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Abstract—Voltage phase angle measurements are often unavail-
able from sensors in distribution networks and transmission net-
work boundaries. Therefore, this paper addresses the conditions
for estimating sensitivities of voltage magnitudes with respect to
complex (active and reactive) electric power injections based on
sensor measurements. These sensitivities represent submatrices of
the inverse power flow Jacobian. We extend previous results to
show that the sensitivities of a bus voltage magnitude with respect
to active power injections are unique and different from those
with respect to reactive power. The classical Newton-Raphson
power flow model is used to derive a novel representation of
bus voltage magnitudes as an underdetermined linear operator
of the active and reactive power injections—parameterized by
the bus power factors. Two conditions that ensure the existence
of unique complex power injections given voltage magnitudes
are established for this underdetermined linear system, thereby
compressing the solution space. The first is a sufficient condition
based on the bus power factors. The second is a necessary and suf-
ficient condition based on the system eigenvalues. We use matrix
completion theory to develop estimation methods for recovering
sensitivity matrices with varying levels of sensor availability.
Simulations verify the results and demonstrate engineering use
of the proposed methods.
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I. INTRODUCTION

THE power flow Jacobian matrix is central to many op-
timization, security, operation, and planning applications

in electric power systems [1]. This matrix contains the partial
derivatives of the active and reactive AC power flow mismatch
equations with respect to voltage magnitudes and phase angles,
and is typically very sparse [2]. Knowledge of this matrix
allows engineers to model the impact of changes in active and
reactive power injections on the state of the system, and is
central to the Newton-Raphson method to iteratively solve the
non-linear AC power flow problem [3].

The entries of the power flow Jacobian matrix describe
the change in the active and reactive power injections, ∆p
and ∆q, due to small changes in the voltage magnitude ∆v
or angle ∆θ, often known as sensitivity coefficients [4]–[7].
There is a broad literature on the computation and applications
of Jacobian matrices [8] or sensitivity coefficients in domains
within power systems and others [9]–[16].

In many cases, such as multi-area transmission systems,
transmission system boundaries, and distribution systems, the
network models needed to compute this matrix may not be
complete or accurate [17], especially in distribution systems
[18]. Growing sensor deployment in electric power systems
has spurred research on methods to recover sensitivity coeffi-
cients from measurements, allowing for the network behavior
to be approximated even when the model is inaccurate, out
of date, or unavailable [4], [5], [9]. The literature has also
explored estimation of the admittance matrix, both with syn-
chrophasor measurements [17], [19] and without [20], [21].

The net power injections at buses i = 1, . . . , n of an electric
power system are denoted by pi+jqi ∈ C, where pi is the net
active power injection, qi is the net reactive power injection,
and j ≜

√
−1. These are related with the bus voltages v̄i ≜

vi θi ∈ C and the net current injections ℓ̄i = ℓi ϕi ∈ C as

pi + jqi = v̄iℓ̄
∗
i =

√
p2i + q2i θi − ϕi, (1)

where ℓ̄∗i is the complex conjugate of the net current injection,
θi−ϕi is the difference between the phase angles of the voltage
and current at bus i, and

√
p2i + q2i is the apparent power, i.e.,

the magnitude of the complex powers.
However, measurements of θi are often unavailable. For

example, advanced metering infrastructure (AMI) data are
usually only available for the voltage magnitudes v ∈ Rn

and the active and reactive power injections p, q ∈ Rn [22].
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This makes it difficult to model (1) with these measurement
data, as they lack the voltage phase angles.

Motivated by this problem, we are interested in determining
the relationships between v, p, and q when θ is not available.
We propose that the power factors at buses i = 1, . . . , n, which
we define as

αi ≜ cos(θi − ϕi) =
pi√

p2i + q2i
= cos arctan

qi
pi
, (2)

help provide an answer to this problem. These quantities
are the ratios of active powers pi to the apparent powers√
p2i + q2i , which can be efficiently computed from p, q [23].
Specifically, in this paper, we use (2) to determine a

sufficient condition for when it is possible to relate the changes
in v to changes in p and q via an underdetermined system of
equations that arises from the Newton-Raphson power flow
model. In particular, when the injection power factors are
known or can be found, it is possible to effectively solve this
underdetermined system without the phase angles. Our work
contributes to the existing literature that studies this “voltage
angle free” data input assumption, which has developed line
and topology parameter estimation for single-phase [20] and
multi-phase unbalanced [21] networks.

In addition to these contributions, we also develop special-
ized applications of matrix recovery algorithms for improving
knowledge about the behavior of low-observability power
systems in terms of the sensitivities of voltage magnitudes
to active and reactive power injections. The key idea of these
algorithms is that matrices with skewed spectral content, i.e.,
rapidly decreasing singular values, can be recovered in settings
that are intractable with traditional estimation algorithms [24]–
[27]. Recent research has shown the effectiveness of this
class of algorithms in power system estimation problems,
because many commonly encountered data matrices in elec-
tric power systems have rapidly decreasing singular values.
Example applications include estimating voltage phasors [28]
and evaluating voltage stability [29]. We propose that the
voltage magnitude blocks of the inverse power flow Jacobian
also meet this criteria. Our work relates to previous work on
adaptive power flow linearizations [30] and a broad literature
on measurement-based estimation of sensitivity coefficients
[4], [5], [31], their use in control [32], and explorations into
low-rank and online variants of these algorithms [33].

In summary, the contributions of this paper are:
1) Extending the results in [34], conditions for radial distri-

bution networks which ensure that the voltage magnitude
sensitivities with respect to active and reactive power
injections are unique.

2) Algorithms for radial distribution networks to recover
or update the sensitivity matrices of voltage magnitudes
to active and reactive power injections—which are sub-
matrices of the inverse of the power flow Jacobian—via
regression and matrix completion. The matrix recovery
algorithms exploit the skewed spectral content of the
inverse of the power flow Jacobian for primary networks.

3) A sufficient condition for arbitrary networks that, if
satisfied, guarantees the existence of a unique complex
power injection state estimate from measurements of

voltage magnitudes. This condition depends on the bus
power factors α and blocks of the power flow Jacobian.

This paper assumes an unbalanced electrical network where
the sets S and N contain the slack and PQ buses, respectively.
We also assume that voltage regulating devices are held fixed
throughout the system. The analytical results in Sections III-A
and III-B apply to unbalanced radial distribution networks, and
to arbitrary networks in Sections III-C and IV-B. Numerical
experiments for the analytical results are shown in Section
VI-B for meshed transmission networks and radial distribution
networks. Implementation of the matrix recovery algorithms
are shown for radial distribution networks in Section VI-C.

II. PRELIMINARIES

A. Data Input Assumptions

As the primary application of this paper is in distribution
systems, we will work with datasets Di for PQ buses i =
1, . . . , n ≜ |N |, of the form:

Di ≜
{
(vi,t, pi,t, qi,t)

}m
t=1

, (3)

where vi,t, pi,t, and qi,t are the nodal voltage magnitude,
net active, and net reactive power injection measurements,
respectively, at bus i for time steps t = 1, . . . ,m. We will
assume the errors of these sensors to be normally distributed,
with variance that is on the order of 0.5%. AMI sensors
typically have errors between 0.07% and 4% depending on
the power quality of the load [35]. In the next section, we
will drop the subscript t.

B. The Newton-Raphson Power Flow

Consider the power balance equations for a bus i ∈ N :

pi = vi

n∑
k=1

vk
(
Gik cos (θi − θk) +Bik sin(θi − θk)

)
, (4)

qi = vi

n∑
k=1

vk
(
Gik sin(θi − θk)−Bik cos (θi − θk)

)
, (5)

where vi, vk are the voltage magnitudes at buses i and k and
Gik, Bik are the real and imaginary parts of the ik-th entry
of the bus admittance matrix, Yik = Gik + jBik. In order
to solve the systems (4) and (5), a classical approach is the
Newton-Raphson (NR) algorithm, which iteratively solves the
system of equations (6):∆p

∆q


︸ ︷︷ ︸
(2n×1)

=

 ∂p
∂θ

∂p
∂v

∂q
∂θ

∂q
∂v


︸ ︷︷ ︸
(2n×2n)

∆θ

∆v


︸ ︷︷ ︸
(2n×1)

= J

∆θ

∆v

 , (6)

where ∆p,∆q ∈ Rn are vectors of small deviations in active
and reactive power, respectively. The power flow Jacobian J is
known to be relatively constant with respect to small changes
in power injections [4], [5]. Consider the block submatrices of
the inverse power flow Jacobian. Hereafter, we refer to blocks
of the Jacobian as sensitivity matrices and their elements as
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sensitivity coefficients. Denote the blocks of the inverse as
Sx
y ∈ Rn×n. The inverse problem of (6) can be written as:∆θ

∆v


︸ ︷︷ ︸
(2n×1)

=

Sθ
p Sθ

q

Sv
p Sv

q


︸ ︷︷ ︸
(2n×2n)

∆p

∆q


︸ ︷︷ ︸
(2n×1)

= J−1

∆p

∆q

 . (7)

C. Phaseless Approximation of the Power Flow Equations

Sensing devices that provide phase angle measurements
have well-known benefits and applications. However, the large-
scale deployment and application of such measurements con-
tinues to be heterogeneous and challenging due to infrastruc-
ture costs and communication requirements.

Particularly in distribution systems, access to phase angle
information ∆θ may be unavailable due to low penetrations of
phasor measurement units (PMUs) [36], making it impossible
to realistically solve the system of equations (6) and (7).
Furthermore, the system of equations needs to be solved
in real time. The sensitivity matrices are relatively constant
inter-temporally, allowing for model behavior to be linearly
approximated [4], [5]. The voltage magnitude of bus i, vi, can
be written as a first-order linear approximation around a given
operating condition:

vi ≈ v0i +
∂vi
∂p

∆p+
∂vi
∂q

∆q, (8)

where v0i is the voltage magnitude of bus i in the given
operating condition and ∂vi

∂p , ∂vi

∂q ∈ R1×n are the i-th rows of
the matrices describing voltage magnitude sensitivities with
respect to the power injections. From (7), we can write a
rectangular linearized system which relates voltage magnitude
variations to active and reactive power variations:

∆v︸︷︷︸
(n×1)

=
[
Sv
p Sv

q

]
︸ ︷︷ ︸
(n×2n)

∆p

∆q


︸ ︷︷ ︸
(2n×1)

= S̃∆x︸ ︷︷ ︸
(n×1)

. (9)

The matrix S̃ describes the sensitivities of the n voltage mag-
nitudes to n active and n reactive power injections and is the
main quantity of interest in this paper. Note that S̃ ∈ Rn×2n,
thus, rank(S̃) ≤ n, and rank(S̃) + dim(null(S̃)) = n, which
implies that dim(null(S̃)) > 0. Thus, in general, there are
infinitely many solutions ∆x to the system of equations (9).
Throughout the next section, we will show how and when
we can circumvent this mathematical problem by exploiting
knowledge of power system physics.

III. ANALYSIS OF VOLTAGE SENSITIVITIES

Prior numerical results have empirically indicated that the
voltage magnitude sensitivities for active and reactive power
injections are distinct [37], [38]. Very recently, under the
assumption that θi = 0, [7] showed that ∂vi

∂pi
is correlated to

∂vi
∂qi

. In this section, we extend [34] to show that the voltage
magnitude sensitivities to active and reactive power injections
are uncorrelated in general in unbalanced networks.

A. Review of Voltage Phasor Sensitivities

The net complex power injection at bus i, pi+jqi, is related
to the network’s phasor voltages via the power flow equations:

pi + jqi = v̄i

( ∑
k∈N∪S

Yikv̄k

)∗

∀i ∈ N , (10)

where v̄i is the voltage phasor of bus i and (·)∗ denotes the
complex conjugate. Following [34], differentiating (10) with
respect to active and reactive power individually yields the
systems of equations (11), whose solutions are the sensitivities
of phasor voltages to active and reactive power injections:

1 [i = l] =
∂v̄∗i
∂pl

∑
k∈S∪N

Yikv̄k + v̄∗i
∑
k∈N

Yik
∂v̄k
∂pl

, (11a)

−j1 [i = l] =
∂v̄∗i
∂ql

∑
k∈S∪N

Yikv̄k + v̄∗i
∑
k∈N

Yik
∂v̄k
∂ql

, (11b)

where 1 [i = l] is the indicator function, defined as

1 [i = l] ≜

{
1 if i = l,
0 otherwise. (12)

The voltage phasor sensitivities to active and reactive power
injections, ∂v̄i

∂pl
and ∂v̄i

∂ql
, are of particular interest in distribution

systems since they have a unique solution.

Remark 1. [34] In a radial distribution network, the nontriv-
ial solutions of the equations in the systems of (11), i.e., where
1 [i = l] ̸= 0, the unknowns ∂v̄i

∂ql
and ∂v̄i

∂pl
achieve distinct

complex values.

For the next lemmas, we use Re{·} and Im{·} to represent
the real and imaginary part of a complex number, respectively.

Lemma 1. The voltage magnitude sensitivity coefficients of a
network can be written as (13) and (14).

∂vi
∂ql

=
1

vi
Re

{
v̄∗i

∂v̄i
∂ql

}
, (13)

∂vi
∂pl

=
1

vi
Re

{
v̄∗i

∂v̄i
∂pl

}
. (14)

Proof. See Appendix A-A.

B. Unique Voltage Magnitude Sensitivities

Next, we will show that if ∂v̄i
∂ql

and ∂v̄i
∂pl

have unique solu-
tions, then we can say the same for the voltage magnitudes.

Lemma 2. Let the rectangular form of the complex sensitivi-
ties be ∂v̄i

∂ql
= a+ jb and ∂v̄i

∂pl
= c+ jd respectively. If

(a, b) ̸∈ {(a, b) : Re{v̄i}a+ Im{v̄i}b = 0}, (15)
(c, d) ̸∈ {(c, d) : Re{v̄i}c+ Im{v̄i}d = 0}, (16)

then ∂vi

∂ql
̸= ∂vi

∂pl
∀i, l.

Proof. See Appendix A-B.

Lemma 2 implies that the matrices Sv
p, Sv

q in (7) are full
rank for a radial distribution network, and furthermore, that the
matrix S̃ has full column rank for any subset of the columns
whose cardinality is less than n

2 . Essentially, the voltage
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magnitude sensitivities to active and reactive power injections
will always yield a unique solution, and it is possible to
quantify changes in both active and reactive power injections
using only voltage magnitudes.

Remark 2. Consider a bus l ∈ N in a radial distribution
network with unknown complex power injections. Given a
vector of voltage magnitude perturbations ∆v ∈ Rn and a
tall matrix of sensitivities of the network voltage magnitudes
to the active and reactive power injections at bus l,

S⊥ ≜

[
∂v1
∂pl

. . . ∂vn

∂pl
∂v1
∂ql

. . . ∂vn

∂ql

]T
∈ Rn×2, (17)

then there is a unique least squares solution for the rectangular
complex power perturbation ∆x = [∆pl,∆ql]

T such that

∆x =
(
ST
⊥S⊥

)−1
ST
⊥∆v, (18)

because, by Lemma 2, the system S⊥∆x = 0 has a solution
if and only if ∆x = 0. Therefore, S⊥ has full rank and (18)
will always exist.

C. Relating Active and Reactive Power Perturbations

In this section, we describe how to use the bus power factors
to encode the impact of reactive power injections on voltage
magnitudes as an equivalent active power injection.

Lemma 3. Let α ≜ [α1, . . . , αn]
T ∈ Rn be the bus power

factors. Let ∆p ≜ p − p0 ∈ Rn and ∆q ≜ q − q0 ∈ Rn be
vectors of active and reactive power perturbations around an
operating point, where ∆p,∆q ̸= 0. Then:

αi ∈ (0, 1) i = 1, . . . , n ⇐⇒ ∃K(α) : Rn 7→ Rn×n, (19)

such that k(αi) ≜ Kii ≜ ± 1
αi

(
1− α2

i

) 1
2 for i = 1, . . . , n,

and where we define K(α) ≜ diag(k(α)) so that

∆q(∆p|α) = K(α)∆p, (20)

∆p(∆q|α) = K−1(α)∆q, (21)

K(α)K−1(α) = K−1(α)K(α) = I, (22)

where I is the identity matrix.

Proof. If αi ∈ (0, 1) ∀i, then we can write the net nodal
active power injection as (23):

pi ≜ Re {pi + jqi} ≜ αi

√
p2i + q2i , (23a)

⇐⇒ p2i = α2
i

(
p2i + q2i

)
⇐⇒ p2i

(
1− α2

i

)
= α2

i q
2
i , (23b)

⇐⇒ qi = ±α−1
i (1− α2

i )
1
2 pi (23c)

For the only if condition, consider that if ∃i ∈ {1, . . . , n} such
that αi /∈ (0, 1); this implies that there exists an αi = 1 such
that Kii = 0 or αi = 0 and K−1

ii = 0.

Lemma 4. Let α ≜ [α1, . . . , αn]
T ∈ (0, 1]n be the bus power

factors. The network voltage deviation vector ∆v ≜ v − v0

can be written as: ∆v = S†(α)∆p, where we define

S†(α) : Rn 7→ Rn×n ≜
(
Sv
p + Sv

qK(α)
)
, (24a)

K(α) : Rn 7→ Rn×n ≜ diag
(
k(α)

)
, (24b)

Fig. 1. Representing the net reactive (green) and active (orange) power
injections as parameterized functions of the power factor. Color intensity
represents the size of the injection opposite that shown on the vertical axis.

and where diag(x) ∈ Rn×n denotes a diagonal matrix
constructed from a vector x ∈ Rn such that diag(x)[i, j] =
0 ∀i ̸= j and diag(x)[i, i] ≜ xi ∀ i = 1 . . . , n.

Proof. By Lemma 3, we can express the reactive power injec-
tion as a function of the active power injection parameterized
by the bus power factor:

qi(pi|αi) = k(αi)pi = ± pi
αi

(
1− α2

i

) 1
2 . (25)

Therefore, we can express the voltage deviation vector ∆v ∈
Rn as (26):

∆v = Sv
p∆p+ Sv

qK(α)∆p, (26a)

=
(
Sv
p + Sv

qK(α)
)
∆p ≜ S†∆p, (26b)

which is what we wanted to show.

This representation of reactive power is illustrated in Fig. 1.
Lemma 4 is useful because it allows us to represent the impacts
of changes in reactive power on the voltage magnitudes as
equivalent changes in active power by exploiting the relation-
ship between active and reactive power for known bus power
factors, which can be efficiently estimated from historical AMI
data [23], [38].

IV. ESTIMATION CONDITIONS

This section contains the main analytical results of this
paper. Section IV-A develops a sufficient condition for a
unique solution to the underdetermined system ∆v = S∆x.
Section IV-B develops bounds to analyze the feasible power
factors that satisfy the sufficient condition in Section IV-A.
Section IV-C develops a necessary and sufficient condition
to solve the system ∆v = S∆x based on the singularity
conditions of two linear operators derived from the bus power
factors and the Newton-Raphson power flow Jacobian.

A. Neumann series-based sufficient conditions

Below, two Assumptions are stated that allow us to develop
a sufficient condition for when the inverse of S† as defined in
(26b) is guaranteed to exist.
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Assumption 1. The power flow Jacobian is nonsingular and
the unknown angle sensitivity submatrix ∂p

∂θ is positive definite.

The non-singularity of the Jacobian is a reasonable as-
sumption, as power systems typically operate far from the
point of voltage collapse. While counterexamples do exist
(for example, as described in [39]–[41]), the full power flow
Jacobian can typically be expected to be nonsingular if normal
network operating conditions are assumed. The assumption of
∂p
∂θ being positive definite is not restrictive, as it holds in most
practical cases (see [42]–[44]).

Assumption 2. The difference between the maximum and
minimum elements of K(α),

∆k ≜ kmax − kmin =

√
1− α2

min

αmin
−
√
1− α2

max

αmax
, (27)

is sufficiently small relative to an expression that depends on
the power-to-voltage-phase-angle sensitivity matrices ∂p

∂θ and
∂q
∂θ , which will be defined explicitly in (37) and (38).

Theorem 1. Let ∆v ∈ Rn be a vector of voltage magnitude
perturbations. If Assumptions 1 and 2 hold, there exists unique
complex power perturbations ∆x ≜ [∆pT ,∆qT ]T ∈ R2n in
rectangular coordinates such that ∆v = S̃∆x.

Proof. Using Lemma 4, it now suffices to show that

S† ≜
(
Sv
p + Sv

qK(α)
)

(28)

is invertible to complete the proof.
If Assumption 1 holds, then both J and ∂p

∂θ are invertible.
Thus, we can apply the Schur Complement to write the
reactive power voltage sensitivity matrix in terms of the blocks
of the Jacobian in (7) as

Sv
q =

(
∂q

∂v
− ∂q

∂θ

(
∂p

∂θ

)−1
∂p

∂v

)−1

, (29)

and the active power voltage sensitivity matrix is then:

Sv
p = −

(
∂q

∂v
− ∂q

∂θ

(
∂p

∂θ

)−1
∂p

∂v

)−1
∂q

∂θ

(
∂p

∂θ

)−1

, (30)

= −Sv
q
∂q

∂θ

(
∂p

∂θ

)−1

. (31)

Combining (28), (29), and (31), we can express S† as:

S† = Sv
q

(
K− ∂q

∂θ

(
∂p

∂θ

)−1
)
. (32)

Thus, we have that

(Sv
q)

−1S†
∂p

∂θ
= K

∂p

∂θ
− ∂q

∂θ
. (33)

Let kmax and kmin denote the maximum and minimum entries
of K, respectively. Recall that we defined ∆k ≜ kmax − kmin

and let ∆K ≜ kmaxI−K. Then we can write

(Sv
q)

−1S†
∂p

∂θ
= kmax

∂p

∂θ
− ∂q

∂θ︸ ︷︷ ︸
≜M≻0

−∆K
∂p

∂θ
, (34)

(Sv
q)

−1S†
∂p

∂θ
= M

(
I−M−1∆K

∂p

∂θ

)
. (35)

The inverse of the term in parentheses in (35) can be computed
using Neumann series. According to [45, Ch. 22, Lemma 1],
this inverse is guaranteed to exist if:

∥∥∥∥M−1∆K
∂p

∂θ

∥∥∥∥
2

< 1, (36)

where ∥·∥2 is the largest singular value—also known as the
spectral norm or operator norm—of the argument. The sub-
multiplicative property of this norm allows us to use the
stronger inequality (37), where ∥∆K∥2 = kmax−kmin = ∆k:

∥∥M−1
∥∥
2
∥∆K∥2

∥∥∥∥∂p∂θ
∥∥∥∥
2

< 1. (37)

Therefore, the inverse is also guaranteed to exist if

∆k <
∥∥M−1

∥∥−1

2

∥∥∥∥∂p∂θ
∥∥∥∥−1

2

, (38)

which holds for close enough power factors. In conclusion,
the right hand side of (35) is invertible, so the left hand side
is invertible too. Under condition (37) or (38), both (Sv

q)
−1

and ∂p
∂θ are invertible. Then, S† is invertible too. This means

that for any ∆v we have a unique ∆p and a unique ∆x.

B. Analyzing the power factor bound

For a given operating condition, if we have access to the
full network model, the upper bound on ∆k can be computed
directly. To achieve this, recall that we defined the quantity
∆k as ∆k ≜ kmax − kmin = k(αmin)− k(αmax),

Lemma 5. The inverse function of k(α), denoted as k−1(α),
can be written as

k−1(α) ≜

√
1

k2(α) + 1
, α ∈ (0, 1]. (39)

Proof. See Appendix A-C.

Thus, using (39), we can express αmin ∈ (0, 1] such that
(38) is satisfied as a function of αmax ∈ (0, 1] as

αmin(αmax) = k−1(k(αmax) + ∆kmax), (40a)

= k−1

(
k(αmax) +

∥∥M−1
∥∥−1

2

∥∥∥∥∂p∂θ
∥∥∥∥−1

2

)
, (40b)

where ∆kmax is the upper bound of (38) computed at the
operating point. Note that if αmax = 1, i.e., we set a bus to
have unity power factor, then k(αmax) is zero.

In Fig. 2, we plot the expression for αmin, (40), as a function
of αmax for radial test cases, and the same is done for meshed
test cases in Fig. 3. This visualizes the conditions implied by
Theorem 1 for various MATPOWER [46] test cases at their
default, instantaneous operating point.
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Fig. 2. Radial cases: feasible bus power factors such that (38) holds as a
function of the maximum bus power factor αmax using (40).

Fig. 3. Meshed cases: feasible bus power factors such that (38) holds as a
function of the maximum bus power factor αmax using (40).

C. Necessary and sufficient condition

We propose the term phaseless observability for the con-
cept that is studied in this paper—a favorable grid operating
condition where active and reactive power injection state es-
timates are well-conditioned from observations of the voltage
magnitudes, without observing the phase angles.

Theorem 1 establishes a sufficient condition (bound) on the
injection variables that, if satisfied, guarantees that phaseless
observability will hold in the network. In this section, we use
bounds on the eigenvalues of linear operators derived from the
Newton-Raphson power flow model (6) that are both necessary
and sufficient for the phaseless observability condition to hold.

Since Theorem 2 is satisfied if and only if phaseless ob-
servability holds, we propose that Theorem 2 captures the full
scope of the property loosely characterized by the sufficient
condition in Theorem 1.

Nonetheless, we note that the sufficient conditions devel-
oped in Section IV-A remain valuable because of their intuitive
connections to the bus power factors and the power flow
Jacobian phase angle sensitivity submatrices. The robustness
of the sufficient condition in the numerical results relative
to the necessary and sufficient condition, coupled with the
physical interpretation, motivates our elevation of Theorem 1
as a primary contribution of our paper.

This section introduces a stronger necessary and sufficient
condition for the existence of a unique complex power in-

jection solution in rectangular coordinates ∆x ∈ R2n given
a wide voltage magnitude sensitivity matrix S ∈ Rn×2n and
measurements of voltage magnitude perturbations ∆v ∈ Rn.

While this condition may have less physical interpretability
than the sufficient conditions of Theorem 1, it remains valuable
from both a theoretical and engineering perspective for eval-
uating the “tightness” of the sufficient conditions in Section
IV-A, which we later include in the numerical results.

The value of understanding these physical conditions is that
it allows us to take a principled, physics-informed approached
to estimating power factor parameters, through the form of a
matrix K described in Lemma 4. The engineering value of
K is that this matrix allows us to examine the eigenvalues of
special projected forms of the voltage sensitivity matrices—to
be defined in Theorem 2—to verify an estimate existence
guarantee that is analogous to the ones provided by the
conditions (37) and (38) of Theorem 1.

Theorem 2 (Phaseless observability). Let ∆v ≜ v − v0 ∈
Rn be a vector of voltage magnitude perturbations around an
operating point v0 ∈ Rn and let α ∈ (0, 1)n ⊂ Rn be the bus
power factors. Define the n × n special sensitivity matrices
S†(α) : Rn 7→ Rn×n and S‡(α) : Rn 7→ Rn×n as (41):

S†(α) ≜

(
∂v

∂p
+

∂v

∂q
K(α)

)
, (41a)

S‡(α) ≜

(
∂v

∂p
K−1(α) +

∂v

∂q

)
, (41b)

such that

∆v(α) = S†(α)∆p = S‡(α)∆q. (42)

Then, there are unique complex power perturbations in rect-
angular coordinates ∆x = [∆pT ,∆qT ]T ∈ R2n such that
∆v = S̃∆x, S̃ ∈ Rn×2n, if and only if

S†(α) ≻ 0. (43)

Proof. If S† ≻ 0 or S‡ ≻ 0 the linear systems of equations

S†x = λx = 0, (44)
S‡x

′ = λx′ = 0, (45)

have solutions x,x′ ∈ Rn if and only if x,x′ = 0. If S† ≻
0, then S‡ ≜ S†K

−1 must be invertible as well, given the
assumption that α ∈ (0, 1)n.

In the numerical results developed in Section VI, we will
compare the application of Theorem 1 and Theorem 2 to many
test cases.

V. ALGORITHMS AND APPLICATIONS

This section develops algorithms to reconstruct or update an
estimate S̃# of the wide voltage magnitude-power sensitivity
matrix S̃ that we have studied in this paper, defined in (9).
Since we will assume that we do not have access to a network
model, we use finite differences of the signals in (3) as the data
inputs to these algorithms. Let m′ ≜ m − 1 be the number
of finite differences, and define ∆V,∆P,∆Q ∈ Rm′×n as
matrices whose rows are the transpose of the finite difference
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Fig. 4. Spectral analysis of the S̃ matrix (9) by phase and injection type for the IEEE 13-bus test case, showing approximate low-rank structure.

vectors. Define a matrix of complex power perturbations in
rectangular coordinates as ∆X ≜ [∆PT ,∆QT ]T ∈ Rm′×2n.

A. Review of Least Squares Sensitivity Matrix Estimation

Assuming m′ ≥ 2n, it is well-known [9], [11] that a least-
squares estimate for S̃ can be found via the Moore-Penrose
Pseudoinverse as

(
S̃#
)T

= (∆XT∆X + λI)−1∆XT∆V,
where λ is a Tikhonov regularization parameter. The resulting
estimate gives us ∆VT ≈ S̃#∆XT .

We propose that the wide S̃ will often have rapidly decreas-
ing singular values. In this case, S̃ can be well approximated
via a truncated singular value decomposition (SVD) as:

S̃ ≈
R∑

k=1

σkukv
T
k , (46)

where σk,uk, and vk, k = 1, . . . , R are the R largest singular
values and corresponding singular vectors. The assumption of
rapidly decreasing singular values is well-motivated, as can be
verified empirically in Fig. 4, which shows a spectral analysis
of the voltage sensitivities for the IEEE 13-bus test feeder.

Remark 3. The approximate low-rank structure of S̃ results
from the columns belonging to a union of low-rank subspaces.
Empirically, we have found these are related to groupings of
the injection type (P/Q) and phase (A/B/C).

B. Sensitivity Matrix Completion

Suppose that we have an incomplete sensitivity matrix
S̃0 ≜ [Sv

p,0,S
v
q,0] where the set Ω = {(i, j) : [S̃0]i,j = 0}

represents |Ω| entries of S̃0 for which we do not have access
to voltage sensitivity relationships. The full matrix S̃, which
contains entries for all buses, can be recovered as the solution
to the following program:

S̃# = argmin
S∈Rn×2n

||S̃0−S||2F subject to: rank(S) = R, (47)

where || · ||2F is the squared Frobenius norm, which is defined
for a matrix X ∈ Rd1×d2 as ||X||2F =

∑d1

i=1

∑d2

j=1 |Xi,j |2.
The program (47) is non-convex, but a closed form solution

can be tractably found by truncating the SVD as in (46).
Choosing R is equivalent to tuning a real-valued hyperparam-
eter λ ≥ 0 in the Lagrangian of this program,

argmin
S

||S̃0 − S||2F + λ (rank(S)). (48)

The rank constraint on the optimization variable S is also
non-convex, and the solution requires hard-thresholding, i.e.,
selecting an integer R in (46). Additionally, we cannot solve
(48) in this way, as we cannot take the truncated SVD of a
matrix with unknown values. Following [25], [26], [33], this
leads to the convex relaxation (49), which replaces the rank
penalty term with the nuclear norm of the decision matrix:

argmin
S

||S̃0 − S||2F + λ||S||∗,

s.t. ||S− SΩ||F ≤ δ,
(49)

where [SΩ]i,j = 0 ∀(i, j) ∈ Ω, and [SΩ]i,j = [S̃0]i,j if
(i, j) /∈ Ω. The operator ||·||∗ denotes the nuclear norm, which
is the sum of the singular values of S. The hyperparameter δ
reflects how accurately we wish to match the coefficients that
are known beforehand in S̃0. The program (48) promotes so-
lutions with skewed singular values, which are “approximately
low-rank”.

C. Iterative Estimation and Completion
In contrast with the well-studied least-squares method in

Section V-A, in this section we assume that m′ ≪ 2n,
and that we have access to a number of precomputed local
sensitivity coefficients. In this setting, given a small chunk of
the finite differences of the AMI measurements described at
the beginning of this section, we can solve

S̃#
t =argmin

S
∥S∆X−∆V∥2F + λ∥S∥∗, (50a)

subject to: ∥SΩ − S∥F ≤ δ, (50b)

or, alternatively, we can use the measurements in (3) sequen-
tially to perform a similar iterative estimation of the sensitivity
matrix at time t, S̃#

t , by solving the online convex optimization
problem (51):

S̃#
t =argmin

S
||∆vt − S∆xt||22 + λ||S||∗ + c

t−1∑
s=1

γs||S̃#
t−s − S||2F ,

subject to: ||S− SΩ||F ≤ δ. (51)

The summation term in the optimization is a penalty term: if
we consider S̃#

t for all t as a time series, then the summation
is equivalent to an exponential smoother. The time constant of
the smoother is γ ∈ (0, 1) and the strength of this penalty term
is given by the hyperparameter c. The purpose of this term is
to smooth out any sharp difference between the various S̃#

t at
contiguous time steps. The voltage and power perturbations at
time t are the vectors ∆vt ∈ Rn, xt ∈ R2n.
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VI. CASE STUDIES

This section provides numerical case studies of the theory
and algorithms developed in this paper. In Section VI-A,
we outline the preprocessing steps we use. In Section VI-B,
we compute the analytical upper bound on ∆k derived in
(38) of Theorem 1 and test the validity of Assumption 1
for numerous radial and meshed networks. This is done
in PowerModels.jl [47] by using and extending the
calc_basic_jacobian_matrix function, the results of
which are shown in Table I and Table II. In Section VI-C, we
apply the estimation techniques developed in Section V to the
IEEE 13-bus and 123-bus radial distribution test cases [48]
using the OpenDSS distribution network simulator [49].

A. Misalignments with Theoretical Assumptions

To test Theorem 1 numerically in Section VI-B, we take the
following practical preprocessing steps to generate the results
in Table I and Table II. We study buses that:

1) are a PQ bus,
2) have a nonzero net active and apparent power injection.

For the results generated in Table I and Table II, we assume
that buses with zero net power injection within a tolerance of
ϵ = 1× 10−6 will have the corresponding entry in the matrix
K at this bus replaced with the sample mean of the nonzero
elements of diag(K).

B. Test of Analytical Results

In the results of this computation, we maintain the default
operating points specified in the network data.

1) Theorem 1: In Table I and Table II, the quan-
tity

∥∥∥M−1∆K∂p
∂θ

∥∥∥
2

is shown for numerous radial and
meshed MATPOWER test cases, respectively. The quantity∥∥∥M−1∆K∂p

∂θ

∥∥∥
2

must be strictly less than 1 for the sufficient
condition (37) to hold, which implies that there is a unique es-
timate for complex power perturbations from the voltage mag-

nitudes. We also report the stricter bound,
∥∥M−1

∥∥−1

2

∥∥∥∂p
∂θ

∥∥∥−1

2
,

which is useful for its physical interpretation via the bus power
factors. Note that Theorem 1 holds for all case 5 variants
provided by PowerModels.jl except for: 1.) case5_db,
as its Jacobian is singular, as well as 2.) case5_sw and 3.)
case5_tnep, as they have a single PQ bus.

Tables I and II verify that when all buses in a network have
constant, nonunity power factors, as in case4_dist, which
has αi = 0.894 for all buses i, the condition of Theorem 1
is trivially satisfied. The results also verify that the sufficient
condition (37) and the stronger, physically interpretable con-
dition (38) are satisfied for many test cases with differing,
non-unity power factors at their default operating points. This
is observed for both radial and meshed cases, as shown in
Table I and II, respectively.

Additionally, cases that do not satisfy the condition typically
have large variations between the bus power factors. Therefore,
we hypothesize that future research could potentially leverage
Theorem 1 to design control algorithms, such as those that
follow the formulation of [8]. Another future research direction

is the design of power factor controller that manages the net
injection power factors of the loads such that the complex
power injections remain observable from the voltage magni-
tude deviations. We propose that this would have applications
in distribution grid sensor placement and expansion planning
problems, where the costs and benefits of increasing penetra-
tion of PMUs must be considered.

2) Theorem 2: Results for Theorem 2 are also listed in
Table I and Table II. Additional numerical results for testing
Theorem 2 on the radial cases that were listed as satisfying
Theorem 2 are provided in Table IV in Appendix B Note that
all K matrices discussed in Table IV are nonsingular.

C. Complex Power and Sensitivity Matrix Estimation

In this section, we present two case studies for the voltage
sensitivity matrix completion problems outlined in the second
part of the paper, which can complement existing regression-
based methods for estimating the matrices.

1) IEEE 13-Bus Test Case: We compute the voltage sensi-
tivities to active and reactive power injections for the IEEE 13-
bus test case using OpenDSS as a baseline for comparison. The
default loadshape is used for all loads. CVXPY [50] is used
to implement the matrix completion algorithms. To represent
a varying degree of sensor penetration, we change the number
of observed sensitivity coefficients |Ω|, from 20% to 90% of
the total number of entries. We vary the nuclear norm penalty
λ between 1× 10−6 and 8× 10−6. We fix δ = 6× 10−3. We
reconstruct the active and reactive power sensitivities with a
mean absolute error below 1.25× 10−6 for all sensor levels.

At the sensor observability level of 20%, we used the
online model update (51) to estimate S̃#

t in real time. With
a smoothing factor of γ = 0.9, a nuclear norm penalty of
λ = 1.25×10−4, and a gain of c = 1×10−8 for the smoothing
term, we run the online optimization problem for 15-minute
time steps at 10 different noise levels for the IEEE 13-bus test
case, as shown in Fig. 5. The errors are approximately an order
of magnitude smaller than the values of ∥∆vt∥ and ∥∆v̂t∥
themselves at all noise levels, which indicates the predictive
performance of the method.

2) IEEE 123-Bus Test Case: This section extensively tests
the methods developed in this paper on the IEEE 123-bus
test feeder. We verify the reactive power representation in
(24) through two load data inputs. First, we set all loads to
fixed power factor control seeking to maintain a value of 0.9.
Second, we allow the load power factor settings to vary over
time between 0.8 and 0.9. The actual power factors reported
by OpenDSS after simulation were 0.795 to 0.906.

For both data inputs, we compute a time-series of Sv
p,S

v
q

using the perturb-and-observe method, which computes these
matrices by adding a small static active or reactive power
injection iteratively to each bus and recording the normalized
change in voltage magnitudes relative to the voltages at the
base case solution. More information is available in [4]. We
then estimate ∆pt,∆qt using the voltage magnitudes and the
S† and K matrices defined in (24) for t = 1, . . . ,m′ as

(∆p̂t,∆q̂t) = (S−1
† ∆vt,KS−1

† ∆vt). (52)
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TABLE I
NUMERICAL VALIDATION OF THEOREMS FOR RADIAL MATPOWER TEST CASES AT DEFAULT OPERATING POINT

Assumption Holds? Quantity Thm. Holds?

Case ∂p
∂θ

≻ 0 J−1 Exists λmin(J) αmax − αmin kmax − kmin ∥M−1∥−1
2

∥∥ ∂p
∂θ

∥∥−1

2

∥∥M−1∆K ∂p
∂θ

∥∥
2

Thm. 1 Thm. 2

2 Yes Yes 17.3726 0.0 0.0 0.403 0.0 Yes Yes

5 tnep Yes Yes 104.01 0.0 0.0 0.4553 0.0 Yes Yes

4 dist Yes Yes 50.426 0.0 0.0 0.1472 0.0 Yes Yes

10ba Yes Yes 0.646 0.34293 2.833 6.596× 10−3 6.21 No No

12da Yes Yes 0.322 0.0929 0.250 0.01072 5.38 No Yes

15da Yes Yes 1.772 7.14× 10−8 2.04× 10−7 0.6299 1.74× 10−6 Yes Yes

15nbr Yes Yes 0.0262 7.14× 10−8 2.04× 10−7 0.0156 1.76× 10−6 Yes Yes

16am Yes Yes 6.117 0.248 0.767 0.198 0.993 Yes Yes

16ci Yes Yes 9.968 0.198 0.54 0.206 0.40 Yes Yes

17me Yes Yes 0.0651 0.248 0.767 0.01204 17.55 No Yes

18 Yes Yes 0.542 0.0588 0.1533 0.00573 3.0485 No Yes

18nbr Yes Yes 0.0189 1.43× 10−4 4.08× 10−4 0.0115 6.2× 10−3 Yes Yes

22 Yes Yes 1.0580 0.164 0.495 7.182× 10−3 6.39 No Yes

28da Yes Yes 0.274 6.25× 10−6 1.79× 10−5 2.157× 10−3 5.0× 10−4 Yes Yes

33bw Yes Yes 0.0870 0.670 2.833 2.732× 10−3 27.82 No No

33mg Yes Yes 0.784 0.670 2.83 2.50× 10−3 28.024 No Yes

34sa Yes Yes 1.120 0.0534 0.238 0.0166 0.573 Yes Yes

38si Yes Yes 0.708 0.670 2.833 0.160 17.792 No Yes

51ga Yes Yes 0.575 0.251 0.701 1.105× 10−3 15.484 No No

51he Yes Yes 1.552 0.119 0.321 0.0112 1.720 No No

69 Yes Yes 0.0489 0.100 0.263 0.123× 10−3 0.518 Yes Yes

70da Yes Yes 0.737 0.194 0.523 2.879× 10−3 9.820 No Yes

74ds Yes Yes 1.0596 0.161 0.429 0.344× 10−3 30.25 No Yes

85 Yes Yes 0.1835 1.25× 10−6 3.57× 10−6 0.0191 1.28× 10−5 Yes Yes

94pi Yes Yes 0.2748 5.86× 10−3 16.7× 10−3 1.082× 10−3 0.0864 Yes Yes

118zh Yes Yes 0.1438 0.445 1.412 0.506× 10−3 22.53 No No

136ma Yes Yes 0.1854 0.0309 0.09137 0.135× 10−3 0.158 Yes Yes

141 Yes Yes 0.1067 1.493× 10−5 3.92× 10−9 5.496× 10−6 5.48× 10−7 Yes Yes

The results of this computation are shown for 10 buses of
the IEEE 123-bus test feeder in Fig. 7 and Fig. 8. The overall
root mean squared error (RMSE) of the estimation results over
the 24-hour time horizon for both power factor data input
scenarios are shown for all buses in Fig. 6.

Subsequently, we evaluate the S̃ matrix recovery technique
using the IEEE 123-bus test case with multiple reactive
power behaviors. The bus power factors are set to 0.9 for
all loads. We initialize a random S̃0 with 90% to 25% of the
entries unknown. Applying the matrix recovery algorithm with
hyperparameters λ = 0.125 and δ = 0.06, we estimate a wide
S̃# with a relative percentage error, (∥S̃ − S̃#∥

/
∥S̃∥) × 100

of 7.62% when 20% of the entries are known. The recovered
matrix is illustrated in Fig. 9. The performance of the estimated
matrix as the system evolves across time is shown in Fig. 10.
Note that this does not depict a time-varying estimate of the
matrix, in contrast with Fig. 5.

D. Tests on large-scale meshed networks

This section details the results of experimentally verifying
the proposed conditions on large-scale, more realistic, meshed

test networks. The proposed conditions appear to hold for
larger test networks at the AC power flow solution.

Specifically, experiments mirroring those done in Section
VI-B and Section VI-C are conducted on two larger scale test
networks in an effort to more realistically capture the behavior
of true electric power networks.

First, we use the 73-bus IEEE Reliability Test System-Grid
Modernization Lab Consortium (RTS-GMLC) network model
[51], a publicly available and open source. This network model
seeks to be a standard and open test case for electric power
system production cost modeling and reliability calculations.

Second, we use the 2k-Bus Synthetic Texas Model from the
Texas A&M University/ARPA-E PERFORM [52] synthetic
grid dataset. We elect to study the 2k-Bus Synthetic Texas
Model for the purpose of ensuring that the experiments can
be efficiently reproduced on consumer hardware. In our exper-
iments, we use a ThinkPad T14 laptop computer with a Ryzen
7 PRO 4750-U 8-core 1.7 GHz CPU with 42 GB of RAM.
The results of these experiments are shown in Table III.
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TABLE II
NUMERICAL VALIDATION OF THEOREMS FOR MESHED MATPOWER TEST CASES AT DEFAULT OPERATING POINT

Assumption Holds? Quantity Thm. Holds?

Case ∂p
∂θ

≻ 0 J−1 Exists λmin(J) αmax − αmin kmax − kmin
∥∥M−1

∥∥−1

2

∥∥ ∂p
∂θ

∥∥−1

2
∥M−1∆K ∂p

∂θ
∥2 Thm. 1 Thm. 2

case5 Yes Yes 1.0 0.0 0.0 0.448 0.0 Yes Yes

case9 Yes Yes 0.766 0.0563 0.194 0.471 0.280 Yes Yes

case14 Yes Yes 0.549 0.138 0.434 0.0915 0.474 Yes Yes

case24 Yes Yes 1.0 1.65× 10−3 8.70× 10−3 0.0317 0.0230 Yes Yes

case30 Yes Yes 0.235 0.192 0.591 0.1472 1.335 No Yes

TABLE III
NUMERICAL VALIDATION OF THEOREMS FOR LARGE-SCALE MESHED MATPOWER TEST CASES AT DEFAULT OPERATING POINT

Assumption Holds? Quantity Thm. Holds?

Case ∂p
∂θ

≻ 0 J−1 Exists λmin(J) αmax − αmin kmax − kmin
∥∥M−1

∥∥−1

2

∥∥ ∂p
∂θ

∥∥−1

2
∥M−1∆K ∂p

∂θ
∥2 Thm. 1 Thm. 2

RTS-GMLC Yes Yes 0.295 0.7632 0.2923 0.0324 0.02289 Yes Yes

Sg2k Yes Yes 0.235 0.192 0.591 0.207× 10−3 0.1355 Yes Yes

Fig. 5. Predictive performance of the S̃ matrix found via (51) for the IEEE 13-
bus test feeder. The top figure shows the Euclidean distance vs. time between
the observed and predicted voltage deviations at all buses for varying noise
levels, shown as percentages of the mean measured voltage. The bottom figure
shows the Euclidean norm vs. time of the predicted (purple) and the true
(green) voltage deviations for all buses at the lowest noise level.

VII. LIMITATIONS AND FUTURE WORK

The proposed theory and algorithms, as well as the pre-
sented case studies have limitations and opportunity for future
work, which we describe throughout this section.

A. Analytical Results

The analytical results developed in this paper rely on the
definition of the sensitivities of voltage phasors to complex
power injections in rectangular coordinates (11) developed in
[34]. According to [34], these definitions are valid for radial
electric power systems, and we have mirrored this scope in
Lemmas 1 and 2. There is an opportunity for future work to
extend those analyses and generalize to non-radial networks.

Furthermore, we stress that the proposed condition (38) for
the existence of a unique ∆x is a sufficient but not necessary
condition. While this sufficient condition does hold at the
default operating point for numerous test cases as shown in

P

QT
yp

e

Constant Bus Power Factors (αi = 0.9)

10−5 10−4 10−3 10−2 10−1

RMSE (kW or kVAR)

P

QT
yp

e

Varying Bus Power Factors (αi ∈ [0.8, 0.9])

Fig. 6. Root mean squared error (RMSE) of the active/reactive power
deviation time-series estimated over a 24-hour time horizon for the IEEE
123-bus test case using (52) with both constant (top) and varying (bottom)
bus power factors. Each dot represents a single bus with a load.

Tables I and II, the fact that it does not hold for other test cases
does not necessarily imply that the applications are impossible.
This does, however, indicate that this problem is not fully
solved from a theoretical perspective. Reformulations and
tightening of this inequality or the development of necessary
conditions is an important direction for future work.

There is also an opportunity for future work to explicitly
extend the analysis outlined here to a broader range of network
topologies. Notably, we have completely neglected the explicit
multi-phase analysis of the sensitivities. We hypothesize that
the models and theories we have considered are general
for multi-phase distribution networks; however, their explicit
formulation remains an opportunity for future work.

In some topologies, additional considerations for details
beyond those in the scope of this paper may be needed. On
the other hand, some topologies such as secondary distri-
bution networks—i.e., networks on the secondary side of a
distribution network service transformer—may contain com-
putationally favorable topological structures. In general, prior
knowledge of the network topology may admit a host of new
extensions to this research.

Finally, we note that a valuable direction for future work is
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Fig. 8. Estimating complex power using voltage magnitudes for the IEEE 123-bus case with varying bus power factors using (52).

Fig. 9. Recovering the S̃ matrix for the IEEE 123-bus test feeder using (50)
with 80% and 90% of the 150,152 coefficients unknown. Hyperparameters are
λ = 0.125 and δ = 0.06. Rel. Fro. error (∥S̃− S̃#∥

/
∥S̃∥)×100 = 7.62%.

to extend the conditions derived in this work to evaluate state
estimation feasibility if a subset of the buses have only voltage
magnitude measurements or only power measurements. Re-
lated work on topology estimation with partially observable
AMI/smart meter measurements, e.g., [37], may indicate that
this open question is promising.

B. Computational Results

In practice, the quantity ∆k on the left hand side of the
inequality derived in Theorem 1, (38), is inherently time-

Fig. 10. Performance of the recovery of the S̃ matrix for the IEEE 123-bus
test feeder with 90%-25% of the 150,152 coefficients unknown, using (50)
with hyperparameters λ = 0.125 and δ = 0.06.

varying, as it depends on the operating point of the network.
The right hand side of the inequality is also time-varying, as
it depends on the angle sensitivity matrices from the power
flow Jacobian, which are themselves functions of the operating
point. In the results presented in Table I and Table II, we use
the default power injections of the test cases; therefore, the
results represent a single point in time. There is an opportunity
for future work to investigate how these quantities change
across time and how this impacts the estimation quality.

The sensitivity matrix completion methods have clear prac-
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tical applications—particularly in realistic AMI data modeling
scenarios where missing data are prevalent—however, the
nuclear norm regularizer contained in the objective function
of these problems, λ ∥S∥∗, can be computationally expensive
for large circuits when naı̈ve implementations are used. Future
improvements in the computational efficiency of nuclear norm-
regularized optimization problems have applications in some
of the results of this work. This could improve the feasibility
of these results to large-scale distribution system problems,
and thus, a wider range of real-world settings.

VIII. DISCUSSION

The theory and algorithms developed in this paper directly
relate to one another. The conditions provided by Theorems
1 and 2 ensure when it is possible to relate v to p and q
without knowledge of θ through the underdetermined system
(41). Correspondingly, the power system applications of the
matrix completion/recovery algorithms reviewed in Section V
allows engineers to go further, and indicate that is possible
to infer of the voltage sensitivities of nodes that do not have
measurements of p, q, or even v, provided that the following
assumptions hold:

1) The engineer has access to “seed” coefficients that form
S̃0. For example, this could take the form of precom-
puted voltage sensitivity coefficient estimates computed
from historical data of a limited number of measured
nodes elsewhere in the distribution network.

2) Some prior knowledge, intuition, or estimate of the di-
mensionality of the of the full S̃ matrix to be estimated.
This could take the form of topological information
reported from engineers or technicians, GPS data, and/or
satellite imagery.

3) The mild technical assumption described in Remark 3.
The results discussed in Section III directly inform the

results of Section V by allowing Algorithms such as those
developed in Section V may be of valuable practical appli-
cation to solving engineering problems in rural distribution
system environments, due to lagging availability of the very
fast GPS synchronization and robust communication infras-
tructure required for some classes of control and optimization
algorithms. Thus, we conclude that this research provides
valuable engineering insight for enhancing the observability
of distribution grids in austere environments.

IX. CONCLUSION

This paper developed theory and algorithms for analyzing
sensitivity matrices relating voltage magnitudes to active and
reactive power injections, and correspondingly, analyzing com-
plex power injections with voltage magnitudes.

First, we showed that these matrices achieve distinct values
in radial distribution networks. Then, we developed a sufficient
condition based on the bus power factors for arbitrary networks
that guarantees a solution to the underdetermined linear system
formed by these matrices. In summary, the condition shows
that there exists a sufficient margin of distance between
the bus power factors within the network that, if satisfied,
allows for the estimation of unique active and reactive power

injection vectors that explains the vector of voltage magnitude
perturbations, without observation of the voltage phase angles.

Finally, several algorithms were proposed for estimating
voltage sensitivity matrices or updating an existing estimate
from measurement data in diverse network models. Such
algorithms may help enable the application of voltage sen-
sitivities to decision-making problems in real-world electric
power distribution systems.

The results of this paper indicate that some distribution
networks may be able to be modeled with significantly reduced
data input requirements. Problems that seemingly require
phase angle measurements may be able to be solved using
voltage magnitude measurements by exploiting the voltage
sensitivities created by active and reactive power injections.
Further, existing linear sensitivity models for the bus voltages
can be updated and used to provide information about other
buses in the network, assisting the identification and model-
free prediction of the behavior of distribution grids in settings
where measurements are limited in both number and quality.

APPENDIX A
PROOFS OF LEMMAS

A. Proof of Lemma 1

Proof. Let vi and θi be the real-valued magnitude and angle
of the voltage phasor. Write the voltage phasor sensitivity at
bus i to an arbitrary quantity x as:

∂v̄i
∂x

=
∂

∂x
{viejθi} =

∂vi
∂x

ejθi + jvi
∂θi
∂x

ejθi , (53)

so, we have that:

e−jθi ∂v̄i
∂x

=
∂vi
∂x

+ jvi
∂θi
∂x

⇐⇒ Re

{
e−jθi ∂v̄i

∂x

}
=

∂vi
∂x

. (54)

Next, observe that v̄∗i /vi = e−jθ. Therefore,

Re

{
e−jθi

∂v̄i
∂x

}
=

1

vi
Re

{
v̄∗i

∂v̄i
∂x

}
, (55)

∂vi
∂x

=
1

vi
Re

{
v̄∗i

∂v̄i
∂x

}
. (56)

Make x = pl or x = ql to get the desired result.

B. Proof of Lemma 2

Proof. Using (13), the voltage magnitude sensitivity coeffi-
cients for bus i to reactive power at bus l is:

∂vi
∂ql

=
1

vi
Re

{
(Re{v̄i} − j Im{v̄i})

∂v̄i
∂ql

}
, (57)

and in the same way, for active power, we have:

∂vi
∂pl

=
1

vi
Re

{
(Re{v̄i} − j Im{v̄i})

∂v̄i
∂pl

}
. (58)

Simplifying the above results in:

∂vi
∂ql

=
1

vi
(Re{v̄i}a+ Im{v̄i}b), (59)

∂vi
∂pl

=
1

vi
(Re{v̄i}c+ Im{v̄i}d). (60)
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From Remark 1, if ∂v̄i
∂ql

̸= ∂v̄i

∂pl
for nonzero solutions this

implies that either a ̸= c or b ̸= d. So, provided that the
sensitivities are not zero, i.e., (15) and (16) are satisfied, then
it must also be true that ∂vi

∂ql
̸= ∂vi

∂pl
∀i, l.

C. Proof of Lemma 5

Proof. Recall that we defined k : α ∈ (0, 1] 7→ R as k(α) ≜
± 1

α

√
1− α2, where q(p|α) = k(α)p. We want to show that

there exists a k−1(·) : k(α) 7→ α, where k−1(k(α)) = α for
any α ∈ (0, 1]. Note that k2(α) = 1−α2

α2 . Thus we have that

α2k2(α) = 1− α2, (61a)

⇐⇒
(
k2(α) + 1

)
α2 − 1 = 0, (61b)

⇐⇒ α = ±
√

1

k2(α) + 1
. (61c)

By definition, the power factor must satisfy α ∈ (0, 1], thus,
we can discard the negative solution in (61c). Finally, we have

k−1(α) =

√
1

k2(α) + 1
α ∈ (0, 1], (62)

which is what we wanted to show.

APPENDIX B
ADDITIONAL NUMERICAL RESULTS FOR THEOREM 2

TABLE IV
ADDITIONAL NUMERICAL RESULTS FOR THEOREM 2 FOR RADIAL

MATPOWER TEST CASES AT DEFAULT OPERATING POINT

Case K Matrix Minimum eigenvalue Power Factors
kmin kmax S† S‡ αmin αmax

2 0.285 0.285 0.022 0.076 0.932 0.962
4 dist 0.5 0.5 2.3× 10−3 4.6× 10−3 0.894 0.894
5 tnep 0.329 0.329 4.57× 10−3 13.9× 10−3 0.949 0.949
12da 0.75 1.0 3.87× 10−3 4.59× 10−3 0.707 0.80
15da 1.020 1.020 3.59× 10−3 3.52× 10−3 0.7 0.7
16am 0.133 0.90 4.265× 10−10 6.239× 10−10 0.673 1.0

22 0.860 1.355 0.119× 10−3 0.137× 10−3 0.594 0.758
28da 1.020 1.020 1.46× 10−3 1.43× 10−3 0.699 0.700
33mg 0.167 3.0 0.40× 10−3 0.69× 10−3 0.316 0.986
70da 0.40 0.923 1.03× 10−3 1.76× 10−3 0.735 0.929
69 0.583 0.846 2.98× 10−5 4.21× 10−5 0.763 1.0
85 1.02 1.02 0.424× 10−3 0.416× 10−3 0.69 1.0

16ci 0.36 0.90 1.99× 10−3 3.97× 10−3 0.743 0.940
74ds 0.571 1.0 9.353× 10−5 0.1398× 10−3 0.707 0.863
51ga 0.299 1.0 0.679× 10−3 1.115× 10−3 0.707 0.958
15nbr 1.0202 1.0202 0.246 0.241 0.70 0.70
17me 0.133 0.90 24.12× 10−3 39.66× 10−3 0.673 0.991
18nbr 1.020 1.0204 0.245 0.2399 0.699 0.700
34sa 1.563 1.80 0.236× 10−3 0.142× 10−3 0.486 1.0
85 1.02 1.02 0.424× 10−3 0.416× 10−3 0.699 1.0

94pi 0.5 0.5 0.20× 10−3 0.41× 10−3 0.898 1.0
136ma 0.398 0.489 9.71× 10−5 0.23× 10−3 0.898 1.0

141 0.6197 0.6197 2.147× 10−7 3.464× 10−7 0.85 1.0
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