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Abstract

We present an algorithm that efficiently com-
putes nearly-optimal solutions to a class of
combinatorial reconfiguration problems on
weighted, undirected graphs. Inspired by
societally relevant applications in networked
infrastructure systems, these problems con-
sist of simultaneously finding an unreweighted
sparsified graph and nodal potentials that
satisfy fixed demands, where the objective is
to minimize some congestion criterion, e.g., a
Laplacian quadratic form. These problems are
mixed-integer nonlinear programming prob-
lems that are NP-hard, in general. To circum-
vent these challenges, instead of solving for a
single best configuration, the proposed ran-
domized switching algorithm seeks to design
a distribution of configurations that, when
sampled, ensures that congestion concentrates
around its optimum. We show that the pro-
posed congestion metric is a generalized self-
concordant function in the space of switching
probabilities, which enables the use of efficient
conditional gradient methods. We implement
our algorithm and show that it outperforms
a state-of-the-art commercial mixed-integer
second-order cone programming (MISOCP)
solver by orders of magnitude over a large
range of problem sizes.

1 INTRODUCTION

Consider an undirected weighted graph G = (N,E,w)
with n = |N | nodes and m = |E| switchable edges
which can be opened or closed. The edge weights
w ∈ Rm

+ are fixed. We are given a fixed vector of nodal
demands d ∈ Rn that satisfies d⊤1 = 0. A network re-
configuration problem is to find edge switching statuses
s ∈ S ⊆ {0, 1}m and nodal potentials x ∈ Rn that min-
imize a congestion metric, subject to the constraints
that the graph is connected and the nodal potentials
satisfy network physics for the given demands over the

switched graph. A network reconfiguration problem
can be formulated as the following parametric mixed-
integer non-linear program (MINLP):

D(d) : min
s,x

x⊤Γsx (Congestion)

s. t. λ2(Ls) ≥ λ⋆ (Connected)
Lsx = d (Physics)
s ∈ S (Switching)
x ⊥ 1, (Voltages)

where Ls :=
∑

j>i Eijwijsij is the model Laplacian
of the switched graph Gs := (N,E,w ◦ s), and Γs :=∑

j>i Eijγijsij is a target Laplacian for a graph with
the same connectivity, but potentially different edge
weights. The matrix Eij = (ei − ej) (ei − ej)

⊤ is an
elementary Laplacian describing a two-node graph. The
constraint on the second-smallest eigenvalue λ2(Ls) ≥
λ⋆ ensures the graph remains connected.

There are several particularly relevant cases for the
objective (Congestion) and the target Laplacian Γs,
with natural connections to engineering applications,
such as in electric power systems:

1. the original model Laplacian, i.e., γij = wij for
all ij ∼ 1, . . . ,m. In this case, if wij represents
the conductance of edge (i, j) ∈ E, the objective
becomes the total electric power dissipated across
all nodes in the network

∑n
i=1 dixi :=

∑n
i=1 pi.

2. a capacitated Laplacian, e.g., yij = w2
ij/c

2
ij , for all

ij ∼ 1, . . . ,m. In this case, the objective func-
tion becomes the sum of the normalized line flows∑

i<j f
2
ij/c

2
ij .

3. a risk, fairness, or robustness functional, which
measures the importance of an edge with respect
to some metric. For instance, yij could represent
the probability that a wildfire ignites at a line in
an electrical network, or the criticality of the edge
in socioeconomic factors.

These cases can be derived in a straightforward manner
from the general framework of electrical networks and
their corresponding graph representations.
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The proposed model has direct applications to widely
used approximate models for electric power flow and
water flow in real-world infrastructure networks, both
of which obey the conditions of the proposed theory.

1.1 Motivation

The program D is inspired by more complex net-
work reconfiguration problems that are of great
current interest to electric power system re-
searchers; see [Babaeinejadsarookolaee et al., 2023,
Haider et al., 2025, van der Sar et al., 2025] for recent
examples. Such problems are known as transmis-
sion switching, topology control, or network reconfig-
uration in the relevant literature. The constraint
(Physics) is identical to DC power flow, which is
a linear approximation of the nonlinear AC power
flow equations. Even our primitive problem D
is NP-hard in general (see [Lehmann et al., 2014,
Kooij and Achterberg, 2023] for a related discussion),
and the objective function is nonconvex.

A natural first attempt to solve the problem is to re-
lax the switching variables s to be continuous, i.e.,
s ∈ [0, 1]m, and then solve the resulting optimization
problem. However, this approach does not yield a fea-
sible solution to the original problem, since the relaxed
solution need not be integral. Moreover, the relaxed
problem is still NP-hard, as (Physics) involves bilinear
equality constraints.

Applications of interest. The present paper pro-
poses a new primitive blending randomized graph de-
sign and mixed-integer quadratic optimization. This
primitive is inspired by the electric power transmission
network reconfiguration problem, where transmission
lines are switched on and off to improve grid stabil-
ity while keeping generator dispatches the same. The
algorithm is designed to be usable for the DC power
flow approximation of the non-linear AC power flow
equations, a canonical linearization that appears fre-
quently in practice; see [Stott et al., 2009] for a salient
review. This approximation has the attractive problem
of being identical to the Poisson problem. In essence,
we are given a net power injection vector p ∈ Rn such
that p⊤1 = 0 and we want to find a voltage phase angle
vector θ ∈ (−π, π]n such that

p = Lθ, L := −B, θ⊤1 = 0,

where B ⪯ 0 is a weighted graph Laplacian matrix
corresponding to an undirected graph with negative
edge weights b : N ×N → R−, known as susceptances.

However, the proposed theory is a general graph algo-
rithm and is distinct from this literature, which has thus
far taken largely deterministic or mixed-integer based

approaches. By targeting approximate preservation of
Poisson solutions with controllable energy reduction
through randomized edge activation, we contribute.

1.2 Related work

Our work contributes to a rich literature in spectral
graph theory; in particular, the effective resistance
of graphs, which has been studied extensively in re-
cent decades. It has shown promise for improving
the resilience of complex networks [Wang et al., 2014]
and improving connectivity [Ghosh and Boyd, 2006].
A particularly meaningful metric is the total effective
resistance of a graph, which is defined as the sum
of the effective resistances of all edges in the graph.
The total effective resistance is a convex function of
the edge weights [Ghosh et al., 2008], and it has found
numerous applications.

Graph algorithms. Researchers have made nu-
merous recent breakthroughs in fast algorithms for
problems involving massive graph structures; see
[Teng, 2010] for a central historical review. Some
particularly influential recent results are in solving
Laplacian systems [Kyng and Sachdeva, 2016a], maxi-
mum flow, and minimum cost flow [Chen et al., 2022].
These algorithms are unified in spirit by incorporating
a degree of randomness. Similar to parallel indepen-
dent work in [Zhou et al., 2025b, Brown et al., 2024]
and previous related work in [Ghosh and Boyd, 2006,
Li et al., 2020], we consider the setting of a graph with
m potential edges, where we wish to add q ≪ m such
edges to design a favorable connected graph. This is
related to the problem of maximization of algebraic con-
nectivity, that is, maximization of the second-smallest
eigenvalue of the Laplacian matrix [Brown et al., 2024,
Ghosh and Boyd, 2006], and also equivalent to maxi-
mization of the smallest eigenvalue of a grounded Lapla-
cian matrix [Zhou et al., 2025a]. This a classic question
in spectral graph theory has been explored from var-
ious angles. The work of [Li et al., 2020] viewed this
through the lens of maximizing the number of spanning
trees, and [Ghosh and Boyd, 2006] through the lens of
optimizing over edge weights lying on the simplex, and
in [Zhou et al., 2025a] through the lens of adding and
deleting rows of the Laplacian. This was addressed
through the lens of edge addition in [Ru et al., 2025].
The problem of maximizing the algebraic connectivity
λ2 can be viewed as seeking to improve global connectiv-
ity and robustness properties, which has found numer-
ous applications in engineering [Nagarajan et al., 2015,
Somisetty et al., 2024a, Somisetty et al., 2024b]. Our
work complements this rich literature by focusing on
the context of fixed demands and edge weights; this
problem setting introduces distinct challenges and op-
portunities.
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Spectral graph theory Effective resistances are one
of the many useful results in the field of spectral graph
theory. Multiple results related to this concept have
inspired the present paper. In particular, the seminal
result of [Spielman and Srivastava, 2011], which pro-
duced a randomized procedure for spectral sparsifica-
tion—first defined in [Spielman and Teng, 2004]—has
heavily influenced our work. The extension of the
spectral sparsification framework to the case where the
graph edges cannot be augmented by the algorithm, i.e.,
“unweighted sparsifiers" like [Anderson et al., 2014],
are highly related to our work.

Spielman and Teng explored algorithms for fast
solutions to Laplacian systems of equations
[Spielman and Teng, 2012]. More recent advances,
including works by Kyng and collaborators, emphasize
randomized algorithms for graph-based linear solvers
and approximations [Kyng and Sachdeva, 2016b],
which seems to yield advantages in theoretical
simplicity and practical speed [Gao et al., 2023].

Deriving concentration inequalities for quantities in
algebraic and spectral graph theory is one of the
most promising applications of random matrix the-
ory [Chen et al., 2021]. Oliveira’s investigations of con-
centration inequalities for Laplacians [Oliveira, 2010]
was an early result in this direction, which gave rise
to the matrix Freedman inequality [Tropp, 2011a].
Similarly, interesting results have been observed for
the concentration of the total effective resistance
[Boumal and Cheng, 2014], also known as the Kirch-
hoff index. A key component of our analysis relates to
the literature on concentration inequalities for the min-
imum eigenvalues of positive-semidefinite matrices, e.g.,
see [Tropp, 2011b, Oliveira, 2013]. Previously, Brown,
Laddha, and Singh developed a framework to maximize
the minimum eigenvalues of the sums of rank-one ma-
trices [Brown et al., 2024], which also relied on matrix
concentration.

Randomized algorithms. Our work relates broadly
to randomized algorithms, an in particular to their in-
tersection with spectral graph theory. The two fields
have deep connections. Foundational graph sparsifi-
cation techniques, such as those developed by Spiel-
man and Srivastava [Spielman and Srivastava, 2011],
seek to approximate a Laplacian operator by a
sparse subgraph while preserving spectral prop-
erties globally. Graph sparsification has found
many applications such as regularization in machine
learning [Sadhanala et al., 2016], quantum computing
[Moondra et al., 2024], and others. Numerous other
approaches to this problem, such as approximate
matrix multiplication [Charalambides and Hero, 2023]
have been proposed. In addition, the authors of

[Lau and Zhou, 2020] gave an iterative randomized
rounding algorithm approach to spectral network de-
sign. This is related to the problem of randomized
experimental design [Allen-Zhu et al., 2021]. We add
to this literature by focusing on randomized network
reconfiguration task aimed at controlling a Laplacian
quadratic form under a specific solution profile induced
by a fixed demand vector. This reveals previously un-
known structural properties about the objective, and
efficient algorithms for optimizing it.

Algorithmic tools. One of our analyses is based
on a Frank-Wolfe type procedure; see [Pokutta, 2024]
and [Braun et al., 2025] for recent surveys. This
class of first-order iterative convex optimization al-
gorithms are particularly useful in the setting where
projection steps are inefficient. Frank-Wolfe meth-
ods have found numerous applications, ranging from
traffic assignment problems in transportation net-
works [Fukushima, 1984], to recent SDP solvers
[Yurtsever et al., 2021, Pham et al., 2023].

2 PRELIMINARIES

The following parameterized positive-semidefinite
(PSD) Laplacian matrix functional is the central object
of study.
Definition 2.1 (Switched Laplacian). For a multi-
graph G = (N,E,w), let A ∈ {−1, 0, 1}m×n be the
node-to-edge incidence matrix for G. Let s ∈ {0, 1}m
be switching variables corresponding to a reconfigu-
ration, and let L(·) : {0, 1}m → Sn×n be a switched
Laplacian matrix functional, where

Ls := A⊤W 1/2SW 1/2A,

corresponds to the switched graph Gs := (N,E,w ◦ s),
with S := diag(s).

Def. 2.1 is also known as an unweighted sparsifier
[Anderson et al., 2014]. From here, we can naturally
define corresponding effective resistance and leverage
score functionals.
Definition 2.2 (Effective resistance and leverage).
The effective resistance ϱij : {0, 1}m → R+ of a multi-
edge ij ∈ E under switching strategy s is defined as

ϱij(s) := e⊤ijL
†
seij .

Moreover, let wij ∈ R+ be the weight of the edge ij.
The leverage of the edge ij is defined as the effective
resistance scaled by the weight:

ℓij(s) := wij · ϱij(s) ≤ 1.

Note that one has
∑

ij∈E ℓij(s) = n− 1. This is also
known as Foster’s theorem [Foster, 1949].
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2.1 Relaxed problem formulation

Throughout, we work under the following simplifying
assumptions.
Assumption 1. The target edge weights are the same
as the model weights, ye = we for all e ∈ E; equiva-
lently, Γs = Ls for any s ∈ {0, 1}m.
Assumption 2. There exists a connected template
graph S0 ⊆ E such that se = 1 always for all e ∈ S0.

Assumption 1 is without loss of generality, while As-
sumption 2 is a somewhat restrictive assumption that
provides a clean way to handle connectivity constraints.

Relaxation to switching probabilities. The key
step is to relax the binary variables to lie in the unit
cube s ∈ [0, 1]

m. This choice has two benefits. From an
optimization perspective, the relaxed reconfiguration
program becomes much more tractable. Moreover, frac-
tional solutions of the relaxed reconfiguration problem
can be viewed as switching probabilities, reminiscent of
randomized rounding [Raghavan and Tompson, 1987].
Under Assumptions 1 and 2, by primal feasibility, the
reconfiguration problem can be written as

min
s

d⊤L†
sd =: φ(s)

s. t. se = 1 ∀e ∈ S0,

||s||1 ≤ q.

The relaxed congestion objective φ : [0, 1]
m → R+ can

be written as

φ(s) = d⊤Lsd, Ls = A⊤ diag(w ◦ s)A, (1)

and it has notable structural properties, which we now
investigate.

2.2 First-order information

We first give a corollary of [Ghosh et al., 2008].
Lemma 1. Let R(s) =

∑
i<j ϱij(s) =

1
21

⊤Rs1 be the
total effective resistance of the graph Gs = (N,E,w◦s).
Then,

∂

∂sij
R(s) = −nwije

⊤
ijL

2†
s eij , ij ∈ E.

In particular, in our setting of fixed demands, we gen-
eralize the above result to the following:
Lemma 2 (Congestion gradient). For a fixed demand
d ⊥ 1, the gradient of the relaxed congestion (1) is
given elementwise for each edge e ∈ E as

∂

∂se
φ(s) = −we

∣∣∣〈ae,L
†
sd

〉∣∣∣2 := −we∆
2
e ≤ 0, (2)

where ∆e = x̂i − x̂j is the voltage difference solution
map across edge e = (i, j) ∈ E.

2.3 Second-order information and Hessian

To analyze the performance of our algorithms, we need
to understand the spectral content of the Hessian of the
congestion function φ(s) with respect to the switching
variables s. We will first state and prove the following
technical lemma.

Lemma 3 (Cauchy–Schwarz for voltage differences).
Let d ∈ Rn be a vector of demands, and let x = L†

sd
be the voltages induced by the demands under switching
strategy s ∈ {0, 1}m. Then, for any edge ij ∈ E and
switching strategy s, we have

∆2
ij =

∣∣a⊤
ijx

∣∣2 ≤ ϱij · φ(s) for all (i, j) ∈ E. (3)

Lemma 3 says that the squared voltage differences in an
electrical networks can never exceed the product of the
effective resistance of the edge and the total congestion
in the network. This is a consequence of the fact
that Ls,L

†
s ⪰ 0, and the Cauchy-Schwarz inequality

applied to the voltages induced by the demands d on
the switched graph Gs = (N,E,w ◦ s).
Lemma 4 (Operator norm bound on the Hessian).
Given a switching strategy set S ⊆ [0, 1]

m and de-
mands d, let H(·) : S → Sm+ be the Hessian of the
congestion function φ(·). The operator norm of the
Hessian H(·) is bounded as follows:

||H||op ≤ L := 2max
s∈S

φ(s,d) =
2 ||d||22

inf
s∈S

λ2(Ls)
≤

2 ||d||22
λ2 (Ls0

)
.

Moreover, if ||d||2 ≤ 1 always, and the template is such
that λ2(Ls0

) ≥ 1, then it holds that ||H||op ≤ 2.

The proof appears in the supplementary material.

2.4 Structural properties of congestion

The goal of this section is to outline useful properties
about the relaxed congestion (1).
Remark. Set 1T ∈ {0, 1}m to be the indicator of a
spanning tree T ⊆ E of G. In the feasible set

DT := { s ∈ [0, 1]m : se = 1 for all e ∈ T},

the graph remains connected for all s ∈ DT because
the tree edges have switching value one.

Furthermore, we have the following useful property,
which is reminiscient of [Ghosh et al., 2008].

Lemma 5. The relaxed congestion (1) is a convex,
homogeneous function of degree −1, namely,

φ(s) = −⟨∇φ(s), s⟩ ∀s ∈ DT .
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Theorem 1 (Generalized self–concordance). Let T ⊆
E. For s ∈ DT define φ(s) = d⊤L†

sd as in (1). Let
ϱT := diag(AL†

TA
⊤) ∈ Rm denote the vector of effec-

tive resistances in the tree T , i.e., ϱT (e) = a⊤
e L

†
Tae

where LT = A⊤ diag(w ⊙ 1T )A is the tree Lapla-
cian and L†

T its pseudoinverse. Then φ is (M,ν)–
generalized self–concordant on DT with

ν = 2 and M = 3 ||w ⊙ ϱT ||2 . (4)

That is, for all s ∈ DT and all directions u,w ∈ Rm

one has∣∣D3φ(s)[w, u, u]
∣∣ ≤ 3

∥∥w⊙ϱT

∥∥
2
∥w∥2 ∥u∥2∇2φ(s). (5)

In particular, the generalized self–concordance constant
M is finite and independent of s on the entire feasible
domain DT .

3 APPROXIMATION SCHEME

As shown in Thm. 1, φ is a generalized self-
concordant function in the space of switching prob-
abilities s ∈ DT . This makes a Frank-Wolfe algo-
rithm a good choice to design a distribution of configu-
rations [Dvurechensky et al., 2023, Pham et al., 2023,
Carderera et al., 2024]. In particular, we aim for our
output random switching vector to be such that, when
we sample edges without replacement (i.e., draw a
configuration), it is likely to yield a connected sub-
graph with at most O(q) edges, and to satisfy d⊤L†

sd ≤
α ·d⊤L†

1m
d, where we desire α to be a small as possible.

3.1 Fast Laplacian solver with switching

Below is a simple corollary of the result in [Kyng, 2017,
Thm. 1.2.1.], which proves useful in our subsequent
analysis.
Corollary 1.1 ([Kyng, 2017]). Fix a scalar δ < 1/n100

and a switching strategy s with at most q non-zero
entries, and let Ls ⪰ 0 be as in Def. 2.1. There exists
an algorithm that returns a random Cholesky factor Cs

such that, with probability at least 1−O(δ),

1
2Ls ⪯ CsC

⊤
s ⪯ 3

2Ls.

This algorithm runs in time O
(
q log2 (1/δ) log(n)

)
.

Consequently, given demands d ⊥ 1 there is an algo-
rithm Solve(Ls,d, δ) that returns an approximate volt-
age solution x̂(s) such that with probability at least
1−O(δ), ∣∣∣∣∣∣x̂(s)−L†

sd
∣∣∣∣∣∣
Ls

≤ ϵ
∣∣∣∣∣∣L†

sd
∣∣∣∣∣∣
Ls

,

where we define the norm ||x||L :=
√
x⊤Lx for x ∈ Rn.

The algorithm runs in O(q log2(1/δ) log(n) log(1/ϵ)).

Access to a near-linear time Laplacian solver immedi-
ately provides a simple, near-linear time algorithm for
simultaneously determining the gradient of the conges-
tion criterion ∇φ ∈ Rm, and pairwise voltage differ-
ences across all edges, ∆ ∈ Rm, which we present in
Section 4.1.

3.2 Switching strategies and edge budget

A useful reconfiguration problem is to select a subset
of edges S ⊆ E such that the graph remains connected,
i.e., the algebraic connectivity λ2(LS) > 0, the number
of edges in S is at most K, and the congestion (graph
energy) does not grow too much. There are two such
ways we can model this constraint set.

Throughout, we treat all switching variables as the
parameters of independent Bernoulli random variables,
i.e., we assume that each edge e ∈ E is switched with
probability se ∈ [smin, 1], with the lower bound to be
defined later, and the switching decisions are indepen-
dent. We want to show that s is a good approximately
optimal switching strategy, in the following sense: if we
sample a random configuration s̃ with s̃e ∼ Ber(se),
independently for each edge e ∈ E, then the congestion
of the resulting graph does not grow too much. We
will define this notion precisely in Theorem 2.

A natural constraint is to impose a budget on the
number of edges that can be switched, that is, we
require that ||s||1 ≤ q, where q is the edge budget. This
is a natural constraint in many applications, such as
electrical networks, where we may not be able to switch
all edges due to physical limitations or operational
costs.

4 MAIN RESULTS

4.1 Fast gradients

We now give an algorithm that updates the conges-
tion gradient and the voltage differences for a given
switching strategy s and demands d in nearly-linear
time.

Lemma 6 (Approximate gradient). Let s ∈ [0, 1]
m

be a switching strategy, and let d ⊥ 1 be demands.
Fix a δ ∈ (0, 1), and let x̂(s) ← Solve(Ls,d, δ) be an
ϵ-approximate solution to Lsx = d as in Corr. 1.1.
Then, Algorithm 1 computes a random congestion gra-
dient ∇̂φ(s) in time O(m logc(n) log(1/ϵ)), and, there
exists a constant C such that, with probability at least
1−O(δ),

∥∇̂φ(s)−∇φ(s)∥∇2φ(s)† ≤ Cϵ ||∇φ(s)||∇2φ(s)† .

The proof appears in the supplementary material.
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Input: s, d, E, w, δ.
Output: Approximations ∇̂φ(s) and ∆̂(s).
function ApproxDiff(s,d,w, E, ϵ, δ)

Ls ←
∑

ij∈supp(s) Eijwij // O(m)

∇ ← 0m, ∆← 0m

// –- Solve the Laplacian system –-
x̂(s)← Solve (Ls,d, δ) // Õ(m)
// –- compute the gradient entries –-
for e = (i, j) ∈ E do

// –- compute voltage diff. –-
∆e ← x̂i(s)− x̂j(s) // O(1)
// –- compute gradient entry –-
∇e ← −wij∆

2
e // O(1)

end
return ∇,∆

end
Algorithm 1: Fast gradient and voltage difference
computation for network reconfiguration.

Input: s0, d ⊥ 1, E, w, q > n− 1, T , ϵ, δ.
Output: Random integral switching strategy s̃.
function RandReconfig(T,K,E,w,d, ϵ, δ)

Ls0 ←
∑

ij∈supp(s0)
Eijwij // O(m)

for t = 0, 1, . . . , to T − 1 do
ηt ← 2

t+2
// Set step size

// –- compute the congestion gradient –-
∇φ(st),∆(st)←
ApproxDiff(st,d,w, E, ϵ, δ)

// –- find a vertex –-
vt ← arg minv∈[0,1]m,||v||1≤q ⟨∇φ(st),v⟩
// –- update convex combination –-
st+1 ← (1− ηt)st + ηtvt

end
// –- round the fractional solution –-
s̃← Round(sT , δ) // O(m)
// –- solve for the voltages –-
x̃← Solve (Ls̃,d, δ)
return s⋆, x̃

end
Algorithm 2: Montonic Frank-Wolfe with random-
ized rounding for network reconfiguration.

Remark. In practice, Algorithm 1 should be supplied
a persistent copy of ∇,∆ ∈ Rm for in-place storage of
the congestion gradient and the voltage differences.

4.2 Randomized rounding

After the Frank–Wolfe phase of Alg. 2, we obtain
a fractional switching vector st ∈ [0, 1]m satisfying
∥st∥1 ≤ q and (st)e = 1 for all backbone edges e ∈ T .
To convert st into an integral solution while preserving
the edge weights w, we adopt the following procedure.
Fix a failure probability δ ∈ (0, 1) and choose a baseline
probability

pmin =
C log(n/δ)

n

Input: s ∈ [0, 1]m, pmin, δ.
Output: Random integral s̃.
function Round(s, pmin, δ)

s̃← 0m

// –- round the fractional solution –-
for e = (i, j) ∈ E do

s̄e ← (6)
(s̃)e ∼ Bern((sT )ij) // O(1)

end
return s̃

end
Algorithm 3: Randomized rounding scheme

with a universal constant C > 0. Define

s̄e =

{
max{(st)e, pmin} e ∈ E \ T
1 e ∈ T.

(6)

Sample a random vector s̃ ∈ {0, 1}m by including each
edge e independently with probability s̄e. If ∥s̃∥1 > q,
remove edges in increasing order of (st)e until at most
q edges remain; if ∥s̃∥1 < q, add edges in decreas-
ing order of (st)e until q edges are selected. Denote
by Ls̃ =

∑
e s̃eweaea

⊤
e the Laplacian of the sampled

configuration.

Theorem 2 (Rounding preserves congestion). Let st ∈
[0, 1]m satisfy ∥st∥1 ≤ q and (st)e = 1 for all e ∈ T ,
and let s̃ be obtained by the independent Bernoulli
rounding described above. Then there exist universal
constants C1, C2 > 0 such that, for any δ ∈ (0, 1)
and pmin = C1 log(n/δ)/n, the following holds with
probability at least 1− δ:

(1− ϵ)Lst ≼ Ls̃ ≼ (1 + ϵ)Lst , (7)

where ϵ = C2

√
log(n/δ)
n pmin

. Consequently, for any demand
vector d ⊥ 1, one has

(1− ϵ)φ(st) ≤ φ(s̃) ≤ (1 + ϵ)φ(st).

Choosing pmin so that ϵ ≤ α yields an integral configu-
ration s̃ with at most q switched edges and

φ(s̃) ≤ (1 + 2α)φ(s⋆),

where s⋆ is a minimizer of the relaxed problem.

Remark. The baseline probability pmin ensures that
each edge has a non-negligible chance of being selected,
which yields a concentration bound via a matrix Bern-
stein inequality. The truncation/augmentation step
enforces the budget constraint ∥s̃∥1 ≤ q without chang-
ing the high-probability guarantee, since the edges with
larger (st)e are more likely to be retained. The proof of
Theorem 2 is deferred to the supplementary material.
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Figure 1: Comparison of Alg. 2 and (8) using Gurobi’s MISOCP solver vs. number of nodes in a test graph. The
bottom sub-figure depicts an orders-of-magnitude speedup.

4.3 Approximation certificate

In this section, we study an explicit, computable opti-
mality certificate for a family of switch distributions.
Theorem 3. Let st ∈ [0, 1]

m be the t-th iterate of the
switching probabilities in the Frank-Wolfe algorithm.
Set

vt ∈ arg min
v∈S

⟨∇φ(st),v⟩ ,

where S ⊆ [0, 1]
m is a convex set of almost surely

connected switching distributions. If

⟨∇φ(st), st − vt⟩ ≤ τ · φ(st),

then
φ(st)− φ(s⋆) ≤

τ

1− τ
φ(s⋆).

In particular, for the top-q set with backbone, we have
the following result.
Corollary 3.1 (α-competitive approximation certifi-
cate). Let s0 ∈ {0, 1}m be a connected backbone, and
consider the feasible region of connected configurations

Sq(s0) := {s ∈ [0, 1]
m

: ||s||1 ≤ q,

se = 1 ∀e ∈ supp(s0)}.

Fix a parameter α ∈ (0, 1). For any connected con-
figuration s ∈ Sq(s0), define the linear minimization

oracle v⋆(s) := arg minv∈Sq(s0) ⟨∇φ(s), v⟩, where, for
each e ∈ E,

(v⋆(s))e :=


1 if e ∈ supp(s0)

1 if e ∈ Topq−n+1 {(Im − S0)∇φ(s)}
0 otherwise,

where S0 := diag(s0). If, for some τ > 0, we have

⟨∇φ(s), s− v⋆(s)⟩ ≤ τφ(s), τ :=
α

1 + α
, α ∈ (0, 1),

then s is an α-approximate solution to the network
reconfiguration problem. That is, for any potentially
non-unique minimizer s⋆ ∈ arg mins∈Sq(s0) φ(s), we
have

φ(s) ≤ (1 + α)φ(s⋆), α =
τ

1− τ
< 1.

Remark. When computing the convergence certificate
with the approximated gradient of Lemma 6, the
Frank–Wolfe gap estimated by the approximate Lapla-
cian solver differs from the true gap by at most a factor
1 +O(ϵ).
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5 NUMERICAL RESULTS

5.1 Baseline formulation

The network reconfiguration studied in the present pa-
per can be formulated as a mixed-integer second-order
cone program (MISOCP). This structure is compatible
with some commercial solvers, like Gurobi, to ostensi-
bly solve the problem efficiently. Introducing a change
of variable, we obtain the program

min
u,s,f

2
∑
e∈E

w−1
e ue (8a)

s. t. u ≥ 0, s ∈ {0, 1}m , f ∈ Rm, (8b)

uese ≥
1

2
f2
e , ∀e ∈ E, (8c)

se = 1 ∀e ∈ S0, (8d)
||s||1 ≤ q, (8e)

A⊤f = d. (8f)

The program (8) is a mixed-integer second-order cone
program (MISOCP). The objective function is a lin-
earization of the congestion objective φ(s), where ue is
an upper bound on the congestion of edge e. The con-
straints (8c) are second-order cone constraints (cond-
tional on se) that enforce ue ≥ 1

2
f2
e

se
when se = 1 and

ue ≥ 0 when se = 0. The constraint (8e) enforces
the power constraint. Finally, the constraint A⊤f = d
enforces flow conservation.

5.2 Numerical implementation of the
approximation scheme

Algorithm 1 and Algorithm 2 were implemented in
the Julia programming language, leveraging the fast
Laplacian solver available in Laplacians.jl, presented
in [Gao et al., 2023]. We generated random graphs over
a large range of network sizes, using a different seed for
each size. The experiments were run on a conventional
laptop with a Ryzen 4750U chipset.

Similarly, as a baseline comparison, we implement the
MISOCP formulation (8) in the JuMP algebraic mod-
eling language [Dunning et al., 2017], which was then
fed into Gurobi’s MISOCP solver. As shown in Fig. 1,
our implementation of Algorithm 1, based on the mono-
tonic Frank-Wolfe algorithm with randomized rounding,
yields up to a 1000× improvement in the total solve
time from Gurobi. In particular, the upper and lower
bounds on the congestion are close across both methods.
Moreover, when Gurobi fails to declare convergence
within a stipulated 20 minute time limit, the FW proce-
dure achieves a superior optimality gap relative to the
best incumbent lower bound determined by Gurobi.

6 CONCLUSION

We presented an approximation scheme to efficiently
solve network reconfiguration problems. We proposed a
particular instance of such an algorithm, RandRecon-
fig, based on a conditional gradient procedure with
randomized rounding. We demonstrated our method
outperforming a commercial MINLP solver by orders
of magnitude on a relevant problem.

Future work Inclusion of line flow limits (edge ca-
pacities) is an essential component for future work, in
addition to allowing some entries of the demand vec-
tor to be continuous decision variables. The MISOCP
formulation of the network reconfiguration problem
(8) can serve an additional purpose. In addition to
providing the benchmark, the random configurations
generated by the proposed algorithm can be used as a
warm start for the MISOCP.
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