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Abstract—We probabilistically bound the error of a solution
to a radial network topology learning problem where both
connectivity and line parameters are estimated. In our model,
data errors are introduced by the precision of the sensors, i.e.,
quantization. This produces a nonlinear measurement model
that embeds the operation of the sensor communication network
into the learning problem, expanding beyond the additive noise
models typically seen in power system estimation algorithms.
We show that the error of a learned radial network topology
is proportional to the width of the quantization bin and grows
sublinearly in the number of nodes, provided that the number
of samples per node is logarithmic in the number of nodes.

I. INTRODUCTION

Efficiently allocating limited smart meter bandwidth is an
emerging challenge at the intersection of power and commu-
nication engineering [1], [2]. As smart meters proliferate,
power engineers will increasingly rely on analog-to-digital
quantization methods to improve computational and commu-
nication efficiency by mapping continuous measurements
to discrete intervals [3]]; see Fig. |1| (left). While coarse
quantization accelerates computations [4]], it introduces
nonlinear, typically non-Gaussian, measurement noise [J5]l,
[6], contrasting with the additive Gaussian assumptions
common in power system estimation.

To help address these challenges, we present a new
sample complexity analysis method for distribution topology
learning, a well-studied inference task in power engineering;
see [[7]1 for a comprehensive review. Sample complexity
refers to the number of measurements needed to ensure
that the error of an estimated parameter is bounded by
a chosen tolerance [8]. In particular, this work provides
such topology learning error bounds under the effects of
practically relevant communication non-idealities.

To the knowledge of the authors, these contributions are
the first of their kind and expand upon recent deterministic
studies of measurement requirements for topology learning
[ol. Concretely, we address the following question:

Consider an n-node distribution network with
unknown topology (connectivity and parameters).
Suppose that we collect measurements at every node
with a uniform quantization bin width A > O.
How many samples per node s = m/n are needed
to recover the topology of the network from the
m = sn quantized measurements, up to a desired
error tolerance?
This research question is illustrated in Fig. [1] (right), outlined
in Section [[Il We give a precise answer in Section [III| by
providing a bound on the error of a topology estimate given
a prescribed number of measurements.
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Fig. 1. Conceptual illustration of the proposed problem. Left: Distribution
network smart meter measurements have realistic quantization noise
corresponding to bin width A > 0. Right: Estimate the topology and
parameters of the distribution network (green, solid lines).

II. PROBLEM FORMULATION
A. Communication model

We wish to recover an unknown vector of line parameters
w, € R? from m > d quantized measurements of the form

pi = Q({a;, wy)), €3]

where Q : R — R is a nonlinear quantization function
and (p;,a;), i = 1,..., m are measurements collected
from smart meters (both spatially and temporally). Vectors
{a;} are rows of a particular sensing matrix A € R"*¢ and
contain pairwise voltage differences measured co-temporally
with active power injection p;. We will define matrix A
explicitly in Section [[[I-A| as a consequence of linearizing
the power flow equations. In the same way, we will argue
that the sparsity pattern of w, represents the network
topology (cf. [[7, Sec. IV-B]).

Concretely, we focus on the setting in which coarsely
quantized measurements (1)) are generated from a uniformly
dithered quantization function (cf. [3], [6]) with bin width
A > 0. These measurements take the form

pi:A-({WJ+%) i=1,...,m, (2)

i=1,...,m,

where 7; ~ Uniform (-5, %), and E [p;] = (a;, w,). The
dither 1; is a purposely applied random noise component
that is generated by a sensor and added to an input
signal prior to quantization. This technique is rather well-
established and commonly used by sensors in practice, and
by statisticians in theory; see [10], [3].

B. Statistical tools

Suppose that w, lies in a convex constraint set K C R¢
that encodes some sort of known structure of the parameter
w,, e.g., knowledge of where certain lines are located
(but not their switching status), or whether the network is
operated radially. We can solve for a constrained estimate
i € RY that obeys this structure via the program @D,
known as the generalized LASSO:

(3)

welk
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w = arg mln%;(ﬂli&v) - pi).



The quality of the estimate produced by the program (3)) can
be quantified with a statistical tool known as the Gaussian
width. We introduce this tool briefly and refer the reader
to [I1l, [T2, Ch. 7.5] and [5]], [6] for further technical
information. Formally, the Gaussian width w(7) of a set
T C RY is defined as
MﬂéEFwW£4, @
ueT
where g ~ N (0,1) is a vector of i.i.d. standard Gaussians.
The Gaussian width w is a useful tool for predicting
the behavior of structured convex problems with random
input data [11]. It represents the “size” of a standard
Gaussian process over 7, which we can use as a stochastic
comparison for our structured problem. Two classic examples
of structured constraint sets with well-behaved Gaussian
widths are sparse and low-rank constraint sets [IT].

The squared Gaussian width, w?(7), provides a measure
of the effective dimension of the set 7; informally, this
represents the minimum number of orthogonal directions
required to capture the variation or structure within 7. We
will also need another object for our analysis—the tangent
cone of a set K c R? at x € R?, which is defined as

DK,x)y2{Au : >0, uecK-x}, (5)

where I —x is the set K translated by x. The tangent cone
(s) generalizes the idea of the tangent space to a nonlinear
surface that may have non-differentiable points.

C. Network and power flow model

The abstract quantities in and can be applied to
the Linear Coupled Power Flow (LCPF) model [7], [T3]. As
the focus of this work is on sample complexity, we make
the following simplifying assumption on the reactive power.

Assumption 1 (Fixed power factor). Let p € R” be active
power injections. Assume that reactive power injections
satisfy g = xp, where x € R is a known constant.

Assumption [1| is equivalent to defining a fixed power
factor ¢ € (0,1] such that x = +¢ 14/1 — 2, where
sign(x) = 1 if the injections are inductive and sign(x) = —1
if the injections are capacitive. For more information on the
consequences of this assumption, see [[14], [T5].

1) Linear Coupled Power Flow (LCPF) model: For a radial
network with 7 + 1 nodes, let C € {-1,0,1}"" be the
invertible, reduced, branch-to-node incidence matrix of a
tree graph with the column corresponding to the slack
node removed. Let {(v;,p,)}"", be a sequence of nodal
voltage magnitude and active power measurements. Under
Assumption |1}, the voltage magnitudes satisfy [[7]l, [T3]:

vi—-1=(R+X-x)p,, (6)

where R + X« £ Z is the (reduced) equivalent impedance
matrix. We can write Z as the inverse of a real-valued
equivalent admittance matrix Y € R"*" where

Z=Cldiag(r+xx)C T2y 7)

where z £ r + kx € R” are the line impedances (scaled).
The matrix C™! € {-1,0}"*" is a lower triangular matrix
where the non-zero entries of each column j represent the
descendants of node j in the tree. In particular, over the
indices i, j = 1,..., n, we have (C‘l)ij =-1lifi=jori

t=1,...,m

is a descendant of j, and (C‘l)l.j = 0 otherwise.

2) Lifting to the complete graph: Echoing [9], we can
view the problem of recovering w as sparsifying a complete
undirected graph K1 with 1 + 1 nodes and ("}') lines.
Accordingly, let Y(-) be the admittgmce matrix operator

that sends line parameters w € R() to a corresponding
(non-reduced) (7 + 1) X (n + 1) admittance matrix:

Y(w) = CT diag(w)é = Z Z Eijwij. €)]

i=1 j=i+l

T. .
Here, E;j = (e; — e;j) (e; — e;) is an elementary Laplacian
matrix, where e; is the i-th standard basis vector in R"*!.

~ n+l
The matrix C € {-1,0, 1}( 2%+ ¢ the incidence matrix
that corresponds to a complete graph. We can now represent
the set of all radial networks as the set of all line parameter
vectors w that correspond to a connected radial network
with 7 + 1 nodes. This set takes the form

R:{weR(T) wlly = n, )Lz(f/(w))>0}. )

The sparsity condition ||w||, = n ensures n lines, and the
condition on the second smallest eigenvalue A5 (Y (w)) > 0
means the graph is connected, i.e., x"Y (w)x > 0 for all
x L 1. The constraint set (9) is intractable; however, in
Section [[II-Alwe provide a relaxation that performs well both
experimentally and theoretically. Hereafter, we implicitly
remove the slack node column of C in our calculations, and
refer to the network as having n nodes.

III. MAIN RESULT
A. Topology learning problem

Let P,V € R™S be data matrices whose columns
are s samples of active power and voltage magnitude
measurement vectors, respectively, across all n nodes. We
seek to recover an n-sparse vector w, of line parameters,
where wy; = 1z if z.; # 0, and O otherwise. This
problem can be written as a sparse recovery problem over
the complete graph by defining the measurement system

p=Q(vec(P)) = Q(Aw,), p <R (10)

The sn X (n;rl) sensing matrix is A £ V¢ o C', where

© is the Khatri-Rao matrix product.

B. Bounding the error of the parameter estimate

Taking advantage of the sparsity, we can characterize the
Gaussian width of the tree set (9).

Lemma 1. Define the set Trw, = D(R, wy) NS as the
intersection of the tangent cone of constraint set R with
the unit shell S 2 {ueR? : ||u|l,=1}, d = (”;"1 )
The squared Gaussian width of the set of radial networks
satisfies 2 (Trw,) < 2nlog (%2) + 3n.
Proof. The ground truth w, corresponds to a spanning tree
of the complete graph with 7+ 1 nodes. Since this tree must
have n edges, vector w, must be n-sparse, i.e., ||[w||y = 1.
Dropping connectivity, define the relaxation K 2 R as
n+l

2 weR(D wll, < walh},  Go
i.e., the ¢1-norm ball of radius ||w]|;. It is well known (cf.
[rx], [6]) that, as w is n-sparse, we can conclude that
0*(Trw,) < 0*(Tkw,) < 2nlog(%2) + 3n. O
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Fig. 2. Relative error vs. number of samples for repeated runs of the

topology learning program (3) on the Baran & Wu (left) and CIGRE
low-voltage (right) test cases. The scatter markers show the experimental
error obtained for one run of (3), where each color corresponds to a bin
width A. The solid lines show the error prescribed by (12).

Using Lemma [1] the error of the topology learned by (3)
with constraint set and bin width A > 0 is bounded
and can be quantified.

Theorem 1. Suppose that s = % samples with bin width A >
0 are collected throughout an n-node distribution network,
and suppose that the {a;} are any i.i.d. sub-Gaussian random
vectors. Then, there exist constants C, cy, ¢y > 0 such that
the error of the topology estimate from solving (3), with
probability at least 0.99 (i.e., 99%) is bounded as

I —w,ll; < CA-

, (12)

provided the number of samples s > O(log n).

Proof. Combining Lemma|1]with and applying [6, Thm.
II1.1], there exists a constant C > 0 such that the minimizer
i of the program (3) satisfies, with probability at least 0.99,

. w (T’va* )
—\/ﬁ ,

2mlog("52) + 3m
< CA- 2
Ly 4

provided the total number of measurements m = sn >
c10* (Ticw, ) + 2 for some absolute constants c1, ¢z >
0. Due to Lemma |1} if the number of samples per node
s > c1(2log (”T“)+ 3/2) + ¢c; = O(log n) we satisfy this
measurement requirement. O

[l —w,||, < CA (132)

(13b)

C. Numerical results

Fig. [2] compares the error bound with the parameter
error obtained by numerically solving many instances of
the program (3)). The errors are plotted against the number
of samples per node, varied over 100 discrete uniformly
spaced points 10 < s < 800. For each instance of the
program (3)), a random matrix V € R™ S of independent
Gaussian voltages is generated, where the mean of each
column is the AC power flow solution of the feeder, and
the variance of each column entry is 10% thereof. Active
power measurements are then generated as in (o). The
quantization bin width A is varied as a percentage of
the sample mean of the absolute active power injections

% ||Aw||;. The solid curves in Fig. |2| depict the error
bounds given by (12)), for each bin width A.

Following [6]], the constant C is not specified by the
theorem. Therefore, we numerically select C for each
feeder by computing the maximum ratio of empirical errors
and over all s,A. We found C = 13 for case33bw
and C = 10 for casecigreLV, which we use for the solid

curves in Fig. |2} The scaling O(A+/log/s) predicted by
matches the experimental errors across all A.

IV. CoNCLUSION

We provided a framework to predict the error of a
learned distribution network topology—before solving any
optimization problem. By exploiting the radial structure,
we achieved an error sublinear in the number of nodes,
up to constant factors determined by the precision of the
sensor and the underlying probability distributions. Formally,
we showed that the topology and line parameters of a
radial network can be recovered up to a relative error of

O(A+/legn/s), given a collection of O(log n) samples from
every node with quantization bin width A > 0. Thus, before
collecting data, one can size quantization and sampling
budgets to hit a target topology error. Note that is
determined by the bin width A. Deriving bounds involving
communication bit rates would require assumptions on the
variance of the underlying measurement being quantized.
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