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Abstract—This paper presents a deterministic approach to
compute multiple local extrema for AC Optimal Power Flow
(ACOPF) problems. An elliptical representation of the sphere-
confined Fritz John conditions is constructed from a quadratic
formulation of the ACOPF problem. Application of a branch
tracing method to the elliptical formulation enables the calcula-
tion of multiple solutions. Further, a monotone search strategy
enhances the computational efficiency of finding multiple local
solutions with improved objective values. The proposed approach
is first illustrated using two small examples with known feasible
spaces. Then, four additional local solutions to a 39-bus system
are found using the proposed approach.

Index Terms—Optimal power flow, Fritz John conditions,
Continuation methods

I. INTRODUCTION

The optimal power flow (OPF) problem determines a
minimum cost operating point that satisfies both physical
constraints (i.e., the power flow equations) and engineering
limits (e.g., voltage magnitude limits, line flow limits, and
power generation limits). The full nonlinear OPF problem is
referred to as the ACOPF, and a commonly used linearized
version is called the DCOPF. Generically, an ACOPF problem
is nonconvex [1], [2], may have multiple local solutions [3],
[4], and is generally NP-Hard [5], [6].

Many nonlinear optimization algorithms have been applied
to ACOPF problems, including Newton-Raphson iteration,
sequential quadratic programming, penalty function meth-
ods, interior point methods, evolutionary algorithms, swarm
algorithms, etc. [7]–[10]. Success of most algorithms only
guarantees local optimality. As systems can have multiple
local minima (see the examples in [3], [4]), there is a need
for algorithms that search for globally optimal solutions and
find multiple solutions in order to gain confidence in the best
solution. Furthermore, there is interest in finding multiple
optima and additional stationary points to characterize and
better understand optimization problems [11]. As described
in Section IV of [3] and in [11], the presence of saddle points
or other stationary points may result in the failure of local
algorithms to converge to local solutions.

With regard to pursuing optimality, recent convex relax-
ation approaches have shown success in obtaining the global
solutions of some ACOPF problems. The first convex re-
laxation proposed was a second-order cone programming
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(SOCP) formulation in [12], with subsequent work including
tighter semidefinite programming (SDP) formulations [13],
[14]. Convex relaxations enclose the non-convex feasible space
of the original OPF problem in a convex space. If the solution
to the convex relaxation is feasible for the original non-
convex problem, the relaxation is exact or, equivalently, has
zero relaxation gap. While the SOCP and SDP relaxations
are exact for certain test cases, they may fail to provide
physically meaningful solutions to some problems [3], [15],
[16]. Several sufficient conditions have been developed that
guarantee exactness of various convex relaxations [17]. These
conditions require certain topological structures and other non-
trivial technical conditions that many problems fail to satisfy.

For cases where the relaxations of [12]–[14] are not exact,
extensions include moment relaxation approaches [18]–[20].
These approaches generalize the SDP relaxation of [14] using
the Lasserre hierarchy for polynomial optimization [21]. While
this significantly increases the problem size, a sparse structure
can be retained to improve tractability [22]. These approaches
are promising, and research continues.

Another approach to achieve global optimality is to enu-
merate local solutions. Current approaches [3] find multiple
local solutions of ACOPF problems by repeatedly executing
local optimization algorithms with large numbers of random
initializations. In this way, the authors of [3] demonstrated the
ability to find multiple local optima for many system models.
The global optima were found among the local solutions (as
verified using convex relaxation techniques), and they made
compelling arguments about properties of the sub-optimal
local minima. With some exceptions, they found that certain
local algorithms are often able to locate the global optima
when initialized from a flat start.

This paper aims to compute multiple local solutions to
feasible instances of the ACOPF problem in a principled,
deterministic manner.1 The proposed approach computes sta-
tionary solutions to the first-order optimality conditions and
then checks the second-order sufficient conditions [23] to
identify local extrema. To find solutions to the first-order
optimality conditions, we apply the branch tracing method
of our previous work [24], which was published in [25] to
locate all the real-valued solutions to power flow equations.
(This algorithm appears earlier in the thesis [26].) The branch
tracing method embeds the real solution set for a system of n

1The proposed approach can be extended to a family of nonconvex
optimization problems in addition to ACOPF. We specifically require the
ability to represent the first-order optimality conditions in an elliptical form
that will be discussed in Section IV.
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polynomials in Rn into a set of 1-dimensional curves defined
by (n − 1) polynomials. Tracing all of these 1-dimensional
curves provides the entire set of real solutions.

By solely searching for real solutions, the branch tracing
approach has significant computational advantages over con-
ventional root-tracing methods that scale with an upper bound
on the number of complex solutions to the nonlinear equations,
such as Numerical Polynomial Homotopy Continuation [27],
[28]. (See the comparison in [24].) These computational
advantages come at the expense of potential incompleteness
of the solution set. The completeness of the branch tracing
approach [25] with respect to finding all real-valued power
flow solutions was countered by a small example in [29].

Branch tracing is an effective approach for identifying
multiple power flow solutions. In [24], we revised the original
representation to construct an elliptical formulation for the
power flow equations. The elliptical formulation represents the
power flow equations as quadratic expressions with associated
matrices that are positive definite (i.e., high-dimensional el-
lipses xTMix = bi with Mi = MT

i positive definite and
bi > 0). The principle advantage of this representation is that
all branch traces of the elliptical formulation are bounded,
which is not the case for general quadratic polynomials.

Applying the branch tracing approach to the elliptical for-
mulation of the power flow equations captures all the solutions
of every existing case for which the solution set has been
fully solved, including the counterexample in [29].2 This paper
extends this tracing approach from solving the power flow
equations to ACOPF problems by constructing an elliptical
formulation of the first-order optimality conditions of ACOPF
problems and then tracing 1-dimensional curves to locate
multiple local solutions.

This deterministic method offers an alternative algorithm
for finding multiple local optima. As in other research, no-
tably [3], the results can be used to find the best optimum
by enumeration, especially when an SDP fails to do so, and
for the purpose of examining properties of local minima. The
proposed algorithm confirms some of the results in [3] with
regard to local minima. Additionally, the algorithm also locates
local maxima and saddle points which may further enhance
understanding of the properties of these systems. (For example,
in [11] it is argued that the complexity of a problem can be
inferred from the saddle points.) Note that the tracing methods
can be computationally intensive. At this point, the proposed
algorithm is particularly well-suited for research purposes. For
instance, application to one of the modified 39-bus systems
from [4] yields four new local minima in addition to the
previously reported three, as well as thousands of saddle
points, that are not easily found using traditional methods.

The paper is organized as follows. Section II introduces the
quadratic model of the ACOPF problem. Section III discusses
drawbacks of the Karush-Kuhn-Tucker (KKT) optimality con-
ditions for our purposes and introduces sphere-confined Fritz

2This indicates that the characteristics of the branch tracing approach
depend on the problem formulation, which provides flexibility for improve-
ments via problem reformulation. The elliptical reformulation has theoretical
advantages (i.e., boundedness of the traces) and empirical results demonstrate
an improved performance relative to the original formulation.

John (FJ) optimality conditions instead. Section IV constructs
an elliptical form of the Fritz John conditions. Section V
describes how to trace curves via the branch tracing method.
Section VI first applies the proposed approach to two example
problems with disconnected feasible spaces. The proposed
approach finds all the reported local minima as well as the
global minima for both problems. The proposed approach is
then applied to a modified 39-bus system [4]. Section VII
concludes the paper.

The contributions of this paper are summarized below.
1) Construction of an elliptical formulation for the first-

order conditions of ACOPF problems.
2) Proposal of a deterministic method that can search for

multiple local optima (which can include the global
optima) for ACOPF problems, including cases where
the feasible regions are disconnected and relaxation
approaches fail to find optimal solutions.

3) Introduction of a monotone search strategy to enhance
the search performance.

4) Identification of four new local minima in addition to
the previously reported three local minima of a 39-bus
test case.

5) Demonstration that a medium-size OPF problem can
have thousands of stationary points.

II. EQUALITY-CONSTRAINED AC OPF MODEL

Consider an electric power system with Nbus buses, Nline

lines, Ngen generators, and Nload loads. Without loss of
generality, suppose that the first to the Ngen-th buses are
generator buses and the rest are load buses. Let Pgen ∈ RNgen

be the active power generation vector and V ∈ CNbus be
the complex voltage vector, the real part of which is vd and
the imaginary part of which is vq . Define the bus admittance
matrix as Ybus ∈ CNbus×Nbus with real and imaginary parts
Ybus = Gbus + jBbus, where j =

√
−1. Denote If ∈ CNline

as the current vector entering the transmission lines such that
If = YfV and It ∈ CNline as the current vector leaving
the transmission lines such that It = YtV. Denote diag[·]
as the diagonalization operator. Let Re(·) and Im(·) denote
the operators taking the real part and the imaginary part,
respectively. Further define

O(·) =:
1

2

[
Re(·) − Im(·)
Im(·) Re(·)

]
(1a)

u =:
[
vT
d vT

q

]T
(1b)

MV,k =: diag
[
eTk eTk

]
(1c)

MI,j =: diag
[
tTj tTj

]
(1d)

MP,k =: MV,kO(Ybus) +O(Ybus)
TMV,k (1e)

MQ,k =: MV,kO(jYbus) +O(jYbus)
TMV,k (1f)

Mf,j =: O(Yf )TMI,jO(Yf ) (1g)
Mt,j =: O(Yt)

TMI,jO(Yt) (1h)

where ek ∈ RNbus is a column vector with a single unity
element at the k-th entry and tj ∈ RNline is a column vector
with a single unity element at the j-th entry.

Consider a cost function defined by a quadratic polynomial
in terms of the active power generation. The OPF problem
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minimizes the cost function while satisfying constraints on ac-
tive and reactive power balances, squared voltage magnitudes,
squared line current flows, and generator outputs:

Minimize J =

Ngen∑
i=1

diP
2
gen,i + ciPgen,i (2a)

Subject to:
Gen. Balance: Pgen,i − Pload,i = uTMP,iu (2b)

Load Balance: − Pload,m = uTMP,mu (2c)

−Qload,m = uTMQ,mu (2d)

Voltage Limit: uTMV,ku ≤ V 2
max,k (2e)

− uTMV,ku ≤ −V 2
min,k (2f)

Gen. Limit: Pgen,i ≤ Pmax,i (2g)
− Pgen,i ≤ −Pmin,i (2h)

uTMQ,iu ≤ Qmax,i (2i)

− uTMQ,iu ≤ −Qmin,i (2j)

Current Limit: uTMf,ju ≤ I2max,j (2k)

uTMt,ju ≤ I2max,j (2l)

Index: i = 1, . . . , Ngen

m = Ngen + 1, . . . , Nbus

k = 1, . . . , Nbus

j = 1, . . . , Nline

where di and ci are constants, Pgen,i is the i-th entry of Pgen,
Pload,i is the active power demand at bus i, Qload,m is the
reactive power demand at bus m, Vmax,k and Vmin,k are the
upper and lower limits on voltage magnitude at bus k, Pmax,i

and Pmin,i are the upper and lower limits on active power
generation at bus i, Qmax,i and Qmin,i are the upper and
lower limits on reactive power generation at bus i, and Imax,j

is the upper limit for both current entering and leaving line j.
Note that the decision variables in (2) are Pgen and u.3

Although (2b) can be substituted in (2a) and (2h) to eliminate
Pgen, doing so would induce a quartic cost function with
respect to u, which causes difficulties for constructing an
elliptical formulation in Section IV. We therefore keep Pgen

as an explicit variable in our formulation.
Although (2) employs line current flow limits, apparent

power flow limits can also be integrated in our model via
the introduction of 4Nline additional constraints. A detailed
description of apparent power line flow limits is provided in
Appendix I-A. The 39-bus system example in Section VI is
simulated using apparent power line flow limits.

To convert (2) into equality-constrained model, we intro-
duce unconstrained slack variables: sVmax,k, sVmin,k for the
voltage magnitude limits, sImax,f,j and sImax,t,j for the line
current flow limits, and sQmax,i and sQmin,i for the reactive
power limits. Specifically, the voltage limits (2e) and (2f) are
reformulated as

uTMV,ku + s2Vmax,k = V 2
max,k (3a)

s2Vmin,k − uTMV,ku = −V 2
min,k. (3b)

3To set an angle reference, remove the entry of vq corresponding to the
reference bus and delete the corresponding row and columns in (2).

The line current limits (2k) and (2l) are reformulated as

uTMf,ju + s2Imax,f,j = I2max,j (4a)

uTMt,ju + s2Imax,t,j = I2max,j . (4b)

The reactive power limits (2i) and (2j) are reformulated as

uTMQ,iu + s2Qmax,i = Qmax,i (5a)

s2Qmin,i − uTMQ,iu = −Qmin,i. (5b)

However, to maintain a quadratic form, different treatments
for active power generation and its bounds are employed due
to different types of cost functions. We first assume that the
active power generation is non-negative. This is usually the
case for most generators since they are designed to deliver
active power. If there are exceptions, a constant shift (adding
the absolute value of the lower limit to both sides of active
power generation inequalities) will provide an appropriate
reformulation. Interested readers can refer to Appendix I-B
for details.

If the cost function is linear, i.e., J =
∑Ngen

i=1 ciPgen,i, we
define pgen,i =:

√
Pgen,i. The active power generation limits

are given by

p2gen,i + s2Pmax,i = Pmax,i (6a)

s2Pmin,i − p2gen,i = −Pmin,i (6b)

where sPmax,i and sPmin,i are unconstrained slack variables.
Thus, the equality-constrained ACOPF is

Minimize J =

Ngen∑
i=1

cip
2
gen,i (7a)

Subject to:
Gen. Balance: p2gen,i − Pload,i = uTMP,iu (7b)

Load Balance: − Pload,m = uTMP,mu (7c)

−Qload,m = uTMQ,mu

Voltage Limit: uTMV,ku + s2Vmax,k = V 2
max,k (7d)

s2Vmin,k − uTMV,ku = −V 2
min,k

Gen. Limit: p2gen,i + s2Pmax,i = Pmax,i (7e)

s2Pmin,i − p2gen,i = −Pmin,i

uTMQ,iu + s2Qmax,i = Qmax,i (7f)

s2Qmin,i − uTMQ,iu = −Qmin,i

Current Limit: uTMf,ju + s2Imax,f,j = I2max,j (7g)

uTMt,ju + s2Imax,t,j = I2max,j

Index: i = 1, . . . , Ngen

m = Ngen + 1, . . . , Nbus

k = 1, . . . , Nbus

j = 1, . . . , Nline

If the cost function is quadratic, i.e., J =
∑Ngen

i=1 diP
2
gen,i+

ciPgen,i,4 the active power generation limits (7e) are replaced
by

P 2
gen,i + s2Pmax,i = P 2

max,i (8a)

4The cost function is not required to be convex; i.e., di < 0 is permissible.
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s2Pmin,i − P 2
gen,i = −P 2

min,i (8b)

p2gen,i − Pgen,i = 0 (8c)

where sPmax,i and sPmin,i are unconstrained slack variables.
Then, the equality-constrained ACOPF formulation is

Minimize J =

Ngen∑
i=1

diP
2
gen,i + cip

2
gen,i (9a)

Subject to: (7b), (7c), (7d), (7f), (7g), (8a), (8b), (8c) (9b)

III. FIRST-ORDER CONDITIONS IN QUADRATIC FORM

One way to solve an OPF problem is to compute its
first-order optimality conditions. For example, consider the
quadratic-cost ACOPF in (9). Note that the cost function and
the constraints in (9) are all in quadratic form. Moreover,
the constraints only have quadratic terms and constant terms
except for (8c). (There are no linear terms in (7) since (8c) is
intrinsically included in (7).) For notational convenience, the
OPF problem (9) is succinctly written as

Minimize xTDx
Subject to : xTTjx − rj = 0

xTWix + bT
i x − hi = 0

j = 1, ..., Nq = 3Ngen + 4Nbus + 2Nline

i = 1, ..., Ngen

(10)
where x is the variable vector with dimension Nv =
6Ngen+4Nbus+2Nline constructed by stacking Pgen,i, pgen,i,
u, sPmax,k, sPmin,k, sQmax,k, sQmin,k, sVmax,k, sVmin,k,
sImax,f,j and sImax,t,j into a column vector. The matrices
D, Tj , Wi, vectors bi and scalars rj and hi correspond to
the constraints in (9).

A. Challenges with the Karush-Kuhn-Tucker Conditions

The Lagrange function of the optimization problem (10) is

L(x, λ, µ) = xTDx −
∑Nq

j=1 λj
(
xTTjx − rj

)
−
∑Ngen

i=1 µi

(
xTWix + bT

i x − hi
) (11)

where λ ∈ RNq and µ ∈ RNgen are vectors of Lagrange
multipliers [23].

If x∗ is a local solution5 to the original problem (2), then
it is also a local solution to (10). If the Linear Independent
Constraint Qualification (LICQ) condition [23] holds for the
binding constraints (including the equality constraints) of (2),
by the Karush-Kuhn-Tucker (KKT) Conditions [23], there
exist λ∗ and µ∗ such that the following conditions are satisfied:

5xL(x∗, λ∗, µ∗) = 0 (12a)
xT
∗ Tjx∗ − rj = 0 (12b)

xT
∗ Wix∗ + bT

i x∗ − hi = 0 (12c)

5We use “local solution” to refer to a local minimum, “KKT solution” to
denote a point that satisfies the KKT conditions, “Fritz John (FJ) solution”
to indicate a point that satisfies the FJ conditions, and “stationary point” to
mean a point that satisfies the equalities in either the KKT conditions or
the FJ conditions, but does not necessarily satisfy the inequalities for the
multipliers. Also, we use “saddle point” to refer a stationary point that is not
a local extremum (i.e., neither a local maximum nor a local minimum).

λ∗a ≤ 0 (12d)

where a is in the index set of the active inequality constraints
of (2). Note that the complementarity conditions for the
original OPF problem (2) are intrinsically included in (12a).
Specifically, they are equivalent to the partial derivatives of
L(x, λ, µ) with respect to the slack variables.

However, the KKT conditions lack some important features
for constructing an elliptical formulation, and the dependence
on constraint qualifications can cause difficulties for the branch
tracing method. To understand these restrictions, we further
examine (12a):

5xL(x, λ, µ) = 2Dx −
∑Nq

j=1 2λjTjx

−
∑Ngen

i=1 µi

(
2Wix + bi

)
= 0.

(13)

Since λ and µ are unknowns when we solve the first-order
conditions, (13) is quadratic with respect to x, λ and µ, with
some linear terms Dx and µibi. Since λ and µ only appear
in the cross-product terms with x, there are no univariate
quadratic terms of λ or µ in (13). This makes it impossible
to construct a positive-definite quadratic polynomial (i.e., an
ellipse) as a linear combination of (12) with respect to x, λ,
and µ that retains the KKT solutions.

Another issue occurs from the strong reliance on the
constraint qualifications. It is possible that an optimization
problem has a solution that does not satisfy the constraint
qualifications, which may result in the nonexistence of KKT
solutions.6 Since the branch tracing method that will be
described in Section V traces through the first-order conditions
by continuously changing certain parameters, our approach
may reach points that fail to satisfy the constraint qualifica-
tions. Attempting to use the KKT conditions for our proposed
tracing approach may therefore result in numerical issues.

B. The Sphere-Confined Fritz John Conditions

To deal with the difficulties associated with the KKT condi-
tions, we introduce the Fritz John (FJ) conditions restricted to
a sphere. A detailed comparison between the FJ conditions and
the KKT conditions can be found in [30], and an application
of FJ conditions to ACOPF problems can be found in [31].
Briefly, the FJ conditions are a generalized version of the KKT
conditions which do not require the same constraint quali-
fications. However, the FJ conditions can induce “fictitious”
local solutions [30], but this issue can be easily addressed as
described in this section.

First, define a scalar function F(x, λ, µ, δ):

F(x, λ, µ, δ) = δxTDx −
∑

j λj
(
xTTjx − rj

)
−
∑

i µi

(
xTWix + bT

i x − hi
) (14)

where δ is a scalar multiplier associated with the objective and
λ and µ are the multiplier vectors for the constraints.

If x∗ is a local solution to the original problem (2), then it is
also a local solution to (10). By the Fritz John Conditions [30]
for (2), there exist δ∗, λ∗, and µ∗ such that

5xF(x∗, λ∗, µ∗, δ∗) = 0 (15a)

6For instance, minimizing x subject to x2 = 0 has the trivial solution
x = 0, but no KKT solutions exist [30].
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xT
∗ Tjx∗ − rj = 0 (15b)

xT
∗ Wix∗ + bT

i x∗ − hi = 0 (15c)
(δ∗, λ∗, µ∗) 6= (0,0,0) (15d)
λ∗k ≤ 0, if δ∗ ≥ 0 (15e)
λ∗k ≥ 0, if δ∗ ≤ 0 (15f)

where k is in the index set of the active inequality constraints
of (2). Note that LICQ implies δ∗ 6= 0, in which case the
FJ solution is also a KKT solution. Thus, one can easily
check for fictitious solutions induced by the FJ conditions via
examination of δ∗.

Consider (15a) in detail:

5xF(x, λ, µ, δ) = 2δDx −
∑

j 2λjTjx

−
∑

i µi

(
2Wix + bi

)
= 0.

(16)

If x∗, δ∗, λ∗, and µ∗ is a solution to (16), then x∗, Kδ∗, Kλ∗,
and Kµ∗ is also a solution for any K 6= 0. To avoid infinitely
many solutions, we regularize the non-zero condition (15d)
with a sphere constraint on the multipliers:

δ2 + λTλ+ µTµ = 1. (17)

The sphere constraint results in univariate quadratic terms for
all of the multipliers, which enables the construction of the
elliptical formulation described in Section IV.

In summary, the sphere-confined Fritz John conditions are

5xF(x∗, λ∗, µ∗, δ∗) = 0 (18a)
xT
∗ Tjx∗ − rj = 0 (18b)

xT
∗ Wix∗ + bT

i x∗ − hi = 0 (18c)
δ2 + λTλ+ µTµ = 1 (18d)

where (15e) and (15f) are temporarily dropped here for the
convenience of constructing the elliptical formulation and
tracing the paths. These inequalities will be revisited to check
for optimal solutions after solving (18).

IV. ELLIPTICAL FORMULATION OF THE
SPHERE-CONFINED FRITZ JOHN CONDITIONS

This section applies a similar strategy to [24] to construct a
high-dimensional elliptical representation of the FJ conditions
for the ACOPF problem. To begin, define a set Ω ⊂ RN as
an (N − 1)-dimensional real ellipse centered at x0:

Ω = {x ∈ RN |(x− x0)TH(x− x0) = 1,H = HT ,H � 0}

where � 0 denotes positive definiteness.
It is trivial to show that any (N − 1)-dimensional real

ellipse is a bounded, simply-connected, (N − 1)-dimensional
manifold. Converting every quadratic equation of (18) into
a high-dimensional ellipse ensures the boundedness of the
curves employed in the tracing method described in Section V
and that these curves form closed loops.

With the preparation of Sections II and III, we are now able
to represent the sphere-confined FJ conditions in an elliptical
formulation. Our goal is to retain the solution set of (18) while
converting the quadratic matrix of each equation of (18) to a
positive-definite matrix. This can be done if one ellipse, called
the base ellipse, can be construcuted by a linear combination

of the equations in (18). A base ellipse for the sphere-confined
Fritz John conditions is

Ngen∑
i=1

[
(P 2

gen,i + s2Pmax,i − P 2
max,i) +

1

2
(s2Pmin,i

− P 2
gen,i + P 2

min,i) + (uTMQ,iu + s2Qmax,i

−Qmax,i) + (s2Qmin,i − uTMQ,iu +Qmin,i)

+ (p2gen,i − Pload,i − uTMP,iu)
]

+

Nline∑
j=1

[
(uTMf,ju + s2Imax,f,j − I2max,j)

+ (uTMt,ju + s2Imax,t,j − I2max,j)
]

+γ0

Nbus∑
k=1

[
(uTMV,ku + s2Vmax,k − V 2

max,k)

+
1

2
(s2Vmin,k − uTMV,ku + V 2

min,k)
]

+ (δ2 + λTλ+ µTµ− 1) = 0 (19)

where γ0 ∈ R is a constant. Notice that the diagonal elements
of MV,k dominate the cross-products of u for sufficiently
large γ0. Thus, the quadratic (19) is formed with an associated
positive-definite matrix for a sufficiently large choice of γ0. A
more detailed discussion of (19) can be found in Appendix B.

We add a scaled version of the base ellipse (19) to the FJ
conditions in (18) so that all resulting polynomials are high-
dimensional ellipses. We then normalize the constant of each
ellipse to one by scaling the ellipse with the reciprocal of the
associated constant. The concise expression of the elliptical
formulation for the FJ conditions is

q1(x) = xTH1x + bT
1 x − 1 = 0

... (20)
qN (x) = xTHNx + bT

Nx − 1 = 0

where N = Nq + Ngen + Nv + 1 is the total number of
polynomials in the FJ conditions, x ∈ RN , and Hi � 0 for i =
1, . . . , N . For the ACOPF problem with quadratic generation
cost (9), the number of non-zero vectors bi is equal to Ngen.
These vectors are all zero if the cost function is linear.

Solutions to (20) satisfy the FJ conditions and therefore
correspond to potentially optimal points. Finding multiple
solutions to (20) is a challenging task. A classical approach
is to use Newton’s method; however, success of Newton’s
method is strongly dependent on selecting an appropriate
initialization, which is generally difficult. Other methods based
on homotopy continuation are guaranteed to yield all solutions
to polynomial systems [32], [33]. However, the computational
effort for these methods scales exponentially with the number
of variables, and these methods are therefore inappropriate,
even for small systems. The branch tracing method that will
be presented in the following section provides an alternative,
more tractable approach for finding multiple solutions to (20).

V. IDENTIFYING MULTIPLE FRITZ JOHN SOLUTIONS BY
THE BRANCH TRACING METHOD

With an elliptical formulation of first-order conditions, we
are prepared to apply the branch tracing method presented in
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[24] to identify multiple solutions to the Fritz John conditions
of the ACOPF problem.

A. Branch Tracing Method

The branch tracing method can be interpreted as a means
of searching through a higher-dimensional real algebraic set
to locate an embedded lower-dimensional real algebraic set.
While increasing the dimensionality often complicates a real
algebraic set, searching a higher-dimensional space can aid in
identifying multiple 0-dimensional real solutions of a poly-
nomial system. Consider a linearly independent polynomial
system

FN (x) = {fi(x), x ∈ RN , i = 1, 2, · · · , N
}
. (21)

Generically, the real algebraic set of (21) consists of finitely
many 0-dimensional isolated real solutions which are generally
difficult to locate because they are discretely scattered in
RN . To overcome this, we relax one polynomial, say, the
N -th polynomial fN (x), and consider the remaining N − 1
polynomials

FN−1(x) = {fi(x), x ∈ RN , i = 1, 2, · · · , N − 1
}
. (22)

The real algebraic set of (22) is generically comprised of 1-
dimensional curves in RN . These curves are almost every-
where smooth; moreover, they necessarily include the entire
real algebraic set of (21). Thus, if the real algebraic set of (21)
is 0-dimensional,7 given a real solution of (21) and following
the 1-dimensional curves via the branch tracing method can
identify other real solutions of (21). Furthermore, if all the
curves are bounded and connected to each other, this method
provides the entire real solution set. The boundedness of the
curves is guaranteed by the elliptical formulation in (20).
The connectedness is still under investigation. Even without
a theoretical guarantee for the connectedness at present, the
numerical simulations in this paper and in [24] provide all
the real solutions to the systems whose entire real solution
sets were reported. Future work includes finding a sufficient
condition for connectedness.

To locate solutions along 1-dimensional curves, we relax
each ellipse in (20) individually. Specifically, we add one extra
tracing variable αi to the i-th equation of (20):

qi(x) = αi (23a)
qj(x) = 0 ∀j 6= i (23b)

In practice, a predictor-corrector algorithm is applied to follow
the traces. A trace terminates upon returning to its initial point.
Interested readers can find specific details about predictor-
corrector implementations in [34].

Given a feasible OPF problem and a known FJ solution
as a starting point, the enumeration search strategy described
in Algorithm 1 (as well as the following monotone search
strategy) may produce additional FJ solutions.

7The assumption of a generic problem is not confining in practice. An
arbitrarily small perturbation of the problem can reduce the non-generic case
to a generic one, resulting in a 0-dimensional solution set. Such a perturbation
is not restrictive for any practical problems since every parameter value in the
problem is not exact but rather approximated.

Algorithm 1 Enumeration Search Strategy
1: procedure OBTAIN A STARTING POINT

Choose a starting point which is in a current solution set
of (20) but has not yet been traced. The initial starting
point is obtained from any suitable local algorithm.

2: procedure TRACE PATHS
At the starting point, apply the branch tracing method
to the elliptical formulation of the FJ conditions to trace
paths of x formed by continuously and individually chang-
ing each αi. Each trace terminates upon returning to the
starting point. Parallel computation can be used to trace
the paths associated with each αi.

3: procedure UPDATE SOLUTION SET
Record stationary points (at which αi = 0) encountered
on the paths and compare them to the current solution set.
Update the solution set by adding newly found solutions
which are distinct from the existing solutions.

4: procedure TERMINATION
If every point in the solution set has been traced or a
solution has an objective value that is sufficiently close to
the lower bound obtained from a convex relaxation, output
the best solution. Otherwise, return to 1.

The number of the traces Ntrace required for enumerating
real solutions is bounded by

Ntrace ≤ Nreal ×N (24)

where Nreal denotes the number of the real solutions to the
FJ conditions and N is the number of the equations. However,
estimating a sharp bound for the number of real solutions
Nreal to a polynomial system itself is a hard problem. A
comprehensive introduction to this topic can be found in [35].
For power system models, special structures appear to limit
the number of real solutions. As observed in [24], [25],
for example, the numbers of real solutions to power flow
problems seem to be far less than their estimated upper
bounds. However, no validated theoretical results can be found
at present to explain this large discrepancy. Some empirical
results indicate that the number of solutions may be related to
the network topology [36].

The computational complexity for following one trace is
heavily dependent on the corrector step of predictor–corrector
algorithm. The corrector step is performed using Newton’s
method, which requires the solution of multiple linear systems.
A naı̈ve implementation could use LU decomposition, which
has a complexity of O(n3) if a dense matrix size is n× n. A
more sophisticated implementation could exploit the sparsity
of the Jacobian matrix. The complexity of the corresponding
sparse solver depends on specific network structure. Also
note that the sparsity pattern of the Jacobian matrix for a
given OPF problem is the same for every trace computed
in the proposed algorithm. Thus, the symbolic factorization
step used by a sparse solver only needs to be performed
once, which can further improve computational tractability.
Future work includes implementing more sophisticated sparse
solution techniques.
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Algorithm 1 begins with a starting point. For this we rely on
decades of algorithmic development to find a single starting
solution. Steps 2 and 3 in Algorithm 1 compute traces and
perform bookkeeping to collect solutions. For each solution
found by Algorithm 1, traces for all equations are computed
without duplication (i.e., if more than one solution lies on the
same trace, the trace is only computed once).

With the solution set returned, we can compare the objective
function values to locate the best solution. In the absence
of a sufficient condition for connectedness of the traces, the
solution set is not guaranteed to contain the global optimum.
However, the best solution in the resulting set will clearly
have an objective function value that is at least as good as that
from the initial starting point. Further, the numerical examples
in Section VI demonstrate that the proposed approach can
find the global solutions to challenging problems, and some
of the global solutions obtained by the proposed approach
significantly improve on the initial starting points obtained
from a local solver.

The proposed approach is synergistic with both local al-
gorithms and convex relaxation techniques. Local solution
algorithms are needed to obtain an initial starting point for the
proposed algorithm.8 When searching for the global optimum,
the tracing can be concluded upon obtaining a local solution
with an objective value that is sufficiently close to the termi-
nation criterion provided by the lower bound from a convex
relaxation, e.g., [12]–[14], [17]–[20], [22]. Additionally, we
emphasize that the traces also find local maxima and saddle
points that may be of interest to researchers.

B. Monotone Search Strategy

The tracing strategy in Algorithm 1 follows at most Nreal×
N traces before terminating. However, if we are only inter-
ested in the global solution, or at least a better solution than
the initial starting point, then a more efficient search strategy
can be applied. Specifically, a “monotone search strategy”
introduces one extra constraint using the objective function
to the ACOPF problem in (7) or (9).

Suppose we have a known solution (Pgen,∗, u∗) to the first-
order conditions of (9). At this solution, the objective function
value is J∗ =

∑Ngen

i=1 diP
2
gen,i,∗ + cip

2
gen,i,∗. Using this value,

we enforce the constraint
Ngen∑
i=1

diP
2
gen,i + cip

2
gen,i + τ2 = J∗ + ε2 (25)

where τ is a free slack variable and ε is a small constant.
Since τ2 ≥ 0, the objective function is confined to be less

than J∗ + ε2. The value of J∗ is updated upon finding a
better solution (i.e., a lower objective value).9 The monotone

8Appropriate local solution algorithms include interior point methods [8],
[37] or the feasible point pursuit-successive convex approximation ap-
proach [38]. The latter approach claims a guarantee of finding a KKT point,
which is particularly relevant for initializing our tracing algorithm.

9In our simulations, we set ε to be approximately 10% of the best-known
objective value. This provides some flexibility for the traces to connect to
higher-cost solutions before finding a lower-cost solution. However, this is
unnecessary for the numeric examples tested so far; for each test case,
the monotone search algorithm always finds a lower-cost solution from the
previously-best-known solution.

Algorithm 2 Monotone Search Strategy
1: procedure OBTAIN AN INITIAL POINT

Begin with an initial starting point using any suitable local
algorithm. Compute the threshold value J∗ for the cost
function at the starting point. Choose a small value for ε.

2: procedure TRACE PATHS
Apply the branch tracing method to the elliptical formula-
tion of the FJ conditions of (7) or (9) augmented by (25).
Specifically, trace the paths of (x, τ) by continuously and
individually changing each αi. If a solution (x∗, τ∗) with
|τ∗| ≥ ε is found while tracing a certain path, stop tracing
the rest, set (x∗, τ∗) as a new starting point, compute the
corresponding J∗ value, and re-start from the first path.

3: procedure TERMINATION
If every path has been traced with no solution satisfying
|τ∗| ≥ ε, terminate and output the latest starting point.

search strategy is provided in Algorithm 2. This strategy
can significantly reduce the number of traces relative to the
enumeration search strategy for locating a better solution,
which is a key determinant of the computational tractability
of the proposed approach.

Note that the monotone search currently has no guarantee
of finding the best solution achievable with Algorithm 1.
Although a monotone path to the global optima always exists
in our simulations, it is possible that the global solution is only
connected to the stationary points that have higher objective
values than the starting point. Developing sufficient conditions
that prevent this situation is a direction for future research.

VI. NUMERICAL EXAMPLES

This section provides several examples for which the pro-
posed approach yields multiple local minima and the global
optima but the SDP relaxation of [14] is not exact. These
examples were proposed and studied in [3] with random
initial starting points to locate multiple local minima. See [4]
for the test case data and the results from the approach
of [3]. The feasible spaces of the 5-bus (WB5) and the 9-bus
(case9mod) examples are investigated in [39] and shown to
be disconnected. While many local algorithms cannot bridge
disconnected feasible spaces to search for multiple solutions,
our proposed approach finds all local minima and the global
optima for these two problems. Moreover, we also report seven
local minima (including the global minimum) to the 39-bus
(case39mod4) example, which include four new local minima
in addition to the three reported in [3], [4].

Our tracing program was coded in Matlab and executed on
a PC with a 2.8GHz Intel i-7 CPU and 4GB RAM for the
5- and 9-bus systems. The initial conditions are solved by
MATPOWER 5.0 [37] with MIPS solver under default settings.
We do not explore the effect of different initialization in
this paper. An incomplete enumeration for the 39-bus system
was performed in parallel using the compute resources and
assistance of the Center for High Throughput Computing
(CHTC) at the University of Wisconsin–Madison Department
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Fig. 1. Execution Time of Enumeration Strategy for case9mod (Left) and
WB5 (Right)

of Computer Sciences. Each trace was assigned to an au-
tonomous computer with one CPU, 2 GB of memory, and
4 GB of disk space.

A. 9-Bus System Example: “case9mod”

The first example is “case9mod” in [4]. This case has
nine buses, nine transmission lines, and three generators with
quadratic cost functions. Since neither current flow limits nor
apparent power flow limits are binding for this case, both
models will provide the same solutions. We chose to enforce
current flow limits in accordance with (2) in order to obtain a
smaller problem size.

The enumeration search strategy terminates after 2489 traces
and returns 27 stationary solutions, among which four are
verified to be local minima, five are local maxima, and the
rest are saddle points. These four local minima, which are
listed in Table I, match those in [4]. Solution 4 in the last
column of Table I is the global optimum as verified both by
exhaustive search of the feasible space [39] and by the second-
order moment relaxation [18]. The overall execution time is
2.78 × 104 seconds (7.7 hours) with mean and median times
for each trace of 11.2 seconds and 4.3 seconds, respectively.
A histogram plot of the execution times for each trace (on a
log scale) is shown in Fig. 1 on the left. Although the traces
were computed sequentially, parallel computing techniques
could be used to reduce the computation time. Note that
most of the traces terminated within a few seconds, but a
small fraction of the traces were much slower. Reasons for
the slow traces include 1) many sharp corners on a trace
resulting in a small step size, 2) many portions of the trace with
poor numeric conditioning, which require careful numerical
rescaling techniques, and 3) encountering many solutions
which are indistinguishable except for a change in sign of
the slack variables.

The monotone search strategy described in Section V-B is
next applied to the same problem. Projections of the monotone
search traces and solutions are depicted in Fig. 2. The gray
regions in the Fig. 2 illustrate a projection of the disconnected
feasible space generated using the method described in [39].

TABLE I
LOCAL MINIMA FOR CASE9MOD FROM THE ENUMERATION SEARCH

Sol. 1 Sol. 2 Sol. 3 Sol. 4
|V1| 0.9020 0.9027 0.9064 0.9095
|V2| 0.9175 0.9169 0.9255 0.9218
|V3| 0.9247 0.9272 0.9326 0.9388
|V4| 0.9098 0.9104 0.9096 0.9127
|V5| 0.9104 0.9120 0.9109 0.9160
|V6| 0.9279 0.9307 0.9387 0.9426
|V7| 0.9177 0.9182 0.9271 0.9284
|V8| 0.9213 0.9204 0.9299 0.9291
|V9| 0.9000 0.9000 0.9000 0.9000
θ1 0◦ 0◦ 0◦ 0◦

θ2 −9.304◦ −11.555◦ 7.245◦ 12.367◦

θ3 −11.150◦ −8.619◦ 12.115◦ 7.006◦

θ4 −5.770◦ −5.722◦ −0.400◦ −0.398◦
θ5 −10.044◦ −9.507◦ 0.219◦ −0.732◦
θ6 −11.542◦ −10.128◦ 7.592◦ 4.842◦

θ7 −12.855◦ −12.884◦ 4.173◦ 4.516◦

θ8 −10.906◦ −11.980◦ 4.548◦ 7.118◦

θ9 −10.383◦ −10.722◦ −1.511◦ −0.631◦
S1 1.432−j0.05 1.422−j0.05 0.1−j0.05 0.1−j0.05
S2 0.378−j0.05 0.100−j0.05 0.648−j0.05 1.254−j0.05
S3 0.1−j0.05 0.388−j0.05 1.178−j0.05 0.570−j0.05

Cost 4246.55 4265.04 3397.97 3087.89

|Vi|∠θi and Si denote the voltage and power injections at bus i in
per unit. Costs are given in $/hr.

Fig. 2. Selected Monotone Search Traces for case9mod

Starting at an initial stationary point (black dot) obtained by
MATPOWER 5.0 [37], the monotone search strategy locates
the stationary point (light blue dot labeled 2) via the fifth
trace (light blue curve). The fourth trace (green curve) starting
from the second stationary point yields the global optimum
(the green star labeled 3). The monotone search approach uses
9 traces to locate the global solution, which is significantly
fewer than the 2489 traces used in the enumeration strategy.
The overall execution time was 214.6 seconds with mean and
median times for each trace of 23.8 seconds and 11.6 seconds,
respectively. The overall execution time is thus 130 times faster
than the full enumeration.

The monotone search solutions are listed in Table II.
Observe that the objective function value is monotonically
decreasing at each solution. Note also that the intermediate
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TABLE II
FJ SOLUTIONS FOR CASE9MOD FROM THE MONOTONE SEARCH

FJ Sol. 1 FJ Sol. 2 FJ Sol. 3
|V1| 0.9020 0.9075 0.9095
|V2| 0.9175 0.9178 0.9218
|V3| 0.9247 0.9251 0.9388
|V4| 0.9098 0.9107 0.9127
|V5| 0.9104 0.9101 0.9160
|V6| 0.9279 0.9304 0.9426
|V7| 0.9177 0.9174 0.9284
|V8| 0.9213 0.9211 0.9291
|V9| 0.9000 0.9000 0.9000
θ1 0◦ 0◦ 0◦

θ2 −9.304◦ −1.982◦ 12.367◦

θ3 −11.150◦ 8.511◦ 7.006◦

θ4 −5.770◦ −2.151◦ −0.398◦
θ5 −10.044◦ −2.383◦ −0.732◦
θ6 −11.542◦ −3.506◦ 4.842◦

θ7 −12.855◦ −1.614◦ 4.516◦

θ8 −10.906◦ −2.409◦ 7.118◦

θ9 −10.383◦ −5.080◦ −0.631◦
S1 1.432−j0.05 0.538−j0.05 0.1−j0.05
S2 0.378−j0.05 0.100−j0.05 1.254−j0.05
S3 0.1−j0.05 1.281−j0.05 0.570−j0.05

Cost 4246.55 3829.84 3087.89

|Vi|∠θi and Si denote the voltage and power injection at bus i in
per unit. Costs are given in $/hr.

non-increasing solutions obtained by the monotone search may
not necessarily be local minima. For instance, the second
stationary point in Table II is not a local minimum.

B. 5-Bus System Example: “WB5”

The second example, “WB5”, has five buses, six transmis-
sion lines, and two generators [4]. As shown in Fig. 3, which
was created using the approach in [39], the feasible space for
this problem has two disconnected regions. The enumeration
search strategy computes 628 traces to yield 12 stationary
points, among which two are local minima matching those
reported in [3]. The overall execution time was 1959 seconds
with mean and median times for each trace of 3.1 seconds
and 2.5 seconds, respectively, with the distribution shown in
Fig. 1 on the right. The monotone search strategy locates the
global solution in the eleventh trace from the initial starting
point. Fig. 3 depicts all the stationary solutions identified by
the enumeration strategy as well as one of the traces in the
enumeration strategy that connects to the global solution.10

The overall execution time was 44 seconds (a factor of 44
faster than the full enumeration) with mean and median times
for each trace of 4.0 seconds and 3.0 seconds, respectively.
The black dot is the initial FJ solution given by MATPOWER,
the blue diamonds denote all the stationary points identified by
enumeration, and the green star is the best solution identified
by the enumeration approach. As verified both by exhaustive
search of the feasible space [39] and by the second-order
moment relaxation [18], the green star is the global optimum.

A modified version of this example is illustrated in Ap-
pendix C. While both “IPOPT” and “MIPS” solvers failed to
locate the global solution from a flat start, the proposed tracing
method yields the global optimum for the modified system.

10The trace shown in Fig. 3 connects the initial solution to the global
solution, but does not connect all the stationary points found by other traces.

Fig. 3. Selected Enumeration Search Trace for WB5

C. 39-Bus System Example: “case39mod4”

This section considers a 39-bus system, “case39mod4”, with
46 transmission lines and 10 generators. Three local minima
have been reported for this system [4]. The proposed tracing
method finds at least seven local minima (including the known
three). The specific local minima are listed in Appendix D.

To make an exact comparison, we enforced apparent power
flow limits on transmission lines (see Appendix A), which
increases the number of variables from 556 to 924. Starting
at the three known local minima, we computed a single trace
of the paths associated with each constraint. This incomplete
enumeration followed a total of 2772 paths to yield 10238
different stationary points, which included seven local minima
(the three known local minima and four new ones) and six
local maxima. Note that starting the enumeration algorithm
from the second known local minimum yields six of the
seven local minima (two known local minima and four new
ones) using only 924 traces. Further investigation indicates
that there exist over 3000 different concatenated paths11 that
connect every local minimum to the global minimum. The
solutions found along some (but not all) of these concatenated
paths have objective function values that are monotonically
decreasing. Also note that despite the large number of station-
ary points, a concatenated path starting from a known local
solution to the global solution can be simple. For example,
a concatenated monotone path starting at a local minimum
with cost 1068.30$/hr passes through a saddle point with a
lower cost of 866.80$/hr, which then passes through another
saddle point with a lower cost 567.64$/hr and eventually
reaches the global minimum with the lowest cost 557.14$/hr.
This monotonically decreasing path only passed through two
additional intermediate stationary points to reach the global
solution. Ongoing research includes developing methods for
choosing which order to trace the paths such that low-cost
solutions are obtained quickly.

11We use the phrase “concatenated path” to refer to the sequence of several
individual paths concatenated at common solution points.
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VII. CONCLUSION

This paper has proposed a deterministic approach to identify
multiple local extrema of ACOPF problems. This approach
introduces slack variables to convert the inequality-constrained
ACOPF problem into an equality-constrained problem in
quadratic form. Leveraging previous work for the power
flow equations [24], the Fritz John optimality conditions are
rewritten in an elliptical form. Applying a branch tracing
method [25] to the elliptical formulation enables the compu-
tation of multiple solutions to the Fritz John optimality con-
ditions for ACOPF problems, with the elliptical formulation
ensuring boundedness of the traces. To improve computational
performance, a monotone search strategy was proposed to
reduce the number of traces used in locating the global
solution. Three numerical examples illustrate the operation
of our proposed approach. These examples demonstrate the
approach’s capability to identify multiple local extrema of
ACOPF problems as well as locate the global optima. The
first two examples show that the proposed approach can bridge
multiple components of a disconnected feasible space to obtain
the global solution. For the third example, the proposed tracing
approach finds four new local optima beyond those reported
in previous literature.

Future work will attempt to develop sufficient conditions
that guarantee the connectedness of the 1-dimensional alge-
braic set of the elliptical formulation. Such conditions will
ensure that the proposed approach yields the global solution.
Other future work includes computational improvements, such
as the exploitation of sparsity to solve larger problems.

While this paper focuses on ACOPF problems, elliptical
formulations can be constructed for other classes of problems
and the proposed approach thus has the potential to be applied
more broadly. For instance, integer programs can be formu-
lated with quadratic polynomial constraints (i.e., xi ∈ {0, 1}
is equivalent to x2i − xi = 0). Integer programs with a
small number of feasible points (thus potentially requiring
few branch traces) may be good candidates for extending the
applicability of the proposed approach.
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APPENDIX A
LINE AND GENERATOR MODELING

This appendix explains how to model the apparent power
line flow limits and active generation constraints with negative
lower bounds.

A. Apparent Power Line Flow Limits

Define connection matrices Cf and Ct ∈ RNline×Nbus for
lines and buses, respectively. The (j, k)-th entry of Cf is 1
if the j-th line is connected to the k-th “from” bus and the
(j, r)-th entry of Ct is 1 if the j-th line is connected to the
r-th “to” bus. Further, define

Tf,j =: CT
f (j, :) conj(Yf (j, :)) (26a)

Tt,j =: CT
t (j, :) conj(Yt(j, :)) (26b)

MPline,f,j =: O(Tf,j + TT
f,j) (26c)

MQline,f,j =: O(jTf,j + jTT
f,j) (26d)

MPline,t,j =: O(Tt,j + TT
t,j) (26e)

MQline,t,j =: O(jTt,j + jTT
t,j) (26f)

where Cf (j, :) is the j-th row of Cf , Yf (j, :) is the j-th row
of Yf , and conj (·) is the complex conjugate.

Limits on apparent power flows are formulated as

Pline,f,j = uTMPline,f,ju (27a)

Qline,f,j = uTMQline,f,ju (27b)

P 2
line,f,j +Q2

line,f,j ≤ S2
max,j (27c)

Pline,t,j = uTMPline,t,ju (27d)

Qline,t,j = uTMQline,t,ju (27e)

P 2
line,t,j +Q2

line,t,j ≤ S2
max,j (27f)

where P denotes active power; Q denotes reactive power; S
denotes apparent power; subscripts “f” and “t” denote the
“from” and “to” terminals, respectively; and subscript “j”
indicates the line index.

One can replace (2k) and (2l) with (27) to formulate the
ACOPF problem with flow limits in terms of apparent power.
This adds 4Nline constraints to the problem.

B. Active Power Generation with a Negative Lower Bound

Consider (2h) with Pmin,i < 0. This is equivalent to

0 ≤ Pgen,i − Pmin,i ≤ Pmax,i − Pmin,i (28)

If the cost function is linear, then we let p2gen,i =: Pgen,i−
Pmin,i. Hence, (7b) can be written as

p2gen,i − P̂load,i = uTMP,iu (29)

where P̂load,i = Pload,i − Pmin,i is a constant.
The cost function (7a) can be expressed as

J =

Ngen∑
i=1

cip
2
gen,i + C (30)

where C =
∑Ngen

i=1 ciPmin,i is a constant.
If the cost function is quadratic, we let P̂gen,i =: Pgen,i −

Pmin,i and p2gen,i =: P̂gen,i. Thus, the cost function is

J =

Ngen∑
i=1

diP
2
gen,i + ciPgen,i (31a)

=

Ngen∑
i=1

di(P̂gen,i + Pmin,i)
2 + ci(P̂gen,i + Pmin,i) (31b)

=

Ngen∑
i=1

diP̂
2
gen,i + eiP̂gen,i + ai (31c)

=

Ngen∑
i=1

diP̂
2
gen,i + eip

2
gen,i + ai (31d)

where ei = 2diPmin,i + ci and ai = diP
2
min,i + ciPmin,i are

constants.

APPENDIX B
DISCUSSION OF THE BASE ELLIPSE

This appendix serves as a complementary document to fur-
ther discuss the structure of the base ellipse in (19). However,
one should note that the construction of the base ellipse is
not unique. This paper provides a particular construction for
simplicity. Other varieties may have different structures.

A basic principal to construct a base ellipse is to combine
the quadratic terms of all the variables into one equation.
It is not necessary to combine all the constraints to achieve
this. For example, in (18) associated with problem (9), the
decision variables include Pgen,i, pgen,i, u, sPmax,k, sPmin,k,
sQmax,k, sQmin,k, sVmax,k, sVmin,k, and sImax,f,j , sImax,t,j

as well as the multipliers δ, λ, and µ. Thus, a selected set
of equations, for example, (7b), (7d), (7f), (7g), (8a), (8b)
and (18d), is enough to include the quadratic terms of all the
variables. The base ellipse given by (19) is comprised of these
equations with appropriate scaling factors.

To see why (19) represents a high-dimensional ellipse,
arrange this equation as
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Ngen∑
i=1

(
1

2
P 2
gen,i + s2Pmax,i +

1

2
s2Pmin,i + s2Qmax,i

+s2Qmin,i + p2gen,i) +

Nline∑
j=1

(s2Imax,f,j + s2Imax,t,j)

+γ0

Nbus∑
k=1

(s2Vmax,k +
1

2
s2Vmin,k) + δ2 + λTλ+ µTµ

+uT
[Nbus∑

k=1

γ0
2
MV,k +

Nline∑
j=1

(Mf,j + Mt,j)−
Ngen∑
i=1

MP,i

]
u

=

Ngen∑
i=1

(P 2
max,i −

1

2
P 2
min,i +Qmax,i −Qmin,i + Pload,i)

+

Nline∑
j=1

2I2max,j + γ0

Nbus∑
k=1

(V 2
max,k −

1

2
V 2
min,k) + 1 (32)

where the constant terms are moved to the right hand side.
Note that every decision variable in (32) has a positive

univariate quadratic term, but only the voltage variable u
has cross-products. To ensure a positive-definite matrix, the
positive univariate quadratic terms of the voltage variables
must dominate the cross-products. This can be achieved
by scaling

∑Nbus

k=1 MV,k with a positive constant γ0. Since∑Nbus

k=1 MV,k forms a sub-identity matrix associated with the
voltage variables u, a large enough γ0 will result in the
full matrix being positive definite. On the other hand, since∑Nbus

k=1 (V 2
max,k − 1

2V
2
min,k) > 0, a large enough γ0 ensures

a positive constant term on the right hand side of (32).
Therefore, (32) represents a high-dimensional ellipse. The
choice of γ0 usually depends on the smallest eigenvalue of∑

j(Mf,j + Mt,j) −
∑

i MP,i. In our simulations, γ0 was
chosen to be slightly greater than the absolute value of the
smallest eignevalue, which was usually less than 40 in practice.

The elliptical formulation of the ACOPF problem can be
generalized to an arbitrary quadratically constrained quadratic
programming (QCQP) problem provided that the problem’s
feasible space is bounded. This can easily be shown by
introducing fictitious constraints. Specifically, given a bounded
QCQP problem, one can always introduce large fictitious
bounds on the square of each decision variable as long as
these bounds are never binding. Formulating these bounds as
equalities using squared slack variables enables the construc-
tion of a base ellipse, which can further be used to convert
every equality into the form of an ellipse.

APPENDIX C
APPLICATION TO A MODIFIED FIVE-BUS SYSTEM

We present a modified version of “WB5” system called
“WB5mod”. In contrast to IPOPT and MIPS, the proposed
tracing algorithm finds the global optimum for this problem.
The test case WB5mod has the following variations from WB5
in [4]:

• Bus voltage magnitude limits are [0.9, 1.1],
• The generator at bus 1 has active power limits of [2, 15]

per unit and reactive power limits of [0.4, 18] per unit,

Fig. 4. Feasible Space and Selected Traces for WB5mod

• The generator at bus 5 has active power limits of [0, 20]
per unit and reactive power limits of [8,−0.5] per unit,

• The cost function is J = P 2
gen,1 + 2Pgen,1 + 12P 2

gen,5 +
1200Pgen,5.

When initialized from a flat start, both MIPS and IPOPT
converged to a local solution with cost 161921.15 $/hr. The
proposed tracing algorithm found the global solution with a
cost of 139875.00 $/hr. (See Table III.) Note that the angle
differences between adjacent buses are less than 30◦ for both
solutions, despite the fact that these solutions are in different
disconnected regions of the feasible space.

TABLE III
IPOPT SOLUTION, INTERMEDIATE STATIONARY POINT AND GLOBAL

SOLUTION FOR WB5MOD

IPOPT Sol. Intermediate Sol. Global Sol.
|V1| 1.1000 0.9881 1.0892
|V2| 1.03202 0.9053 1.0098
|V3| 1.0255 0.9000 1.0045
|V4| 0.9000 0.9000 0.9000
|V5| 0.9232 0.9461 0.9358
θ1 0◦ 0◦ 0◦

θ2 −6.8867◦ −10.1765◦ −8.6595◦
θ3 −7.0106◦ −10.5328◦ −8.9542◦
θ4 −15.3728◦ −38.0141◦ −36.5139◦
θ5 −11.5972◦ −36.1330◦ −34.9495◦
S1 3.074+j0.4 3.5709+j0.4047 3.73+j0.4
S5 0.3982−j0.299 0.1651+j0.2840 0+j0.1785

Cost 161921.15 151310.41 139875.00

|Vi|∠θi and Si denote the voltage and power injection at bus i in
per unit. Costs are given in $/hr.

Fig. 4 shows the feasible region for this example as well
as selected paths that connect the starting point to the global
solution. The black dot represents the starting point found
by IPOPT. A trace initialized from this point connects to an
intermediate stationary point depicted by the blue dot, which is
not a local minimum. Another trace connects this intermediate
stationary point to the global solution at the green star.
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APPENDIX D
ADDITIONAL LOCAL MINIMA FOR A 39-BUS SYSTEM

We list four new local minima for the example “case39mod4” in Table IV.

TABLE IV
NEW LOCAL MINIMA TO CASE39MOD4: BUS VOLTAGE & POWER INJECTION

Sol. # 1 Sol. # 2 Sol. # 3 Sol. # 4
Bus # |V1| δ◦ |V1| δ◦ |V1| δ◦ |V1| δ◦

1 1.0381 -7.7180 1.0407 -8.8822 1.0381 -8.3789 1.0414 -9.7286
2 10500 -13.6302 1.0500 -13.9056 1.0500 -14.5736 1.0500 -14.8025
3 1.0311 -14.3376 1.0301 -14.2221 1.0318 -14.7228 1.0308 -14.5328
4 1.0164 -12.9683 1.0158 -12.8135 1.0176 -12.9721 1.0172 -12.7766
5 1.0171 -10.7174 1.0171 -10.7211 1.0182 -10.7163 1.0184 -10.7173
6 1.0178 -10.2212 1.0178 -10.2211 1.0189 -10.2100 1.0191 -10.2076
7 1.0141 -10.8564 1.0145 -10.9631 1.0152 -10.8776 1.0159 -11.0022
8 1.0141 -10.8809 1.0146 -11.0416 1.0152 -10.9191 1.0160 -11.1080
9 1.0338 -6.4855 1.0364 -7.5748 1.0348 -6.7911 1.0379 -8.0887

10 1.0269 -11.3978 1.0264 -11.2401 1.0283 -11.2899 1.0281 -11.1044
11 1.0234 -11.0195 1.0231 -10.9123 1.0247 -10.9427 1.0247 -10.8160
12 1.0203 -11.4129 1.0198 -11.2552 1.0217 -11.3049 1.0215 -11.1195
13 1.0239 -11.7426 1.0233 -11.5344 1.0255 -11.6035 1.0251 -11.3594
14 1.0182 -12.6373 1.0171 -12.2983 1.0200 -12.4170 1.0192 -12.0209
15 1.0027 -14.0066 0.9996 -13.0677 1.0058 -13.2255 1.0032 -12.1547
16 1.0020 -13.7728 0.9981 -12.5641 1.0056 -12.7498 1.0024 -11.3771
17 1.0148 -14.4987 1.0117 -13.8149 1.0157 -14.4508 1.0127 -13.6434
18 1.0208 -14.6582 1.0185 -14.2112 1.0217 -14.7768 1.0193 -14.2087
19 1.0080 -17.6118 1.0068 -16.4359 1.0108 -10.9482 1.0099 -9.5788
20 0.9500 -20.5983 0.9500 -19.4292 0.9500 -9.4907 0.9500 -8.1227
21 0.9836 -10.1557 0.9781 -8.0968 0.9894 -10.5188 0.9853 -8.2832
22 0.9760 -5.1747 0.9713 -2.1926 0.9807 -7.0300 0.9776 -3.8677
23 0.9720 -4.7886 0.9664 -2.1269 0.9777 -6.1090 0.9738 -3.2773
24 0.9989 -12.9764 0.9942 -11.5725 1.0036 -12.2741 0.9998 -10.7015
25 1.0383 -14.3653 1.0375 -14.6704 1.0332 -15.6994 1.0325 -15.9161
26 1.0312 -15.2774 1.0294 -15.7300 1.0263 -18.0348 1.0238 -18.2826
27 1.0221 -15.5262 1.0196 -15.4763 1.0196 -17.0044 1.0166 -16.7739
28 1.0147 -14.8419 1.0131 -16.2208 1.0079 -20.7534 1.0060 -21.8038
29 1.0052 -13.7943 1.0036 -15.4733 0.9980 -20.7266 0.9966 -22.0356
30 1.0486 -13.6302 1.0486 -13.9056 1.0486 -14.5736 1.0486 -14.8025
31 0.9500 0 0.9500 0 0.9500 0 0.9500 0
32 0.9900 -11.3978 0.9896 -11.2401 0.9913 -11.2899 0.9911 -11.1044
33 0.9500 -17.6357 0.9500 -16.4630 0.9500 -10.9642 0.9500 -9.5974
34 0.9552 -20.6398 0.9566 -19.4751 0.9552 -3.6968 0.9563 -2.3393
35 0.9500 -0.3855 0.9500 4.0725 0.9500 -4.6879 0.9500 -0.0062
36 0.9611 4.9342 0.9552 7.7125 0.9670 3.4967 0.9630 6.4074
37 1.0130 -14.2653 1.0122 -14.6704 1.0080 -15.6994 1.0074 -15.9161
38 0.9575 -10.8805 0.9558 -13.2279 0.9500 -20.0854 0.9500 -21.9683
39 1.0213 -3.3572 1.02442 -5.0848 1.0217 -3.8438 1.0253 -5.9033

Gen. # P Q P Q P Q P Q
1 0 1.4000 0 1.4000 0 1.4000 0 1.4000
2 6.46 0.5511 6.46 0.5507 6.4600 0.5113 6.4600 0.5027
3 0 1.5000 0 1.5000 0 1.5000 0 1.5000
4 0 0.5339 0 0.6054 0 0.3568 0 0.4153
5 0 0.7243 0 0.8012 5.0800 0.7255 5.0800 0.7868
6 5.2816 0.0734 6.8700 0.5351 2.5976 -0.3985 4.2670 -0.1056
7 5.8000 0 5.800 0 5.8000 0 5.8000 0
8 0 0 0 0 0 0 0 0
9 2.9827 -1.5000 2.2734 -1.5000 0.5882 -1.4680 0 -1.3570

10 11.0000 -1.0000 10.1394 -1.0000 11.0000 -1.0000 9.9438 -1.0000
Cost $/hr 841.74066 848.92950 842.81718 847.54988

Bus power injections are in per unit with a base power of 100 MVA.
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