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Abstract—This paper presents probabilistic bounds for the
spectrum of the admittance matrix and classical linear power
flow models under uncertain network parameters; for example,
probabilistic line contingencies. Our proposed approach imports
tools from probability theory, such as concentration inequalities for
random matrices with independent entries. It yields error bounds
for common approximations of the AC power flow equations
under parameter uncertainty, including the DC and LinDistFlow
approximations.

Index Terms—Admittance matrix; Concentration inequalities;
Sampling; Uncertainty.

I. INTRODUCTION

A. Motivation

In network problems, the underlying graphical structure of
the electric power system itself may be uncertain, estimated,
controlled, or optimized. Such problems are common and
challenging in many power engineering settings. In many
such cases, a model is partially or completely unknown,
resulting in the topology or model parameters being intrinsically
uncertain. This can be a source of uncertainty in power
system computations, which may cause downstream impacts
on decision-making tools.

At the same time, even in the case where the model is
known with certainty, many network control problems—such as
transmission switching or network reconfiguration—may have
vast combinatorial solution spaces, which may be challenging
to search through. In both settings, it is desirable to understand
how such randomness propagates through the power flow
equations via the admittance matrix. To this end, we propose
admittance matrix concentration inequalities as a fundamental
tool for working with random power networks models.

B. Novel Contributions

This paper presents probabilistic bounds on spectral pertur-
bations in admittance matrices. Our results make use of the
progress in applied probability theory—in particular, sharp
matrix concentration inequalities due to [1]—and address

several linear power flow models used in the literature for
transmission and distribution networks alike, via the linear
AC power flow (LACPF) approximation due to [2], [3]. This
allows us to model the DC and LinDistFlow approximations
under uncertain network parameters.

C. Proposed Approach

We consider a power network modeled by an undirected
graph with n nodes and m possible (but not necessarily
connected) lines. We reserve the index l for lines (edges), so
that l ∈ [m] := {1, 2, . . . ,m}, and l = (i, j) where i, j ∈ [n]
are the indices reserved for the nodes. We denote by A ∈
{−1, 0, 1}m×n the branch-to-bus incidence matrix, whose
rows {al}⊤l∈[m] are the incidence vectors associated with each
line l = (i, j) ∈ [m], where al := ei − ej , with ei denoting
the i-th standard Euclidean basis vector in Rn. We consider a
vector w ∈ Cm of random line admittances wl ∼ Dl, where Dl

is the admittance distribution for each line l = (i, j) ∈ [m],
which is not necessarily assumed to be known.

This work studies random admittance matrices of the
form Y := A⊤WA, where W := diag(w) is the diagonal
matrix with the entries of the complex weight vector w ∈ Cm

on the diagonal. There are several situations where this model
is useful, as discussed in Section I-A. How do such matrices
Y behave? We provide precise answers to this question under
an array of assumptions; those answers come in the form of
upper bounds for the quantities

E [∥Y ∥] and Pr (∥Y ∥ ≥ t) for some t > 0,

i.e., for the expectation and the tail probability of the operator
norm ||Y || =

√
λmax(Y

∗Y ) of the random admittance matrix.

D. Plan of the paper

We outline several applications of the proposed approach,
such as bounding the error of linear power flow approximations
under parameter uncertainty, including in the I-V formulation
of the power flow equations, and bounds for popular linear



approximates relative to the AC power flow equations. Addi-
tionally, we will demonstrate an application in constructing a
screening model for network reconfiguration.

II. BOUNDING THE SPECTRUM OF ADMITTANCE MATRICES

In this section, we present bounds on the error of the
admittance matrix Y ∈ Cn×n. In particular, we will study
the following block Laplacian matrix operator, also known
as the flat start Jacobian. This matrix captures the spectral
behavior of both the admittance matrix, and the behavior of
linear approximations of the power flow equations about the
flat start; see Appendix A for details.

Definition II.1 (Flat start Jacobian). For an arbitrary power
network modeled by an undirected graph G = (N , E), where
n := |N | and m := |E|, define the linear power flow operator

F :=

[
G −B
−B −G

]
∈ R2n×2n, (1)

where G,B ∈ Rn×n are graph Laplacian matrices correspond-
ing to networks with sufficiently many strictly positive (i.e.,
conductance) edge weights such that rank(G) ≥ n − 1 or
real-valued (i.e., susceptance) edge weights, respectively.

The matrix F is the standard power flow Jacobian matrix
evaluated at the flat start condition; see Appendix A for a
concise derivation. The matrix F is symmetric-indefinite, due
to the following practical assumption.

Assumption 1. The conductance and susceptance edges
weights are such that

G ⪰ 0, and B ⪯ 0.

See [4] for a discussion of the conditions on the susceptances
required for B ⪯ 0 to hold.

In addition to being the flat start Jacobian, the matrix F
can also be interpreted as being equivalent to the admittance
matrix up to phase shifts. By this, we mean that the matrix F
is equivalent to the lifted, real-valued version of the standard
admittance matrix Y . In particular, if we let G = Re(Y )
and B = Im(Y ), and define

Ȳ :=

[
G B
B −G

]
∈ R2n×2n, (2)

only the sign of B is flipped in (2) compared to F , i.e. Ȳ is
isomorphic to the Jacobian F under a phase shift of π.

Note that the matrix Ȳ is symmetric; it can be easily seen
to have the same operator norm as Y . Its 2× 2 block structure
suggests the decomposition as a sum of Kronecker products [5]:

Ȳ =
∑

(i,j)∈E

[
gij bij
bij −gij

]
⊗Eij :=

∑
(i,j)∈E

Υij ⊗Eij

:=
∑

(i,j)∈E

M ij ,

where {Υij}(i,j)∈E is a sequence of 2× 2 random symmetric
matrices representing the uncertainty in the connection (i, j) ∈

Number of edges |𝓔|
0 100 200 300 400

S
p
ec

tr
a
l 
n
or

m
 ‖

Y
‖ o

p

2.5

5.0

7.5

10.0

12.5

Experimental

Theoretical

Fig. 1. Comparison between the analytical bound for expected operator
norm E[||Y ||] of the admittance matrix and 200 experimental samples, plotted
against the number of lines in the network. In this simple numerical experiment,
the networks were generated using the homogeneous Erdős-Rényi model,
i.e. by switching all possible lines independently with some probability p, and
changing p to increase the number of switched lines. Minor discontinuities in
the theoretical curve are due to randomness in the number of switched lines.

E , and the sequence of random matrices {M ij}ij∈E decompose
the entire network in terms of elementary Laplacian matrices,
which we now define.

Definition II.2 (Elementary Laplacian Matrix). For each
line (i, j) ∈ E , let Eij ⪰ 0 denote the positive-semidefinite
elementary Laplacian matrix

Eij := eije
⊤
ij := (ei − ej)(ei − ej)

⊤,

describing the normalized subgraph between each pair i, j.

A. An illustrative example: Admittances bounded by 1 per-unit

In many applications, it is useful to understand how a
power network will behave under uncertainty in the admittance
parameters, where the uncertainty has a bounded size. We now
give an illustrative example of bounded admittance uncertainty
in a network with fixed, known connectivity. In the sequel, we
will allow for uncertain connectivity.

Theorem 1 (Concentration of the admittance matrix with fixed
connectivity and bounded admittances). Consider a power
system with n nodes and m lines. Let ∆ = maxi deg(i) be the
maximum degree of any node in the network. Suppose that the
admittances are distributed according to any distribution wl ∼
D that satisfies |wl| ≤ 1. Then, we have

E [||Y ||] ≤
√
4∆ log(4n) +

2

3
log(4n).



Proof. First, bounding the operator norm uniformly
across M ij , we have

||M ij || = ||Υij || · ||Eij ||

= 2
√
λmax

(
Υ⊤

ijΥij

)
= 2

√
g2ij + b2ij

≤ 2 sup
(i,j)∈E

|wij | := L.

On the other hand, denoting with Z∗ the conjugate transpose
of a complex matrix Z, the matrix variance statistic (see [1])

ν
(
Ȳ
)
:=

∥∥E[Ȳ 2
]
∥∥

can be expressed as follows:

ν
(
Ȳ
)
=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

(i,j)∈E

E
[(

Υij ⊗Eij

)(
Υ⊤

ij ⊗E⊤
ij

)]∣∣∣∣∣∣
∣∣∣∣∣∣

(1)
=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

(i,j)∈E

E
[(

ΥijΥ
⊤
ij

)
⊗
(
EijE

⊤
ij

)]∣∣∣∣∣∣
∣∣∣∣∣∣

= 2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

(i,j)∈E

[
Eij 0
0 Eij

]∣∣∣∣∣∣
∣∣∣∣∣∣

= 2

∣∣∣∣∣∣∣∣[A⊤A 0

0 A⊤A

]∣∣∣∣∣∣∣∣
(2)
= 2

∥∥A⊤A
∥∥.

(3)

In this chain of equalities, step (1) is by the mixed-product prop-
erty of the Kronecker product, namely, (A⊗B) (C ⊗D) =
(AC)⊗ (BD) for any matrices A,B,C,D with appropriate
dimensions; step (2) follows since the operator norm of a block-
diagonal matrix is the largest operator norm of any block.

Now, we observe that A⊤A ∈ Rn×n is the graph Laplacian
matrix of the simple undirected graph corresponding to the
network topology. we use that Y = D −M where M is the
adjacency matrix; since Y ⪰ 0 and also D +M ⪰ 0 for the
“signless” Laplacian matrix, see e.g. [6], we conclude that

−D ⪯M ⪯D, thus ∥M∥ ≤ ∥D∥

and therefore ∥Y ∥ ≤ ∥D∥+ ∥M∥ ≤ 2∥D∥ = 2∆.

B. Uncertain contingencies

In this section, we present bounds on the spectrum of
the admittance matrix under random contingencies, shown
in Theorem 2. This bound is useful for analyzing the behavior
of the power flow equations under uncertain changes in network
topology. This has natural applications in many relevant settings,
for example, during natural disasters, public safety power shut-
offs, or faults. Throughout this section, we operate under the
following assumption.

Assumption 2 (Uncertain contingencies). Suppose that each
line l = (i, j) ∈ E in a power network is switched closed (resp.
switched open) with probability pl ∈ [0, 1] (resp. 1− pl).

Assumption 2 is equivalent to modeling the power network
as an inhomogeneous Erdős-Rényi graph. It is highly relevant
in the context of risk-based optimal transmission switching;
see [7] for example.

We will analyze how the admittance matrix behaves under
the setting of Assumption 2. To achieve this, we will define
the following notion of contingency factors, and the criticality
of a node.

Definition II.3 (Contingency factors and nodal criticality).
Consider a power network in the context of Assumption 2 with
line admittances {yl}. Define the contingency factors {cl} of
each line l = (i, j) ∈ [m] asx

cl := 2 · pl (1− pl) |yl|2 (4)

and the degree of criticality of each node i under the
contingency factors c ∈ Rm

+ is defined as

di(c) :=
∑
l:l∋i

cl =
∑
l:l∋i

2 · pl (1− pl) |yl|2 . (5)

Moreover, we denote the maximum criticality under c as

∆c := max
i∈ [n]

di(c).

In essence, the objects in Definition II.3 are the edge weights,
the nodal degrees, and the maximum nodal degree, respectively,
of a certain graph Laplacian matrix. In particular, it is the
Laplacian matrix that arises from the matrix-valued variance
of the admittance matrix under uncertain contingencies, which
we define explicitly in the forthcoming result.

Theorem 2 (Concentration with fixed admittances and uncertain
contingencies). Consider a power network in the context
of Definition II.3. Let each line l = (i, j) ∈ E have
admittance yij ∈ C with |yij | ≤ 1 per-unit. Define the random
line edge weights

wij := yij · ξij , ξij ∼ Ber(pij), (i, j) ∈ E,

and the corresponding random admittance matrix

Y :=
∑

(i,j)∈E

ξijyij (ei − ej) (ei − ej)
⊤ (6)

and center as Ỹ := Y − EY . Define the normalized total
degree of criticality:

D̄ := ∆−1
c

∑
i∈[n]

di(c). (7)

Then, for all t ≥
√
2∆c + 2/3, we have

Pr(∥Ỹ ∥ ≥ t) ≤ 8D̄ · exp
(

−t2

4 (∆c + t/3)

)
; (8)

moreover, there exists a constant C > 0 such that

E ∥Ỹ ∥ ≤ C

(√
2∆c log(1 + 2D̄) + 2 log(1 + 2D̄)

)
. (9)



Proof. For each line l := (i, j) ∈ E , let M l = ξlylala
⊤
l

denote the summand matrices associated with each line in the
matrix series (6). Observe that

EM l = plylala
⊤
l

is the expectation of each elementary admittance matrix. With
this, define the centered elementary admittance matrices as

M̃ l := M l − EM l = (ξl − pl) ylala
⊤
l .

The centered admittance matrix of the network is then

Ỹ = Y − EY =
∑
l∈E

M̃ l =
∑
l∈E

(ξl − pl) ylala
⊤
l .

Naturally, we have that EM̃ l = 0 for any l, and E Ỹ = 0.
Furthermore, for each line l, we have the upper bound∣∣∣∣∣∣M̃ l

∣∣∣∣∣∣ = ∣∣∣∣(ξl − pl) ylala
⊤
l

∣∣∣∣
(1)

≤ |ξl − pl| · |yl|
∣∣∣∣ala

⊤
l

∣∣∣∣
op

(2)

≤ 2,

where step (1) is by sub-multiplicativity, and step (2) is due to
the fact that

∣∣∣∣ala
⊤
l

∣∣∣∣ = ||al||22 = 2, |y|l ≤ 1 and

|ξl − pl| ≤ max
l
|ξl − pl| ≤ max

l
{max {pl, 1− pl}} ≤ 1.

Now, we compute the matrix-valued variance of the centered
admittance matrix under random contingencies. We have

V := E Ỹ Ỹ
∗ (1)
=

∑
l∈E

EM̃ lM̃
∗
l

=
∑
l∈E

E
[
(ξl − pl)

2 |yl|2 ala
⊤
l ala

⊤
l

]
(2)
=

∑
l∈E

2pl (1− pl) |yl|2 ala
⊤
l .

In the above display, step (1) is by independence of the
summands, and step (2) is by definition of the Bernoulli
variance E (ξl − pl)

2
= pl (1− pl), and a⊤

l al = 2. Observe
that the matrix-valued variance V is itself a graph Laplacian
matrix that describes a graph with the same topology as the
power network, with the contingency factors as line weights.
This Laplacian can be written as

L := A⊤CA, C = diag(c).

Now, we compute the intrinsic dimension of the matrix-
valued variance, which is defined as follows.

Definition II.4 (Intrinsic dimension). For any matrix A, let

intdim(A) :=
tr(A)

||A||
.

First, note that we have

intdim(V ) :=
tr(V )

||V ||

=
2
∑

l∈E pl (1− pl) |yl|2 tr
(
ala

⊤
l

)
||V ||

=
4
∑

l∈E pl (1− pl) |yl|2

||V ||
The second equality is due to the linearity of the trace, and the
third is due to the fact that trala

⊤
l = 2. From this juncture, we

can now bound the operator norm of the matrix-valued variance
as follows. First, note that since V is a Laplacian matrix, it
can be written as V := L = D −M , where M ∈ Rn×n is
an adjacency matrix with Mij = −cij if (i, j) ∈ E , and zeros
along the diagonal, and Dii :=

∑
l:l∋i cl = di(c). We obtain

ν = ||V || = ||L|| = ||D −M ||
(1)

≤ ||D||︸ ︷︷ ︸
=∆c

+ ||M ||

(2)

≤ ∆c +
√
||M ||1 ||M ||∞

(3)
= ∆c +

√
(max

j

∑
i

|Mij |)(max
i

∑
j

|Mij |)

= 2∆c,

where step (1) is by the triangle inequality and the fact that
D is diagonal, and step (2) is by Hölder’s inequality, and step
(3) is by definition of the matrix norms ||·||1 , ||·||∞. The final
equality follows by noting that

||M ||1 = ||M ||∞ = ||D|| = ∆c.

Furthermore, we can lower bound the spectral norm by
considering the Rayleigh quotient; as V ⪰ 0, we can
write ||V ||2 := sup||x||≤1 x⊤V x. Take x ← ei, then we
always have the lower bound

||V || = sup
||x||≤1

x⊤V x ≥ sup
i

e⊤i V ei = max
i

di(c) := ∆c.

Thus, ∑
i di(c)

2∆(c)
≤ intdim(V ) ≤

∑
i di(c)

∆(c)
≤ n− 1,

where the final inequality is due to the fact that rank(V ) ≤
n− 1, as V is a Laplacian.

We now prepare to invoke the matrix Bernstein inequality [1].
For non-Hermitian matrices such as (6), the intrinsic dimension
factor d is given as

d =
2 tr(V )

∥V ∥
= 2 intdim(V ) ≤ 2

∑
i di(c)

∆(c)
.

Consequently, for all t ≥
√
ν + L/3 =

√
2∆c + 2/3, we have

Pr(∥Ỹ ∥ ≥ t) ≤ 4d exp

(
−t2

2 (ν + Lt/3)

)
≤ 8

(∑
i di(c)

∆(c)

)
exp

(
−t2

4 (∆c + t/3)

)
,



which is the desired result for the tails (8). To yield the
expectation bound (9), see [1, Sec. 7.7.4]. Set D̄ as in (7).
Then, a short calculation reveals

E
[
∥Ỹ ∥

]
≤

√
2ν log(1 + d) +

2

3
L log(1 + d) + 4

√
ν +

8

3
L

≤ C
(√

ν log(1 + d) + L log(1 + d)
)

≤ C

(√
2∆c log(1 + 2D̄) + 2 log(1 + 2D̄)

)
for some universal constant C > 0, which is the desired
result (13). This completes the proof of Theorem 2.

Remark. The matrix (6) is not positive-semidefinite, except in
extremely restrictive cases; e.g., GB = BG is one sufficient
condition. Hence, we must use the Bernstein inequality, as
opposed to bounds with potentially simpler forms, like the
matrix Chernoff inequality.

III. THE LINEAR COUPLED POWER FLOW MODEL:
FORMULATION AND BOUNDS

The LinDistFlow equations are known to be equivalent to the
Linear Coupled Power Flow (LCPF) model in the special case
that the network is a tree. We will continue analysis working
with the LCPF model for this section as it is more general and
results for LinDistFlow follow simply. See Appendix A for
more details.

We can decompose F , as defined in (17) into the sum of
Kronecker products between a particular 2× 2 block matrix
of admittances and elementary graph Laplacian matrices (Def.
II.2), as follows:

F =

[
A⊤ diag(g)A −A⊤ diag(b)A

−A⊤ diag(b)A −A⊤ diag(g)A

]
=

[ ∑
ij∈E Eijgij −

∑
ij∈E Eijbij

−
∑

ij∈E Eijbij −
∑

ij∈E Eijgij

]
=

∑
ij∈E

[
Eijgij −Eijbij
−Eijbij −Eijgij

]
=

∑
ij∈E

[
gij −bij
−bij −gij

]
︸ ︷︷ ︸

:=Υij

⊗Eij

=
∑
ij∈E

Υij ⊗Eij :=
∑
ij∈E

M ij ,

where Υij is a 2× 2 symmetric matrix of admittances for a
given line (i, j), as defined above.

A. Spectral properties of elementary power flow Jacobians

1) Boundedness: Let M ij = Υij ⊗Eij be the elementary
Jacobian corresponding to edge (i, j) ∈ E . Note that the
operator norm of M ij is

||M ij ||
(1)
= ||Υij || ||Eij ||

(2)
= 2

√
g2ij + b2ij = 2 |yij |

where step (1) is due to the fact that ||A⊗B|| = ||A|| ||B||
for any matrices A,B, and step (2) is due to the fact that
||Eij || = 2, and furthermore,

||Υij || =
√
λmax

(
Υ⊤

ijΥij

)
=

√
λmax

([
g2ij + b2ij 0

0 g2ij + b2ij

])
=

√
g2ij + b2ij = |yij | .

Remark. Note that the following identities hold:

||M ij || =
√
2 tr

(
Υ⊤

ijΥij

)
=
√
2 ||Υij ||F , (10)

and ||M ij ||F = 2
√
2 ||Υij || .

B. Matrix variance of the LCPF model under uncertainty

In this section, we bound the matrix variance of the LCPF
model.

Lemma 1. Suppose that g, b ∈ Rm are independent and
uniformly distributed on (m − 1)-dimensional sphere of
radius 1/2; g, b iid∼ UNIFORM

(
{y ∈ Rn : y⊤y = 1

2}
)
. Then

the matrix-valued variance of the linear power flow operator
(Def. II.1) is upper-bounded as

E [FF ∗] ⪯ 2

n
I2 ⊗A⊤A := V .

Proof. By assumption, each g
(d)
= Qz, b

(d)
= Qz, where z

(iid)∼
NORMAL(0, 1

2I) is a vector of iid Gaussians and Qg,Qb ∈
Rn×n are orthonormal matrices.

First, note that

||M ij || = ||Υij || ||Eij || ≤ 4 := L.

The positive semidefinite upper bound for the matrix-valued
variance E [FF ∗] = E [F ∗F ] is then

E [FF ∗] =
∑
ij∈E

E
[
M ijM

∗
ij

]
=

∑
ij∈E

E

[[
2Eijg

2
ij + 2Eijb

2
ij 0

0 2Eijb
2
ij + 2Eijg

2
ij

]]
= 2

∑
ij∈E

[
Eij

(
E
[
g2ij + b2ij

])
0

0 Eij

(
E
[
g2ij + b2ij

])]
(1)

⪯ 2

n

∑
ij∈E

[
Eij 0
0 Eij

]
(2)
=

2

n

[
A⊤A 0

0 A⊤A

]
=

2

n
I2 ⊗A⊤A,

where step (1) stems from the fact that E
[
g2ij

]
≤ 1 and

E
[
b2ij

]
≤ 1 by assumption of the uniform distribution over the

unit sphere.



1) Matrix variance statistic: The matrix variance statistic
is then given as

ν = ||V || (1)= 2

n

∣∣∣∣∣∣A⊤A
∣∣∣∣∣∣

(2)

≤ 2

n

∣∣∣∣∣∣A⊤A
∣∣∣∣∣∣
F

(3)

≤ 2

n

√
tr
(
A⊤A

)
(4)

≤ 2

n

√
n(n− 1)

(5)

≤ 2.

where step (1) follows from the properties of the Kronecker
product, step (2) is due to the fact that ||·|| ≤ ||·||F ,

Theorem 3 (A matrix Bernstein bound [8]). Suppose that
X1, . . . ,Xk ∈ Rn×n are independent, symmetric, zero-mean
random matrices such that ||Xi|| ≤ R always. Let X :=∑k

i=1 Xi and define

ν := ||var (X)|| =

∣∣∣∣∣
∣∣∣∣∣

k∑
i=1

E
[
X2

i

]∣∣∣∣∣
∣∣∣∣∣ .

Then, for any t > 0, we have

Pr (||X|| ≥ t) ≤ 2n exp

(
−t2

2Rt+ 4ν

)

Theorem 4 (Spectral error of LCPF model under uncertain
admittance parameters). Suppose that the conductance and
susceptance parameters of an electric power system model are
uncertain, and can be modeled for each line (i, j) ∈ E as

gij = g•ij +∆g
ij (11a)

bij = b•ij +∆b
ij , (11b)

where g•ij , b
•
ij ∈ R are the true parameters, and ∆g

ij , ∆b
ij are

bounded uncertainty random variables such that

max
{∣∣∣∣∆b

ij

∣∣∣∣ , ∣∣∣∣∆g
ij

∣∣∣∣} ≤ ∆ ∀(i, j) ∈ E .

Then, for any t ≥ 0, we have that

Pr (||F − E [F ]|| ≥ t) ≲ n exp

(
−t2

4 (∆2n+∆t/3)

)
, (12)

and

E [||F − E [F ]||] ≤ 2∆
√
2

(√
n log (4n) +

1

3
log (4n)

)
(13)

Proof. The positive semidefinite upper bound for the matrix-
valued variance E [FF ∗] = E [F ∗F ] is then

E [FF ∗] =
∑
ij∈E

E
[
M ijM

∗
ij

]
= 2

∑
ij∈E

[
Eij

(
E
[
g2ij + b2ij

])
0

0 Eij

(
E
[
g2ij + b2ij

])]
(1)

⪯ 4∆2
∑
ij∈E

[
Eij 0
0 Eij

]
(2)
= 4∆2

[
A⊤A 0

0 A⊤A

]
= 4∆2I2 ⊗A⊤A,

where step (1) stems from the fact that E
[
g2ij

]
≤ ∆2 and

E
[
b2ij

]
≤ ∆2 by assumption of bounded model uncertainty.

Then, the matrix variance statistic is bounded as

ν ≤ 4∆2
∣∣∣∣∣∣A⊤A

∣∣∣∣∣∣ ≤ 4∆2n.

Directly the matrix Bernstein inequality completes the proof.

IV. APPLICATION: BOUNDING THE ERROR OF A FAMILY OF
POWER FLOW LINEARIZATIONS

In this section, we provide an error bound of linear approx-
imations of the AC power flow equations under uncertain
admittances. This serves as a useful primitive for further
applications on the evaluation of the quality of DC power
flow in practical problems such as contingency analysis and
network reconfiguration. Following the very recent results of
[9], we can utilize the perspective that the power flow equations
admit a manifold interpretation to perform such analysis under
uncertain admittances. Recounting the setup of [9], let the AC
power flow manifold be

MPF = gph(Φ) =
{
(x, p, q) ∈ R4n : (p, q) = Φ(x)

}
,

with x = (v, θ) ∈ R2n, Φ : R2n → R2n, where graph is
defined as

gph(f) := {(x, f(x)) ∈ Rn+m | x ∈ X}

where f : X → Y , X ⊂ Rn, and Y ⊂ Rm. Equivalently,
MPF = F−1(0) with F (x, p, q) = Φ(x)− (p, q) and

DF (x, p, q) =
[
DΦx −I2n

]
is surjective everywhere. Fix a feasible base point

z⋆ = (x⋆,p⋆, q⋆) = (x⋆,Φ(x⋆)) ∈MPF .

For a step h ∈ R2n tangent at z∗ (i.e. implicit function
theorem evaluated at z∗ s.t. (h,DΦx∗h) ∈ Tz∗MPF ), form
the tangent point z̄ := z∗ + (h,DΦx∗h), where TzMPF =
ker

[
DΦx −I2n

]
is the tangent space at z.

Proposition 1. Let z̄ ∈ TzMPF be a point in the linear
tangent space of the power flow manifold about z ∈MPF . For
a random admittance matrix Y , defined in a similar manner



as Theorem 1, the expected Euclidean distance (in its ambient
space) of a tangent step from a random AC PF manifold is

E [dist(z̄,MPF )] ≤ 3∥h∥∞∥h∥2 E [||Y ||]

≤ 3∥h∥22
(√

4∆ log(4n) +
2

3
log(4n)

)
.

Proof. From [9, Prop III.1], we immediately get

dist(z̄,MPF ) ≤ 3 ||F (z̄)|| .

By definition, F (x, p, q) = Φ(x)− (p, q). Therefore,

F (z̄) = Φ(x∗ + h)− (Φ(x∗) + DΦx∗h) (14)

The AC PF manifold can be equivalently represented as

MPF = {(u, s) ∈ Cn × Cn : s = ΨY (u) := diag(u)Y u}

where (·) denotes complex conjugate. Let (u∗, s∗) be the
complex form of z∗, so the complex tangent point is

(ū, s̄) := (u∗ + hu, s+ DΨY (u∗)[hu])

where hu ∈ Cn is the complex voltage step. Since ΨY is
quadratic in u,

ΨY (u∗+hu) = ΨY (u∗)+DΨY (u∗)[hu]+
1

2
D2ΨY (u∗)[hu, hu]

with first and second Fréchet derivatives as

DΨY (u)[hu] = diag(hu)Y u+ diag(u)Y hu,

D2ΨY [hu, ku] = diag(hu)Y ku + diag(ku)Y hu.

Subtracting the linearization,

ΨY (u∗ + hu)− (Ψ(u∗) + DΨx∗ [hu]) =
1

2
D2ΨY (u∗)[hu, hu]

= diag(hu)Y hu

Since this is the same form as (14) and since Cn ∼= R2n,

∥F (z̄)∥2 = ∥ diag(hu)Y hu∥2

and by standard norm inequalities, we have

∥F (z̄)∥2 = ∥ diag(hu)Y hu∥2
≤ ||diag(h)|| ||Y || ∥h∥2 = ∥h∥∞ ||Y || ∥h∥2
≤ ∥h∥22 ||Y || .

Plugging into [9, Prop III.1]

dist(z̄,MPF ) ≤ 3∥F (z̄)∥
≤ 3∥h∥∞ ||Y || ∥h∥2
≤ 3∥h∥22 ||Y ||

Taking expectations on both sides and using Thm 1 yields

E [dist(z̄,MPF )] ≤ 3∥h∥∞∥h∥2 E [||Y ||]

≤ 3∥h∥22
(√

4∆ log(4n) +
2

3
log(4n)

)
.

Proposition 2. Suppose the special case where we assume a
lossless network (i.e. Y = −jB) with the susceptances are
random variables of the form we = be · se where be is the
physical susceptance and se ∼ Ber(pe), where pe is the rate
at which line e is switched closed. From some constant C > 0,
the expected distance from a local point on the linear tangent
space to the random AC PF manifold is

E [dist(z̄,MPF )] ≤ 3C∥h∥∞∥h∥2(√
2∆c log(1 + 2D̄) + 2 log(1 + 2D̄)

)
Proof. Following directly from Prop 1, we know that

E [dist(z̄,MPF )] ≤ 3∥h∥∞∥h∥2 E [||Y ||]

so what’s left is to bound this special case of E [||Y ||].
By lossless assumption and norm properties,

||Y || = ||−jB|| = ||B|| .

From Theorem 2, we directly get that

E ∥B∥ ≤ C

(√
2∆c log(1 + 2D̄) + 2 log(1 + 2D̄)

)
,

so the expected distance from the ACPF manifold is

E [dist(z̄,MPF )] ≤ 3C∥h∥∞∥h∥2(√
2∆c log(1 + 2D̄) + 2 log(1 + 2D̄)

)
for some constant C > 0.

V. CONCLUSIONS

In this paper, we presented a number of results applying
matrix concentration inequalities to characterize behaviors of
the power flow equations under uncertain admittances. We
first derive an expectation bound on the spectrum of the
admittance matrix under general distribution assumptions that
scales on the network’s maximum degree, and use it to develop
refined tail bounds of uncertain contingencies expressed through
contingency factors and nodal criticality. We then lift these
results to the linear coupled power flow (LCPF) operators
and show how the induced spectral uncertainty to linear
approximations of the AC power flow manifold, producing
explicit error bounds for a family of linear power flow models
such as DC power flow.

More precisely, our results imply that the expected operator
norm of a random admittance matrix under general distributions
of bounded admittances grows like O(

√
∆ log n + log n),

where ∆ is the maximum degree and n is the numbers of
nodes. This quantity has the interpretation that the under light
distributional assumptions on the admittances, the effective
resistance of a power network concentrates. From a modeling
standpoint, controlling spectral uncertainty gives us access
to provide guarantees of models (such as linearizations) that
related to uncertainty in topology/network parameters which
are quantities we care about. Additionally, there are further
applications these results support and leave for future work.



A. Applications and Future Work

1) Contingency Analysis: With a suitable Bernoulli param-
eter on the admittances, analyzing the distribution of power
networks subsumes all possible n − 1 configurations of the
network. In particular, one can show that the simplex of all n−1
contingencies does not violate any line flow constraint. For
example, in the context of the DC approximation, the results
of the present paper can show that

Pr(||f ||∞ > ϵ) ≤ δ(ϵ),

for an appropriate choice of (ϵ, δ). Here,

f = SWAθ, s ∈ ∆n
n−1

with S := diag(s) and W = diag(w) is a random vector of
approximate line flows with ∆n

n−1 denotes the set of all n− 1
contingency switching vectors.

2) Network Reconfiguration: Network reconfiguration is of
great interest in recent power systems research, particularly
for modern applications, such as in congestion management
and grid planning. The combinatorial solution space of such
problems implies that analyzing or sampling from a family of
possible network configurations is a potentially relevant task.
The theory of the present paper is directly applicable to such a
setting, as it describes the behavior of such non-deterministic
power flow models.

3) Evaluations of Linearizations in Specialized Problems:
Following up on the results on the error bounds developed in
this paper, the evaluation of linearizations such as DC power
flow in more specific problems such as contingency analysis
and network reconfiguration are of great interest to practi-
tioners. This probabilistic framework could allow screening
of linearization choices conformal to specific parameters of
the problem. Moreover, applications involving bounding the
error of locational marginal prices (LMPs) are also tractable,
leveraging results that connect admittance matrices to LMP
sensitivities [10], [11].
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finite graphs,” Linear Algebra and its applications, vol. 423, no. 1,
pp. 155–171, 2007.

[7] B. Jeanson and S. H. Tindemans, “Risk-based approach to the optimal
transmission switching problem.” PowerTech Kiel, 2025.

[8] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,”
Foundations of Computational Mathematics, vol. 12, pp. 389–434, Aug.
2012. arXiv:1004.4389 [math].

[9] A. Goodwin, J. Maack, and D. Sigler, “Power Flow Geometry and
Approximation,” IEEE Transactions on Power Systems, pp. 1–12, 2025.

[10] A. Conejo, E. Castillo, R. Minguez, and F. Milano, “Locational marginal
price sensitivities,” IEEE Transactions on Power Systems, vol. 20, no. 4,
pp. 2026–2033, 2005.

[11] V. Kekatos, G. B. Giannakis, and R. Baldick, “Online energy price matrix
factorization for power grid topology tracking,” IEEE Transactions on
Smart Grid, vol. 7, p. 1239–1248, May 2016.

[12] S. V. Dhople, S. S. Guggilam, and Y. C. Chen, “Linear approximations to
AC power flow in rectangular coordinates,” in 2015 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton),
pp. 211–217, 2015.

[13] D. K. Molzahn and I. A. Hiskens, “A Survey of Relaxations and
Approximations of the Power Flow Equations,” Foundations and Trends
in Electric Energy Systems, vol. 4, pp. 1–221, February 2019.

APPENDIX

A. A fresh derivation of the Linear Coupled Power Flow Model
(LCPF)

Theorem 5 (Linear Coupled Power Flow Model [2], [12], [3]).
Consider the flat start condition u⋆ := 1 + j0, and suppose
that ω = 0+j0. Then, the linear coupled power flow manifold
around u⋆ is the linear space

M⋆ :=
{
x ∈ R4n : F (x⋆)(x− x⋆) = 02n

}
, (15)

where F : R4n → R2n×4n is the Jacobian of F at the nominal
state x⋆, which we write as

F (x⋆) =

[
G −B −In×n 0n×n

−B −G 0n×n −In×n

]
=

[
M −I2n×2n

]
.

(16)
We define the 2n × 2n matrix M as the linear power flow
matrix. This matrix defines the linear power flow model[

p
q

]
=

[
G −B
−B −G

] [
ϵ
θ

]
(17)

where ϵ := v−1. If the network is a tree with n non-reference
nodes and n edges, the inverse of the linear power flow matrix
M is given in closed form as

M−1 :=

[
G −B
−B −G

]−1

=

[
R X
X −R

]
, (18)

where R,X ≻ 0 are resistance and reactance matrices. Thus,[
ϵ
θ

]
=

[
R X
X −R

] [
p
q

]
, (19)

where ϵ := v − 1.



Proof. The linear manifold tangent to M at a nominal
operating point x• is given by

M• :=
{
x ∈ R4n : F (x•) (x− x•) = 02n

}
, (20)

where

F (x•) =
[
∂F
∂v (x•)

∂F
∂θ (x•)

∂F
∂p (x•)

∂F
∂q (x•)

]
(21a)

=

[
Re ∂s

∂v (u•) Re ∂s
∂θ (u•) −In 0n

Im ∂s
∂v (u•) Im ∂s

∂θ (u•) 0n −In

]
(21b)

=

[
∂p
∂v (u•)

∂p
∂θ (u•) −In 0n

∂q
∂v (u•)

∂q
∂θ (u•) 0n −In

]
. (21c)

Let ω := γ+jβ ∈ Cn denote the vector of self-admittances of
each node. Then, following [13, 5.10], the Jacobian of complex
power injections with respect to voltage phase angles is

∂s

∂θ
(u⋆) = j diag (u⋆)

(
diag

(
Y u⋆

)
− Y diag

(
u⋆

))
= jIn×n (diag (Y 1n)− Y In×n)

= j (diag (ω)− Y ) ;

similarly, with respect to the voltage magnitudes
∂s

∂v
(u⋆) = diag (u) (diag (Y u) + Y diag (u)) diag (v)−1

= In×n (diag (Y 1n) + Y In×n) I
−1
n×n

= diag (ω) + Y .

Substituting the above into (21) yields the desired result.
Now, we show that the assumption that the network is a

tree, or radial, ensures that the linear power flow matrix M
can be inverted in the analytical form given in (18). Note that
as G ≻ 0, both Schur complements of M exist.

Moreover, setting S to be the Schur Complement of M in
−G, we obtain that the inverse of S is, in fact, the resistance
matrix R, since

S−1 :=
(
G+BG−1B

)−1

=
(
A⊤ diag(g)A+A⊤ diag(b) diag(g)−1 diag(b)A

)−1

=

A⊤ diag

[
g2ij + b2ij

gij

]
ij∈E

A

−1

= A−1 diag

[
gij

g2ij + b2ij

]
ij∈E

A−⊤

:= A−1 diag (r)A−⊤

:= R.

Further calculation reveals that the Schur complement of M
in G is −S. Therefore, applying well-known block matrix
inversion identities yields

F−1 =

[
G −B
−B −G

]−1

(22a)

=

[
S−1 0n×n

0n×n −S−1

] [
In×n −BG−1

BG−1 In×n

]
(22b)

=

[
S−1 −S−1BG−1

−S−1BG−1 −S−1

]
. (22c)

Finally, we must compute the off-diagonal matrices of (22).
We obtain

−S−1BG−1 = −A−1 diag

[
gij

g2ij + b2ij

]
ij

 diag(b⊘ g)A−⊤

= A−1 diag

[
−bij

g2ij + b2ij

]
ij∈E

A−⊤

:= A−1 diag (x)A−⊤

:= X,

where ⊘ denotes element-wise division. Therefore, we have
obtained that the inverse of the linear power flow matrix M
is [

G −B
−B −G

]−1

=

[
S−1 −S−1BG−1

−S−1BG−1 −S−1

]
(23a)

=

[
R X
X −R

]
, (23b)

as desired.


