis-
tribution systems. While smart meter communication networks
have very limited bandwidth available per meter, they also have
the ability to dedicate higher bandwidth to varying subsets of
meters. Leveraging this capability in order to enable real-time
monitoring from smart meters, this paper proposes an online
bandwidth-constrained sensor sampling algorithm that exploits
the graphical structure inherent in the power flow equations.
The key idea is to use a spectral bandit framework where
the estimated parameters are the graph Fourier transform
coefficients of the nodal voltages. The structure provided by this
framework promotes a sampling policy that strategically ac-
counts for electrical distance. Maxima of sub-Gaussian random
variables model the policy rewards, which relaxes distributional
assumptions common in prior work. The scheme is implemented
on realistic electrical networks to dynamically identify meters
exposing violations of voltage magnitude limits and illustrating
the effectiveness of the proposed method.

I. INTRODUCTION

Sensing infrastructure plays a critical role in the modern
control and operation of electricity networks and is crucial
for applications such as state estimation, system identifi-
cation, and data-driven control schemes [1]-[4]. For trans-
mission networks, observability is maintained by using pha-
sor measurement units and micro-phasor measurement units
widespread across the multiple substations. This allows for
continuous monitoring of the entire system. The same level
of real-time observability is not available for distribution
networks, however. Smart meters with advanced metering
infrastructure (AMI) could help address this problem.

The number of smart meter installations across the United
States continues to increase, reaching 107 million units in
2021 [5], accounting for more than 50% of all electricity
meters installed nationwide. By regularly measuring and
recording the nodal voltages, currents, and power injections,
smart meters have the capability to increase visibility into
distribution networks [6]. The frequency and consistency of
the recorded data make them good candidates for real-time
control and operation applications in distribution networks.
Smart meters have the added benefit of being widely avail-
able in existing systems, eliminating the need for additional
infrastructure investments to increase network visibility.

Smart meters send measurements to a central server which
performs various calculations, often for customer billing
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purposes. The smart meters communicate these measure-
ments through channels with limited bandwidth connections
to the central server [7]. While the communication network
bandwidth is sufficient to send power consumption data at
15-minute to hourly intervals for billing purposes, band-
width limitations pose a significant challenge for real-time
monitoring purposes, especially when limited bandwidth is
shared by many smart meters. However, new smart meters
can be dynamically queried such that varying subsets of the
meters can report data at high frequencies. This motivates the
development of new algorithms to leverage this capability for
real-time monitoring purposes.

This paper focuses on the task of dynamically identifying
smart meters to query with the goal of revealing violations of
voltage magnitude limits so that system operators can under-
take corrective actions. With rapidly growing deployments of
distributed energy resources contributing to substantial vari-
ations in power injections, system operators would benefit
from algorithms for real-time online identification of voltage
violations. This necessitates dynamically selecting varying
sets of smart meters to identify voltage violations.

A. Related work

Smart meter data has been used for real-time monitoring
in electric distribution networks [8], [9], and many other
applications in load forecasting, demand response, and con-
sumer characterization applications [10]. Moreover, there is
a rapidly growing number of works that develop sensor
selection methods for various monitoring tasks in infrastruc-
ture network settings. The work of [11] developed a game-
theoretic approach to network monitoring, while [12] devel-
oped a change-point method based on bandit algorithms—a
highly similar line of research to ours. Distinct from the
bandit formulation, [13] developed a method to detect change
points. More broadly, adaptive sampling techniques have
seen recent innovation in continuous environments [14].
Recent work developed an Upper Confidence Bound (UCB)-
type algorithm where the rewards are extreme quantities
derived from a Gaussian process reward function [15].

Additional authors have developed a wealth of methods
for sensor placement in generic network settings. A rich
literature from the authors of [11], [16], [17] has devel-
oped analytical zero-sum game approaches to time-invariant
network inspection. Additional online efforts have explored
reinforcement learning algorithms [18].

In the electric distribution network setting, sensor selection
strategies for network topology identification [19] have been
developed with identifiability guarantees. The seminal work
in [20] developed submodular algorithms for sensing appli-
cations in water distribution networks. Nevertheless, online
algorithms of this kind have yet to be utilized for strategic
detection of the network constraint violations.



B. Proposed Framework and Contributions

This work proposes an online resource-constrained sensor
sampling algorithm that exploits the graphical structure in-
herent in the power flow equations. The key idea is to use a
spectral bandit framework, where the parameters we estimate
are the graph Fourier transform coefficients of the nodal
voltages. The structure provided by this framework promotes
a sampling policy that accounts for electrical distances.

This paper is part of an extensive and growing literature on
multi-armed bandit algorithms [21], [22]. We are particularly
close to works on context-varying linear bandits [22], the
large body of work on bandit algorithms leveraging graph
spectral structure [23]-[26], and combinatorial bandits [27],
[28]. Recent work in [26] introduced a graph-based upper
confidence bound algorithm similar to ours.

Our work uses the language of bandits, which is a partic-
ular sequential game formulation. This enables us to recur-
sively solve the sensor sampling problem to detect violations
of constraints on nodal states in a streaming fashion. To the
best of our knowledge, this is the first such work to do this.

In summary, the contributions of this research are:

1) A stochastic LinDistFlow model, developed in Section
which is agnostic to the probability distributions of
the nodal power injections.

2) A novel sub-Gaussian characterization of nodal volt-
age magnitudes arising from the above model, cou-
pled with concentration inequalities for their maximal
fluctuations; in particular, these inequalities explicitly
depend on the network model topology and parameters.

3) A new spectral bandit algorithm, developed in Section
IV} which strategically samples a small subset of nodes
to expose maximal voltage magnitude fluctuations.

C. Notation

For a matrix A € C™*? we denote its transpose as
AT. The p norm of a vector z € R™ is denoted as []],-
We denote a norm of vector x with respect to matrix A
as ||z||, = VaTAz. The imaginary unit is j := /—1.
Expectation and probability are denoted as E {-} and Pr {-},
respectively. We write a < b if @ < Cb for some universal
constant C'. The symbol 1 is a vector of all ones, and diag(-)
is a diagonal matrix with entries given by the argument.

II. PROBLEM SETTING

In this paper, we focus on analyzing an undirected graph G
that represents a distribution network in power systems, with
nodes denoted as N := {1,...,n}, and lines represented by
& C N x N. The structure of the graph is akin to that
of a power distribution network, although the framework
we develop could be extended to other network types. Let
A€ {-1,0,1}™*" be the edge-to-node incidence matrix of
the network, and let w := [wij](i,j) ce be a vector of edge
weights ordered corresponding to the rows of A; they both
may model self-edge weights. We construct the weighted
graph Laplacian matrix as Y := AT diag(w)A.

Let {Ai,qx}?_, be the eigenpairs of L ordered with
0 < A\ < < A,. Assume that the Laplacian is
diagonalizable as L := QAQT, where Q is an orthogonal

matrix, i.e., QTQ = I, where each column is an eigenvector,
and A :=diag(A1, ..., \n).

A. Power flow model for distribution systems

A convenient graphical model for a single-phase dis-
tribution network can be constructed from mild assump-
tions. The network admittance matrix takes the form Y :=
AT diag(w)A € C"™*". We define the complex nodal power
injections as s € C", which take the form s = diag(z)Lx
with real (active) and imaginary (reactive) components given
as p := Re{s} and ¢ := Im {s}, respectively.

We consider a well-known linear approximation known
as LinDistFlow to represent the nodal voltage magnitudes
in radial distribution networks based on Laplacian matrices;
we refer the reader to [29, Sec. 2] for additional exposi-
tion. Owing to the tree structure of distribution networks,
the incidence matrix with the first column removed, A €
{0,4£1}""", is square. Setting 7,z € R™ to denote the
line impedances, we can approximate the nodal voltage
magnitudes v € R" as v = vyl + Rp + Xq, where
R:=G 'and X := B™!, where G,B € R"™" are n x n
Laplacian matrices of the form G := AT diag(r)"'A and

= AT diag(z)'A.

Since the Laplacian matrices G, B are symmetric positive-
definite, G, B =~ 0 [29], they have orthogonal eigendecom-
positions of the form G := WgAgWT, and B := WbAbWJ,
where I/VgT Wy = I/VbT Wy, = I,,. The parameters that we wish
to estimate are the time-varying graph Fourier coefficients
of the voltage magnitudes in its appropriate basis, which
we denote as 1) := W 'v; the coefficients for the active
and reactive power injections are similarly p := WTp and
0:= Wb q, respectively.

Assumption 1. The ratio of reactive to active injections,
Kk = qi/pi, Is the same for all nodes i € N in the network.

Physically, Assumption |I| is equivalent to the statement
that all power factors are the same at every node in the
network. Importantly, while Assumption [T]aids the forthcom-
ing theoretical analyses, our numerical results in Section
empirically indicate that it may be unnecessary in practice.
The algorithm appears to perform well in our experiments,
even if Assumption [1] is not satisfied!T]

Lemma 1. Given Assumption |l| there exists a Laplacian
matrix L = (R + XIk)~! and orthonormal eigenbasis W
such that L :== WAWT, A := diag()\l, ..y An), and the
LinDistFlow model is then v = v*1 + LTp for any p € R",
where {- }Jr denotes the Moore-Penrose pseudoinverse, and

v® is a nominal voltage, e.g., 1 per unit (pu).

We prove the Lemma in Appendix [A] The Laplacian
eigenbasis W allows us to construct the graph Fourier
transform of the nodal injections and voltages, which we
write as p := W Tpand v := W T, respectively. Substituting
these transformations into the LinDistFlow model yields the
following representation of the voltages

v—0v'1l=LIp=WA'WTp=Wwy (1)

'In distribution networks, as in this paper, power factors for inverters
are a quantity that can be chosen by the user via remotely programmable
settings. Loads have uncontrollable power factors, typically near unity.
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Fig. 1. Illustration of the problem: Given an aggregate bandwidth limit
across nodes, adaptively design sampling a policy S C N to expose
violations of voltage magnitude limits.

in the graph Fourier basis W .

B. Action set and reward formulation

The proposed sensor sampling problem can be naturally
expressed in the language of multi-armed bandits. At each
measurement interval, or round t, the learner selects a
subset of no more than b nodes to sample for the purpose
of identifying possible voltage constraint violations in the
network. Thus, the set of all available sampling strategies is
defined via the action set

A={Se2V . |S| <}, )

of which there are |A| = (Z) possible strategies. The action
set is a subset of the n-dimensional hypercube: .4 C {0, 1}".
This is a classic example of a combinatorial bandit problem;
see [27], [28] and [21, Ch. 30] for detailed discussions.
Often, engineers wish to use sensors in distribution sys-
tems to determine how far away nodal voltages are from
their nominal values. Thus, an appropriate model for the
effectiveness of a sampling strategy S € A is the maximum
deviation from the nominal value observed at any node i € S.
Concretely, after selecting sensors S € A to query, the
learner then observes a reward r : A — R in the form

r(S) = max lv; — ]| = ?;?:I(wi,wl , (3)

where v; and v] are the sampled and nominal voltage at
node i € S C N, respectively. The voltages v; are random
variables distributed as v; ~ D;, where D; is an arbitrary
distribution for all nodes i € N. Hereafter, the nominal
voltage v; will take the form of the expected value of
that nodal quantity, conditioned on past observations, v; =
E {v;|Fi—1}, where F;_ is a filtration, which is a collection
of all past input-output pairs (w;,v;) up to time ¢.

Note that the reward (3)) is larger for sampling strategies
that expose extreme deviations of the nodal quantities from
their nominal values. Further, it has additional appealing
properties, described in Lemma [2]

Lemma 2. The reward function v : A — R is monotone sub-
modular in A and 1-Lipschitz (see proof in the Appendix [B).

At each round or time step, t = 1,...,m, the distri-
bution network loads have a (stochastic) series of power

injections/absorptions p1,...,p; € R"™, which correspond
to Fourier coefficients 1, ...,%,, € R™. The learner then
selects subsets of sensors Si,...,S8; € N to query. The

regret of the learner over m time steps is

m
Ry =E gngjzr(‘?) _T(St)}v (4)
t=1
which the learner wishes to minimize; we, in turn, wish to
bound it. The regret @) models the cumulative differences
between the maximal average perturbation around a nominal
point and the maximal perturbations observed by our chosen
sampling policy.

III. STOCHASTIC LINDISTFLOW MODEL

In this section, we propose a stochastic, distribution-
agnostic LinDistFlow model. Given a mild assumption on
how the power consumption of distribution grids behave, we
use the structure provided by LinDistFlow to probabilistically
model the extrema of voltage magnitude fluctuations about
a nominal point.

A. Concentration of bounded Sub-Gaussian sequences

Many of our results rely on sub-Gaussian concentration.
We recall the definition of these random variables below.

Definition 1. A random variable x € ;RJS sub-Gaussian with
parameter o if E {e)‘(xfE{””})} < er/2 for all X € R.

We begin by making a general statement on the fluctuation
of random nodal voltages around their nominal values;
critically, we make no assumptions on the distribution of
these voltages. We will instead use the following large class
of random variables.

We emphasize that this work does not assume specific
distributions for any random quantities. Instead, a family
of possible distributions is considered. Concretely, for each
sampling interval ¢ = 1,...,m, let p; := p* 4+ p, € R™ be
the nodal injections, where p® is a nominal value, and p, is
a random change in the nodal injections with an unknown
distribution. The only assumption is that the range of nodal
power consumption can be inferred, as we now describe.

Assumption 2. Assume that the range of power consumption
at each node i € N is a predictable process, and thus, we
can infer bounds on the injections {(pf"", pf®)}i~, from

historical data such that p; € [ptmi", p;"ax}n almost surely.

Hereafter, denote A; = p"* — pMn > (. We em-
phasize that Assumption [2] relaxes Gaussianity assumptions
common in prior work (e.g., [30], [31]), which we discuss
in Appendix The following results are valid even if
(pin pma) are the largest physically plausible injections,
i.e., grid constraint bounds. Access to tighter bounds forecast
by the sensors only serves to make the results more precise.

First, by using the structure of the LinDistFlow model,
Assumption 2]immediately gives rise to concentration bounds
for the nodal voltages.

Lemma 3. If Assumption [2| holds, then for each i € N we
have that v; — v® is a sub-Gaussian random variable with

parameter A [|[A w;| |2.



Lemma [3] proven in Appendix [C| characterizes a family
of possible distributions on the voltage magnitudes that
arises from Assumption [2| Applying sub-Gaussian maxima
concentration leads to our first primary result.

Theorem 1. Let S C N be a sampling of b nodes. Suppose
that Ay = A for all t, and suppose that LinDistFlow
accurately represents the network model. If Assumption [2]
holds, we have

° 1 —1 2
E {Tglvi — v I} S SAmax|[A [, v/ 2log(b); (5)
moreover, for all € > 0

—2¢?

A2 A-1w, |2
max [ A~ |l

P ;i — v <2b
r{rlneasxh)Z ’U1|>6}_ exp

(6)

Theorem [I]is proven in Appendix [D} There is an intuitive
physical interpretation for these results. The results provide
probabilistic predictions of the worst-case fluctuation of
nodal voltages that would be observed by a sensor sampling
strategy S C N these predictions can inform how sensors
should be selected. The result is achieved by virtue of the
graphical structure of the LinDistFlow model, coupled with
the mild Assumption 2] on bounded load behavior.

B. Confidence ellipsoid

Regret guarantees for spectral bandits typically assume
the Laplacian L to be positive semi-definite. This is not
guaranteed in general for distribution networks—the power
factor ratio x or the reactances  may be negative, potentially
rendering L indefinite [32]. However, we can construct a con-
dition using the physical structure of distribution networks
to ensure that L meets this requirement. This pursuit begins
with an assumption that mirrors [33].

Assumption 3. Let k € R as in Assumption [I} and let £
(resp. £_) be the subsets of all lines (i,j) € € where 1;; +
Kx;j is positive (resp. negative). Let Ly be the Laplacian
constructed from the subnetwork (N',E,). Assume that

|ri; + Kxij] > e L+e” V(i,7) € E-, 7

where e;; 1= e; — e; is the dljference between the i-th and
Jj-th basis vectors, and e, L Le;; is the effective resistance
between nodes i,j € N.

Intuitively, Assumption [3] can be understood as requiring
the effective impedance between any two points in the
network to be non-negative. The above condition leads to
the following result.

Lemma 4. If and only if Assumption [3] holds,
L > 0. ®)

Proof: If the network lacks cycles, Assumption [3] is
necessary and sufficient for the claim to hold, see [33, As.
3.1]. By radiality, a single-phase distribution network lacks
cycles; the claim is then a corollary of [33, Thm. 3.2]. ®

C. Sampling policy and regret

We now provide a bound on the regret of the strategic
sampling policy, which is a combination of [27, Thm. 1] and
[23]. For a sampling strategy S C N, we let Ws € Rb*"
denote the submatrix of W with rows corresponding to S.

Theorem 2. Let Vi = A+ )" | Wi Ws,, then there exists
a é € (0,1) and constants c; for all t =1, ..., m such that
with probability 1 — 0§, 1 lies in the confidence set

ct={¢eﬂ%<”:\]z$t— _ct}; ©
moreover, if Assumptions and I hold, and |wTw| <1

for all i € N, the regret @) of the sampler over m periods
is bounded, relative to (1 —1/e), a

Ry, < O(dvVbm), (10)
where d is the effective dimension, defined in [23] as
m
d:= st (D)< ——m—— 11
max i st (-Dhsmany (D

where A1 is the smallest eigenvalue of the admittance matrix.

The result in Theorem [2] can essentially be understood as
stating that the regret of the proposed sampling algorithm
grows sublinearly, with a scaling factor that is at most
the number of nodes, d < n.

IV. SENSOR SAMPLING ALGORITHM

1) Iterative selection of nodal upper bounds: The greedy
algorithm in [34] approximately maximizes a normalized,
monotone, submodular objective function F' : N R
subject to cardinality constraints. In particular, the algorithm
solves the program maxgcon F'(S), subject to |S| < b,
within a tolerance of (1 — 1) of the global solution.

This algorithm will be integrated into our bandit frame-
work; see [27] for exposition on how the integration of this
step into the algorithm affects the regret bound.

To construct our proposed algorithm, we first define an
optimistic upper bound on the reward function 7 : A : R" —
R. This reward leverages the confidence ellipsoid developed
in Section [[II-B} it takes the form

- T
#(S) = max |wl'6 - ot

v, (12)
where c is the exploration parameter. In Algorithm I} Ws €
RP*" is the submatrix formed from the b rows of the basis
W indexed by S.

A. Spectral UCB

Online decision-making problems where the rewards are
generated from an underlying graphical model can be solved
with the spectral bandit framework [23], [25]. In summary,
these algorithms seek to recursively solve the regularized
least squares program

wt =arg mlnz

PER™ 1

—(we, )+ BN, (13)

where w, € R" is the row of the graph Fourier basis W
selected at time step s, which in our case, corresponds to



Algorithm 1 EXTREMESPECTRALSAMPLER
Require: {n,m,b}: # nodes, pulls, and samples/pull,
{A, W}: spectral basis of L,
{A, 8}: regularization and confidence parameters,
{pmin pmax1: report bounds on nodal injections,
CA pmax _ pmin
s d <+ (]EI)
fort=1,...,7 do
S+g,i+1
while : <b do 1> Choose b nodes (b rows of W)
k‘i <— arg manEN 7:(81‘_1 n {j}) — ’I:(Si_l)
S+ Si_1N {]@}
i1+ 1
end while
Observe noisy voltages v; < v*® + Ws) + 1
Observe noisy reward r; <— max;cs, |’LU;I—’L/)‘
Update Fourier coefficients
Vigr = Vi + WgWs
Y =V, S
: end for

e A Il >

—_—
N 2w

—_
(98]

having sampled the sensor at node i, € N. The regular-
ization parameter 5 > 0 is chosen by the user; a particular
choice of 8 that depends on the effective dimension of the
Laplacian allows the program (T3] to achieve superior regret
in comparison to standard least squares [25, Thm. 8]. The
regularizer ||-||, is the following norm defined in terms of
the graph Laplacian:

‘WHA = VYT Ly =

D wi( — )2

(i,5)€E

(14)

The regularizer (T4) as a regularizer promotes predictions
of the voltages that are spatially smooth; specifically, it
promotes solutions where the voltages are similar at well-
connected nodes, see [23] for greater details. The program
(T3) has a closed form solution at each time ¢ of the form

t—1 -1
b= Y wew! + BA > wao, (15)
s=1 s=1

V. NUMERICAL EXPERIMENTS

Experimentally, we demonstrate the proposed method on
the case33bw network [35]. A demonstration of the on-
line sampling algorithm is shown in Fig. [2] for the simple
case where all power factors are unity (a; = 1 for each
i € N). The spectral regularizer (I4) in the leftmost pane
is juxtaposed with the conventional LinUCB (online least
squares) algorithm—which uses Tikhonov regularization—in
the rightmost pane. As expected, a sublinear growth in the
regret is observed, and the growth rate is markedly reduced
for SpectralUCB algorithm relative to the LinUCB algorithm.

In the next experiment, we do not assume unity power fac-
tors. Instead, the reactive power control parameters vary for
each node. We generate these control parameters randomly
as fixed power factors bounded between 0.90 to 1, i.e., 0 <
K < 0.48. Similarly, the signs of the reactive power injections
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are generated according to a Rademacher distribution, i.e.,
sgn(k) = =1 equiprobably. These parameters allow us
to construct reactive power injections for any fixed active
power injection, as we discuss in Appendix [A] Analogous
to the finding depicted in Fig. 2] the result shown in Fig. ]
still illustrates a significant reduction in cumulative regret
using the SpectralUCB algorithm compared to the LinUCB
algorithm.

Finally, we compute an “AC regret” quantity. Specifically,
over the entire time horizon t = 1,...,m, we precompute
voltage magnitudes corresponding to the true AC power flow
solution. This differs from the prior experiments depicted in
Figs. 2] and 3] where the LinDistFlow approximation of the
voltage magnitudes serves as the ground truth. Instead, we
compute the regret @) as R; = E {23:1 7(Sac — T(St)},
where S, is the clairvoyant optimal sampling strategy given
from the AC solutions. The result shown in Fig. ] demon-
strates a similar trend for a reduction of the growth rate in
regret using the SpectralUCB algorithm as in Figs. 2] and [3]
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VI. DISCUSSION AND CONCLUSION

This work proposed a method to selectively sample
streaming sensors in electric distribution networks according
to a security criterion—the maximal voltage fluctuations
around a fixed, nominal value. The key idea is to embed the
graphical structure of distribution networks into a spectral
bandit algorithm, which promotes a sampling policy that is
electrically disperse.

In contrast with past work that relies on Gaussian assump-
tions, we used a distribution-agnostic framework to develop
a stochastic LinDistFlow model. This enabled us to develop
a principled model for the perturbations of nodal voltages
around an operating point without knowledge of the specific
distribution driving network loads.

While the greedy submodular maximization approach we
used is a well-known approach for solving optimization
problems over sets, it has numerous limitations. It is not
guaranteed to converge, its approximation of the coverage
is not accurate, its computational efficiency is extremely
slow, and it does not allow for uncertainty in the objective
function. Future work by the authors will explore more
recent “extreme” bandit frameworks, such as the inverse gap
weighting approach [36].

Critically, the strongest theoretical assumption we made
to simplify our analysis, Assumption [T} did not appear to
significantly affect the numerical experiments in Section [V}
While we have used synthetic test data, ongoing work by the
authors is developing a testbed to investigate the performance
of the proposed algorithms on actual networks.
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APPENDIX
A. Proof of Lemma [I]

Proof: First, note that for any fixed active injection
p and known reactive settings o € (0,1]" and sgn(q) €
(0,£1)", we can express the corresponding reactive injection
qg € R™ as q := Kp, where K is a diagonal matrix with
entries that take the form K;; = sgn(qi)ai_l V1 —a? for all
i € N. Then, note that

v=v"1+Rp+Xqg=vl + (R+ XK)p (16a)
=v°® + A" diag(r)A™ "p + A™ ! diag(kz)A"Tp (16b)
=® + A Y diag(r + kIz)A™ Tp. (16c¢)

Now let LT := R + XK, where R, X are inverses of
Laplacian matrices. Under Assumption [I} K;; :=  for all
i € N, hence LT is symmetric, as L~ T = (RT + KTXT) =
(R+ kIX) = L. As L' is real and symmetric, it has
an orthonormal eigenbasis W € R™ ™ such that LT :=
WA—IWT, where A= = diag(A\[},...,\;!) is a diagonal
matrix of the reciprocals of the Laplacian eigenvalues.

|

B. Proof of Lemma [2]

Proof: Leta: A — {0,1}" map a sampling strategy
S € A to a binary vector whose entries take a;, = 1 if
i € § and 0 otherwise. Notice that we can equivalently write
r: A— R forany S € A as

r(S) = ||diag (a (S)) LT (y — u2)|| . -

where ||-|| : R" — R, is the infinity norm. Now, recall
that any norm ||-|| : R™ — R is L-Lipschitz, where L is the
smallest L > 0 that satisfies ||z|| < L ||z]||, for any € R™.
By norm equivalence, we have that ||z||_ < ||z||, for any
z € R™. We conclude that 7 is 1-Lipschitz.

Monotonicity clearly holds; for all S,& € 2V such
that S C &, we have that r(S) < r(6). Additionally,
normalization also clearly holds as () = 0.

Let the centered voltages be o; := v; — E{v;} for all
1 € N. To establish submodularity, we want to show that for
all $ C & € 2V that

r(8)+r(6)>r(SNG)+r(SUG).

a7

(18)
Using the mapping a : A — {0,1}" as before, we obtain

r(SNG)+r(SUB) =||(a(S) ca(6)) o ||, (19)
+ [[(a(S) + a(&) — a(S) 0 a(6)) o ]
We complete the proof in cases. First, suppose that S C S;
this means a(S) o a(&) < a(S), where the inequality is
elementwise. The inequality is legal because for all i € G\ S,
it holds that a(S);a(&); = 0. Hence,
r(§N6)+r(SUBG) <|la(S) o vl +[la(S) o v]|
=7r(8) + r(6).
For the second case, take & C S, and note that we can
equivalently have a(S)oa(6) < (&) and thereby yield the
same bound (20). For the final case where S NS = (), by
applying the triangle inequality, we obtain
r(SNG)+r(SUB) = ||(r(6) +r(S)) 0||
< |Ir(®) 0 ll,, + [Ir(S) 0 3l
=7(S) +r(6).
Thus, we conclude that holds for all S,& C 2V, and
therefore, the reward r is submodular.

o *

(20)

21

C. Proof of Lemma 3| (sub-Gaussianity of nodal voltages)

Proof: We suppress dependence on t for convenience.
It is well-known that Assumption [2] implies that p is a vector
of sub-Gaussian variables with parameter %A [37, Ex. 2.4].
For each node i € N and any s € R, let ¢; € R™ be the i-th



row of the Laplacian L. The moment-generating function of
fluctuations in v; is conditionally bounded as

E, {esm—Et{w})} =E{ [N (22a)
j=1
CIIefern) e
j=1
2) 2 -
(g) H 6%52Wi2j >‘j 2A2 (220)
j=1
— 3 (I WHNTAY)  (204)

In the above display, step (1) is by assumption of indepen-
dence of the injections and step (2) is by sub-Gaussianity of
p with parameter fA Thus, by Definition I we see that v;
is sub-Gaussian W1th parameter 3 1A HA Lw; o? where w; is
the i-th row of the eigenbasis of the Laplacian.

Next, we apply the Cramér-Chernoff bound. For any s >
0, by Markov’s inequality we obtain

E {es(v,;—Et{v,;}) }

S€ (23)
l» e%‘szAZHA—l

Pr {’Ui —E {Ul} > 6} <
e

To make the upper bound (23) as small as possible, we
minimize the exponent with respect to s > 0, which yields
_ —2¢?
A A

By including both tails in the bound, for all ¢ € N we have

2
2;2 . (24)
A2 [|A= 1w,

. 1 _ 2
inf 207 (|4 - s

Pr{lvi — E{v;}| > ¢} < 2exp{

D. Proof of Theorem

Proof: We emphasize that the voltages need not be
independent. To simplify notation, define the centered nodal
voltages as ¥; := v; — E {v; }. By applying the union bound,
we obtain

Pr {Tea‘;( |0;| > e} =Pr {U |0;] > e} (25a)
i€S
—2¢2
< Pr{|o;| > e} 2bexp 3
2 A% max AT
(25b)
Therefore, in expectation, we have
E {max |171|} = / Pr {maxm > e} de (26a)
i€S 0 €S
M oo .
< c+/ > Pr{|oi| > €} de (26b)
€=Cies
(2) b —92¢2
< c+/ 2bexp € 5 de,
e=c AZ max |[A~Tw; |5
i€S
(26¢)

where inequality (1) follows from the union bound and the
fact that the probability of any event is upper bounded by 1,
combined with the fact that f(f Pr{max;cs |0;] > e} de < ¢,
and step (2) follows from the tail bound (23). Differentiating
the upper bound with Leibniz’s rule and solving for the
minimizing c yields the desired result.

|

Remark 1. With a more complicated argument, it is known
that 26) can be sharped to E {max;cs |U;|} < os+/log(b),
as discussed in [38, 2.5.10].

E. Proof of Theorem

By Assumption [3]and Lemma ] the initial gram matrix is
positive definite, Vg := Al + A > 0. We need the following
result, which appears in multiple forms in [39, Lemma 11],
[25, Lemma 19], and [21, Lemma 19.4].

Lemma 5. Let wy, t = 1,...,m be a sequence of rows
of the eigenbasis of the Laplacian chosen for the sampling
strategy.

noo 9 detV,,
;mln {1, Hwt||vt—_11} < 2log <detVo (27)

The following proof for the confidence ellipsoid is a
straightforward update to [25, Lemma 20].

Proof: We first show that there exists a C > 0
such that |[¢||, < C. Let vy := v® + W¢* + 1, where
N = WA™! Arpt Note that p; € [p"", p"®|" a.s., then by
Lemma [3| we obtain that 77,5 " is sub-Gaussian with parameter
A ||AT lez Then write 9y = (w;, 1*) +n;; note that the
Fourier coefficients are bounded as

[9* ||, = VOTWAWTw = VuT Lo = /o Tp
sJﬂmwﬂwwuwwy:o

Let V; := A—|—Z 1 wsw] and let & = Zt;:ll n-w,, where
nr is sub-Gaussian with parameter o. We have that for any
node i € NV, the voltage prediction error at time ¢ satisfies

(=9 = [(w, VA + V)| 28a)
=
(2)

(v R v Rty + (Vi v R )| esb)

< oy (el + (1A~ ], ) (280)

where steps (1) and (2) are by the triangle inequality and
Cauchy-Schwarz, respectively. We then apply [39, Lemma
9] under our Assumption [2} with probability at least 1 — §,

1o oiiaoa 2 detth/2
el < 3 0t s Fos )

By [39, Thm. 2], for any w € R" and for all ¢ > 1, if
[|*||, < C, then with probability at least 1 — ¢ it holds that

det Vl/2

]<w,q/}t —w*>) <lwlly+ | Ry2log 5ot +C

(30)
The regret bound follows by combining [27, Thm. 1] and
[23, Thm. 1], and applying Lemma [ ]
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