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Abstract—To model reactive power limited generators within
power flow problems, PV-PQ switching fixes generator voltages
when reactive power outputs are within limits but allows the
voltages to vary with a constant reactive power injection when
limits are reached. Power flow algorithms often use heuristics that
iteratively modify the generators’ PV versus PQ representation
as the algorithm executes. The convergence behavior and speed of
power flow algorithms with these heuristics significantly depend
on their initialization. To improve computational performance,
we propose an approach for using neural networks to initialize
PV-PQ switching heuristics. After offline training where the
neural networks learn the power flow solution’s PV vs. PQ
generator statuses across varying load demands, the neural net-
works are deployed to initialize power flow algorithms in online
applications. Numerical results demonstrate the effectiveness of
this approach with speedup factors of 1.55x to 4.32x over the
nominal generator PV-PQ status initialization.

Index Terms—Neural networks, Power flow, PV-PQ switching,
Initialization

I. INTRODUCTION

Relating the power injections and voltage phasors, the power
flow problem is at the heart of many power system analyses.
Engineers regularly solve power flow problems in applications
ranging from long-term planning to daily operations. Given
this problem’s ubiquity, computational speed is a key concern,
especially in settings where the impacts of adjustments to a
power grid’s operations need to be known in near real time.

The development of power flow solvers can be traced back
to analog computers in the early 1900s [1,2] and then to early
digital computers in the 1940s [3]. The question of appropriate
generator models was already an important issue at this time,
with contemporary discussors of [3] critiquing the use of a
fixed reactive injection as opposed to a fixed voltage mag-
nitude. The later development of sparsity-exploiting Newton
methods in the 1960s [4, 5] and subsequent algorithms such as
the Fast Decoupled Power Flow (FDPF) [6] enabled solution
of large-scale power flow problems on digital computers [7].

Despite this progress, power flow problems can still pose
substantial computational difficulties. For instance, [8] char-
acterizes these problems as “maddeningly difficult” and [9]
discusses convergence challenges in the context of synthetic
grids. These challenges often result from the nonlinearity of
the power flow equations in combination with the disjunctive
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nature of generator behavior due to reactive power limits. To
model the behavior of automatic voltage regulators, power
flow problems typically represent generators as PV buses
where both the active power and voltage magnitude are fixed
to specified setpoints PP and V. The generator’s reactive power
output varies to maintain the voltage setpoint until reaching the
maximum or minimum reactive power limit at which point the
generator is instead modeled with a constant reactive power
output at the associated limit, i.e., a PQ bus where both active
power, P, and reactive power, (), are specified.

Power flow algorithms account for reactive power limits via
so-called “PV-PQ switching” heuristics that iteratively add or
remove generator voltage variables and reactive power balance
equations as the bus types change throughout the algorithm’s
execution. Compared to neglecting reactive power limits, PV-
PQ switching can substantially increase the number of Newton
iterations required to solve power flow problems, especially
when many generators are close to their reactive power limits.
Thus, PV-PQ switching is an active research topic.

For instance, reference [10] identifies when power flow
problems with PV-PQ switching models are infeasible, [11]
proposes logical constraints to reduce bus type oscillations,
and [12] analyzes how PV-PQ switching impacts the number
of power flow solutions and their stability characteristics.
Other approaches avoid explicit PV-PQ switching by instead
modeling the generators’ voltage vs. reactive power behavior
using sigmoids [13, 14], piecewise linear functions [15], or
complementarity constraints [16, 17].

While the existing literature largely focuses on modeling,
analyzing, and improving PV-PQ switching heuristics, the
initialization of these heuristics can also substantially impact
the computational performance of power flow solvers. Ac-
cordingly, this paper applies machine learning techniques to
better initialize the PV-PQ switching heuristics used by power
flow solution algorithms. Using machine learning to initialize
conventional computational methods as opposed to replacing
them altogether has two key advantages: 1) errors in the
approximate solutions output by machine learning models can
be corrected by conventional methods to obtain highly accurate
results and 2) modified initializations can easily be input to
mature and well-understood implementations of conventional
methods. Thus, using machine learning models to initialize
conventional solution methods leverages the advantages of



both computing paradigms.

Machine learning techniques have shown significant
promise in better initializing other power system algorithms,
notably including AC optimal power flow solvers which typi-
cally apply iterative methods to calculate minimum cost oper-
ating points that satisfy both the power flow equations and en-
gineering limits. Various references apply random forest [18],
decision tree [19], and neural network [20,21] techniques to
initialize these solvers. Machine learning has also been applied
to initialize power flow solvers in references such as [22]-[24].
However, to the best of our knowledge, the existing work on
machine learning based power flow initializations focuses on
initializing voltage phasors, with limited or no consideration
of PV-PQ switching models or associated initializations of the
generator bus types.

Building on the existing literature, we propose a neural
network approach to initialize PV-PQ switching heuristics.
Following typical machine learning frameworks, we first com-
pute a training dataset via offline solution of many power
flow problems with varying power injections. We then use this
dataset to train neural networks that take the power injections
as inputs and predict whether each generator’s reactive power
output will be at the upper limit, the lower limit, or strictly be-
tween the limits at the solution to the power flow problem. To
achieve acceptable accuracy, we developed several techniques
to tailor the neural network design and training process for
this application. After training, the neural network is deployed
online to accelerate the computational speed of power flow
solvers. We demonstrate the performance of our proposed
approach via numerical experiments with MATPOWER’s PV-
PQ switching heuristics [25].

The remainder of this paper is organized as follows. Sec-
tion II reviews the power flow problem with PV-PQ switching.
Section III presents our proposed neural network approach for
PV-PQ switching initialization. Section IV numerically eval-
uates the performance of this approach. Section V concludes
the paper and discusses future work.

II. POWER FLOW FORMULATION WITH PV/PQ SWITCHING

Consider an n-bus system with buses A" = {1,...,n}. The
network admittance matrix is denoted as Y = G + jB, where
j = +/—1. Each bus i € A has an associated voltage phasor
Viel% and complex power injection P;+5@Q;. The power flow
equations relate the power injections and voltage phasors:

Pi=V; Y Vi(Gikcos (0; — Ox) + By sin (6; — 64)),
keEN
(la)

Qi = V; Z Vk (sz sin (92 — ek) — Bik COS (91 - ek)) .
keN
(1b)

The set of buses A consists of load buses and generator
buses. Load buses are modeled with constant active and
reactive power injections, i.e., PQ buses. Conventionally, one
of the generator buses is designated as the slack bus with
a fixed voltage magnitude and angle set to zero. The active
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Fig. 1: Generator voltage—reactive power output characteristic.

and reactive power outputs at the slack bus vary to ensure
conservation of power throughout the system.

With a conventional PV bus generator model, the remaining
generator buses have fixed active power outputs and represent
the behavior of automatic voltage regulators via fixed voltage
magnitudes. Modeling generators as PV buses implicitly as-
sumes that the generators can output any amount of reactive
power. A more realistic generator model fixes the voltage
magnitude in the same way as a PV bus when a generator’s
reactive power outputs are between the limits Q™% and Q™.
Upon reaching the upper reactive power limit @;"**, the
generator’s reactive power output remains at ();"** while the
voltage magnitude can decrease. Conversely, upon reaching
the lower reactive power limit Q" the generator’s reactive
power output remains at Q™™ while the voltage magnitude can
increase. This behavior is represented by the curve in Fig. 1.
The three line segments in this curve correspond to three bus
type statuses, which we denote as PQy,.x (at the upper reactive
power limit), PV (between the upper and lower limits), and
PQuin (at the lower reactive power limit).

Thus, the power flow problem with reactive power limited
generators seeks voltage phasor values which satisfy active
power balance (la) for all non-slack buses, reactive power
balance (1b) for all load buses, and, for all non-slack generator
buses, follow the curve in Fig. 1 with reactive power defined
according to (1b). This yields a square system of 2n — 2
equations in 2n — 2 variables.

Iterative Newton-based methods are typically applied to
solve power flow problems. As is the case when model-
ing generators as PV buses, Newton-based iterations address
the smooth nonlinearities in the power flow equations. The
non-smooth behavior associated with the generators’ reactive
power limits, as shown in Fig. 1, is usually handled via PV-
PQ switching heuristics. If we knew whether each generator’s
reactive power output was at the upper limit, at the lower limit,
or between the limits in the power flow solution, we would
know the relevant segment of the curve in Fig. 1. In this case,
we could instead solve a conventional power flow problem
with the non-slack generators between the upper and lower
reactive power limits modeled as PV buses and the remaining
non-slack generators modeled as PQ buses with reactive power
injections at either the upper (PQmax buses) or lower (PQpuin



buses) reactive power limits.

Of course, we do not know the power flow solution in
advance as this is what we are trying to compute. Neverthe-
less, this intuition is the basis for typical PV-PQ switching
heuristics. Starting from an initialization that predicts which
segment in Fig. 1 corresponds to each generator’s behavior at
the eventual power flow solution, PV-PQ switching heuristics
solve a conventional power flow problem with the associated
bus types. If the resulting solution indeed lies on these seg-
ments of Fig. 1, the algorithm terminates. Otherwise, the PV-
PQ switching heuristic changes the bus types for some subset
of generators for which the solution does not lie on the curve
in Fig. 1. For instance, if a generator were modeled as a PV
bus but the resulting reactive power output were above "%,
selecting this generator would change the corresponding bus
type to a PQ bus with reactive power injection dictated by
Q**. Alternatively, if a generator were modeled as a PQ
bus with reactive power output dictated by Q™™ but the
solution indicated a voltage magnitude that were less than
the generator’s setpoint voltage, selecting this generator would
change the bus type to a PV bus with voltage magnitude equal
to the setpoint. After updating the bus types, the power flow
equations are solved again and the process repeats until all
non-slack generators lie on the curve in Fig. 1.

Power flow algorithms with PV-PQ switching heuristics can
thus be implemented via an inner loop that uses a Newton-
based method to compute the voltage phasors corresponding
to particular bus types and an outer loop that updates the bus
types according to the PV-PQ switching heuristic. Different
PV-PQ switching heuristics use varying strategies for selecting
the subset of generators that switch bus types during each outer
loop iteration. The convergence tolerance of the Newton-based
inner loop could also vary as the overall algorithm proceeds.

While the initialization approach we will propose in Sec-
tion III is applicable to many PV-PQ switching heuristics, we
construct our training dataset and perform benchmarking using
MATPOWER’s PV-PQ switching heuristics [25]. In each outer
loop iteration, MATPOWER’s heuristics either update the bus
types for all generators which do not satisfy the curve in Fig. 1
or only update the bus type for the generator that most violates
this curve. Our numerical results first use the former heuristic,
with the latter only attempted if the solver fails to converge.
In both cases, MATPOWER converges the inner-loop’s Newton
method to high accuracy before updating the bus types.

III. MACHINE LEARNING INITIALIZATION METHOD

We would ideally initialize the bus types in a PV-PQ
switching heuristic to match those of the eventual power flow
solution as closely as possible. However, this is not always
straightforward, particularly in systems with substantial power
injection fluctuations due to, e.g., renewable generators. To
address this challenge, this section presents our proposed
machine learning model for bus type initializations. We first
describe the machine learning model and then discuss sam-
pling techniques for building training datasets.

A. Neural Network Model

Our approach constructs separate neural networks for each
generator to predict the bus type for that generator at the
power flow solution. Since voltage magnitude variations are
most sensitive to nearby power injections, our neural networks
only use information from nearby (three-hop-neighboring)
buses to predict the bus type for each generator. Specifically,
for buses within three hops of the generator, we input the
values of the complex power injections and the generator
voltage magnitudes. Excluding data from more distant buses
enables the neural networks to focus on the most relevant
information. The neural networks’ bus types predictions are
used to initialize a power flow algorithm with conventional
PV-PQ switching heuristics (MATPOWER’s heuristics, in our
case). Note that the neural networks for each generator are
independent and can thus be trained in parallel.

Based on the sequential model from the Keras library [26],
our implementation uses a simple feedforward neural network
with two hidden layers with 64 neurons and an output layer
that returns a probabilistic prediction of which generator bus
type (PQmin, PV, or PQpay) is most likely.

Our training process used the following hyperparameters:
training data size of 10,000, early stopping patience of 10,
initial training rate of 0.001, decay rate of 0.75, decay steps
of 5000, and a categorical cross-entropy loss function.

B. Training Data Sampling

To generate training data, power injections and voltage
magnitudes are randomly sampled from a uniform distribu-
tion around the test cases’ nominal values. Our experiments
consider power injection variations of £50% of the nominal
values and voltage magnitude variations of +£0.10 per unit
around the nominal voltage magnitudes. In practice, these
ranges would be selected based on the amount of variation
expected in the application of interest. To construct the training
dataset, we solved the power flow equations for each random
sample using MATPOWER’s PV-PQ switching heuristics [25].

There were several data preprocessing steps needed for
effective neural network training. Buses with zero power
injection were removed from the training data as they provide
no useful information. We also normalized the training data
to be within [0, 1] via linear rescaling. This latter step was
especially important for effective training.

Cases where the power flow solver returned an infeasible
solution were removed from training data but kept during
testing to evaluate convergence rates. To avoid bias in the
training data, we pruned samples so generator bus type
configurations that occurred at least 10% of the maximum
occurring configuration appeared at the same frequency. This
also ensured configurations with few occurrences remained in
the dataset without forcing undersampling.

IV. EXPERIMENTS

A. Bus Type Prediction Accuracy

We benchmark our proposed approach using several stan-
dard test cases from MATPOWER [25]. Our test dataset was
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Fig. 2: Prediction accuracy for each generator across various loading conditions for several test cases, sorted in order of

increasing error as defined in (2).

TABLE I: Average Prediction Error for Several Test Cases

Case57
0.0281

Case89
0.0647

Casel18
0.0501

Casel45
0.0255

Test Case
Average Error

constructed in the same way as the training dataset described in
the prior section but was not used during the training process.

The accuracies of machine learning models for classifi-
cation problems is frequently evaluated using cross-entropy
loss functions. However, our setting makes some categorical
errors more significant than others. Specifically, if the model
predicts a PQy,;, configuration for a generator where the actual
configuration is PQpa, the power flow solver will likely
take longer to converge than if the model had predicted a
PV configuration. We therefore assess performance using the
following metric:

[f(p) — f(¥)]
2 )
where p is the actual bus type configuration, p’ is the predicted
configuration, and f : {PQpin, PV, PQuma} — {0, 1,2}.
Table I summarizes the results of applying this error metric
and Fig. 2 shows detailed distributional results. These results

Error =

2)

demonstrate that the neural network models accurately predict
the bus types for a large majority of generators across a range
of test cases. We note that these results are slightly influenced
by a subset of generators whose configurations are the same
across most loading conditions. However, bus types for other
generators are usually predicted with less than 10% error.

B. Computational Speed Improvements

Our ultimate goal is that the predictions from the neural
network models will improve computational speed. To evaluate
this, we initialize MATPOWER’s power flow solver with the
models’ predictions. To provide an upper bound on the best
possible performance improvement, we benchmark against an
ideal initialization that uses the actual power flow solution to
initialize the bus types (but not the voltage phasors, which
are set to a flat start of 10° in both initializations). Our
comparisons consider the total computational time and the
number of Newton iterations relative to a baseline initialization
using the nominal bus types in the MATPOWER case files.

Summarizing this analysis, the results in Table II and the
distributional results in Fig. 3 show that the neural network
initializations yield considerable improvements over the nom-
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Fig. 3: Distribution of Newton iterations with different PV-PQ initializations.

TABLE II: Effectiveness of the Neural Network Initializations
Compared with Ideal Bus Type Initializations

Test Case | Case57 [ Case89 | Casell8 | Casel45

Time Improvement Over Nominal Initializations

Neural Network Initialization 155% 746% 351% 432%

Ideal Initialization 191% 1591% 1029% 633%
Iteration Improvement Over Nominal Initializations

Neural Network Initialization 143% 278% 565% 311%

Ideal Initialization 171% 436% 1089% 458%

inal bus type initializations. Many cases achieve well over half
of the possible speed improvements that could be achieved by
an ideal bus type initialization.

C. Convergence Rates

While our focus in this paper is on computational speed,
convergence behavior is also an important performance as-
sessment criterion. Table III shows the convergence rates
for MATPOWER’s power flow solver as the loading varies
for several test cases. Since some of the loading conditions
may actually yield infeasible power flow problems, it is
most relevant to compare convergence rates between different
initializations as opposed to considering the values in isolation.

TABLE III: Convergence Rates

Test Case Case57 Case89 | Casell8 | Casel45
Nominal Initialization 99.99% | 59.18% | 99.95% 45.19%
Neural Network Initialization | 99.91% | 65.07% 91.58% 39.67%

We observe that the convergence rates associated with our
neural network model are roughly comparable to those from
the nominal bus type initializations, with neither dominating
the other. We also note that having multiple initialization
approaches provides engineers with reasonable alternatives to
try in case of convergence failures.

D. Neural Network Training Times

The results shown so far provide relative comparisons
among different initializations when solving power flow prob-
lems. While conducted offline where computing time is less
crucial, it is also important to note the time required for
training the neural networks. In particular, Table IV gives the
times required for solving the 10,000 sampled power flows
in data generation phase as well as the subsequent training of
the neural networks. All computations were completed on Intel
Xeon Gold 6226 @ 2.70GHz CPU cores, and neural network
training took advantage of multiprocessing.



TABLE IV: Data Generation Time

Test Case Case57 Case89 Casel18 Casel45
Data Generation Time 8.47 min 74.55 min | 15.52 min | 63.70 min
Network Training Time | 10.80 min 8.72 min | 25.81 min | 17.42 min

V. CONCLUSION AND FUTURE WORK

This paper has proposed the application of neural networks
to select generator bus type initializations for the PV-PQ
switching heuristics in power flow algorithms. By tailoring the
neural network design and training process to this application,
we obtain bus type initializations that substantially improve
power flow solver times and the number of Newton iterations.

Building on the results in this paper, future work will assess
more sophisticated techniques for designing the neural net-
works. For instance, varying the neural networks’ sizes and hy-
perparameters based on the power system characteristics holds
promise for further improvements. Moreover, we intend to
select the neural networks’ inputs using sensitivity information
from nearby power flow solutions as opposed to our existing
purely topological criterion. We also intend to combine the
neural networks’ bus type initializations with machine learning
based voltage phasor predictions as studied in prior literature
such as [22]-[24]. By doing so, we aim to further improve both
convergence speed and convergence performance. Our results
in this paper also suggest the merits of potential extensions
to consider initializations of heuristics for other non-smooth
behaviors in various power flow formulations (e.g., volt-var
responses for inverter-based resources [27]). Finally, we plan
to consider contingencies where the network topology changes
between power flow problems.
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