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Abstract—With the increasing penetration of distributed en-
ergy resources, distributed optimization algorithms have at-
tracted significant attention for power systems applications due
to their potential for superior scalability, privacy, and robustness
to a single point-of-failure. The Alternating Direction Method
of Multipliers (ADMM) is a popular distributed optimization
algorithm; however, its convergence performance is highly de-
pendent on the selection of penalty parameters, which are usually
chosen heuristically. In this work, we use reinforcement learning
(RL) to develop an adaptive penalty parameter selection policy
for alternating current optimal power flow (ACOPF) problem
solved via ADMM with the goal of minimizing the number of
iterations until convergence. We train our RL policy using deep
Q-learning and show that this policy can result in significantly
accelerated convergence (up to a 59% reduction in the number
of iterations compared to existing, curvature-informed penalty
parameter selection methods). Furthermore, we show that our
RL policy demonstrates promise for generalizability, performing
well under unseen loading schemes as well as under unseen losses
of lines and generators (up to a 50% reduction in iterations).
This work thus provides a proof-of-concept for using RL for
parameter selection in ADMM for power systems applications.

Index Terms—alternating direction method of multipliers,
alternating current optimal power flow, distributed optimization,
reinforcement learning, deep Q-learning.

I. INTRODUCTION

The rapid growth in distributed energy resources (DER)
such as solar PV, batteries, and plug-in vehicles necessitates
new computational methods for cooperatively controlling these
devices to maximize the efficiency and reliability of power
systems. Traditionally, set-points for controllable devices are
determined using centralized methods, meaning that all data
are congregated in a central location (often an independent
system operator), which solves a large-scale optimization
problem. However, centralized methods may be unable to
computationally manage the increase in problem size and
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complexity resulting from adding millions of DERs. Fur-
thermore, centralized computing raises other issues such as
data privacy [1], [2] and is also vulnerable via a single
point of failure or attack. Consequently, there has been much
interest from the power systems community in distributed
computation methods, where large problems are partitioned
into smaller problems that can be solved in parallel [3].
Distributed optimization can be used to either (i) physically
spread computation across an electric network such that de-
vices locally solve a small optimization problem and exchange
solutions directly with neighboring devices until converging to
the overall solution [4], or (ii) partition large problems in the
context of high-performance computing (HPC) [5].

Despite the promise of distributed methods for power sys-
tems applications, they have not yet been widely adopted
in industry. A review by Wang et al. [4] finds that one
reason for this lack of adoption is that distributed optimization
algorithms “may require many iterations and in turn increase
computational burden beyond the limit of practical interest
for power industry.” For example, commonly used distributed
methods in power systems such as Alternating Direction
Method of Multipliers (ADMM), Auxiliary Problem Principle
(APP), and Analytical Target Cascading (ATC) may require
hundreds or thousands of iterations to converge to a sufficiently
high accuracy and only have convergence guarantees for a
limited class of problems [3], [4], [6].

While the worst-case computational performance of opti-
mization algorithms is characterized by complexity theory, in
practice, user-selected algorithmic parameters can significantly
reduce typical solution times. For example, it is widely known
that the convergence performance of ADMM is sensitive
to the choice of penalty parameters, which are heuristically
defined [7]. Furthermore, poor parameter selection can lead
to solution divergence. In [8], Mhanna et al. demonstrate
that nonconvex and nonlinear alternating current optimal
power flow (ACOPF) problems [9] solved via ADMM have
widely varying convergence results based on the selection of
penalty parameters, including divergence. Recent theoretical
advancements [10] enable ADMM to guarantee convergence
for the ACOPF problem; however, convergence performance
still depends on parameter settings.

To speed up convergence and reduce the effort of penalty
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parameter tuning in ADMM, adaptive penalty parameter algo-
rithms have been studied in order to update penalty parameters
during the optimization using feedback from the previous
iteration. Examples include residual balancing [11], which
increases or decreases penalty parameters based on the relative
magnitudes of the primal and dual residuals, and methods that
use estimates of the local curvature of the dual function to
inform updates [12]. Mhanna et al. in [13] demonstrate sig-
nificantly improved convergence performance for the ACOPF
problem using adaptive penalty parameter algorithms over
vanilla ADMM with static penalty parameters. However, the
techniques in [13] still rely on tuned parameters within the
adaptive algorithm, and also require additional logic steps and
the computation and storage of gradient information.

Ultimately, these existing adaptive penalty parameter al-
gorithms rely on heuristics, presenting an opportunity for
their replacement with machine learning techniques that may
have superior performance. In this work, we develop a re-
inforcement learning (RL) [14] method to train a policy for
selecting penalty parameters to accelerate the convergence
of an ADMM algorithm for solving ACOPF problems. The
ADMM parameter selection task has a sequential decision
making structure, as penalty parameters are updated based on
feedback from past iterations. RL, as a convenient framework
for sequential decision making problems, is a natural fit for
this task.

Machine learning techniques have been used to design opti-
mization methods (e.g., [15], [16]). There are fewer works that
develop embedded-ML methods specifically for distributed
optimization algorithms. In [17], a recurrent neural network is
trained to predict the converged values of variables in ADMM
subproblems for DC-OPF. In [18], the authors replace ADMM
subproblems with an RL policy that predicts solutions. In [19],
the authors learn to solve ADMM subproblems by recasting
them as deep neural networks. Recent contemporaneous work
[20] trains an RL policy to tune parameters to accelerate
ADMM convergence using policy gradient methods; however,
they focus on convex QP problems with convergence guaran-
tees and do not specifically consider power systems problems.
Moreover, RL methods have shown promise in other power
systems applications (e.g., [21], [22]).

In this work, we investigate the use of RL in the important
task of learning ADMM penalty parameters. Transforming the
penalty parameter selection problem into an RL problem, this
work has three main contributions:

• Formulation of parameter selection for distributed
ACOPF as a RL problem.

• Development of a novel deep Q-learning policy scheme
for ADMM penalty parameter selection.

• Demonstration of trained policies on test networks with
unseen loads and unseen line and generator contingencies.

The rest of the paper is organized as follows. In Section II,
we introduce the ACOPF problem and its component-based
ADMM formulation. We discuss the importance of the penalty
parameter ρ for the convergence of the ADMM algorithm. In

Section III, we briefly highlight the connection between the
penalty parameter selection problem and RL and provide an
overview of RL and deep Q-learning. In Section IV, we dive
into our RL algorithm design, including the choice of the state
space, action space, and reward function. We present numerical
experiments in Section V, and conclude with future directions
in Section VI.

II. COMPONENT-BASED DECOMPOSITION OF ACOPF

We consider a component-based decomposition of
ACOPF [8], [13] that can be efficiently solved by ADMM,
where each component in the network (i.e., buses, lines,
generators) form their own subproblems. Although region-
based ADMM decompositions [10], [23] are also popular for
power systems applications and result in fewer subproblems,
the advantage of the component-based formulation is that
each subproblem is small and can be solved efficiently,
lending itself well to HPC implementations [5]. Furthermore,
component-based decompositions do not require making
partitioning decisions, which can impact performance.

A. ACOPF Formulation

We present the ACOPF problem formulation below in (1).
This problem seeks the least costly operating points of the
generators within their lower and upper limits while obeying
physical laws. These physical laws are represented by power
flow equations (1b)–(1c) and (1i)–(1l).

minimize
pgi ,qgi ,wi,θi,w

R
ij ,w

I
ij

∑
i∈B

∑
gi∈Gi

fgi(pgi) (1a)

subject to∑
gi∈Gi

pgi − pdi = gSi wi +
∑
j∈Bi

pij , ∀i ∈ B (1b)∑
gi∈Gi

qgi − qdi = −bSi wi +
∑
j∈Bi

qij , ∀i ∈ B (1c)√
p2
ij + q2

ij ≤ r̄ij , ∀(i, j) ∈ L (1d)√
p2
ji + q2

ji ≤ r̄ij , ∀(i, j) ∈ L (1e)

p
gi
≤ pgi ≤ pgi , ∀gi ∈ Gi,∀i ∈ B (1f)

q
gi
≤ qgi ≤ qgi , ∀gi ∈ Gi,∀i ∈ B (1g)

− 2π ≤ θi ≤ 2π, ∀i ∈ B (1h)

pij = giiwi + gijw
R
ij + bijw

I
ij , ∀(i, j) ∈ L (1i)

qij = −biiwi − bijwRij + gijw
I
ij , ∀(i, j) ∈ L (1j)

pji = gjjwj + gjiw
R
ij − bjiwIij , ∀(i, j) ∈ L (1k)

qji = −bjjwj − bjiwRij − gjiwIij , ∀(i, j) ∈ L (1l)

(wRij)
2 + (wIij)

2 = wiwj , ∀(i, j) ∈ L (1m)

θi − θj = arctan(wIij/w
R
ij), ∀(i, j) ∈ L (1n)

In this optimization problem, we use B,Bi,Gi, and L to
denote the set of buses, the set of buses connected to bus i,
the set of generators at bus i, and the set of lines, respectively.
The decision variables include pgi and qgi , which are the
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real and reactive power outputs of generator gi at bus i, wi
and θi, which are the squared voltage magnitude (= v2

i )
and angle at bus i, and wRij and wIij , which are defined to
be vivj cos θij and vivj sin θij , respectively, with vi being
the voltage magnitude at bus i and θij := θi − θj . This
choice of problem formulation is more naturally suited to the
component-based decomposition that we adopt from [5] in this
work. fgi(·) is a quadratic function of the real power output
that encodes the power generation cost. The other quantities
in (1b)–(1m) are parameters that depend on the structure and
physical properties of the power network (see [13] for more
details).

B. ADMM Formulation for ACOPF

Consider the following optimization, which is the general
problem form for ADMM:

minimize
x∈Rn1 ,x̄∈Rn2

f(x) + g(x̄)

subject to Ax+Bx̄ = c,
(2)

where A ∈ Rn3×n1 , B ∈ Rn3×n2 , and c ∈ Rn3 , and where
f : Rn1 → R and g : Rn2 → R are closed functions. Let y ∈
Rn3 be the vector of Lagrange multipliers used to enforce the
linear equality constraint in (2). Then, we form the augmented
Lagrangian as Lρ(x, x̄, y) = f(x)+g(x̄)+yT (Ax+Bx̄−c)+
(Ax+Bx̄−c)>Ω(Ax+Bx̄−c), where the matrix Ω ∈ Rn3×n3

is a diagonal matrix with the i-th diagonal entry defined as
Ωii = ρi/2. We define ρi as the i-th penalty parameter.

Let k ∈ N be the ADMM iteration counter, where iterates
are marked via square brackets in superscript. Each iteration,
we first update variable x according to (3a). Then, using this
updated value of x, variable x̄ is updated according to (3b).
Finally, the Lagrange multipliers are updated via (3c).

x[k+1] = argmin
x

Lρ(x, x̄
[k], y[k]) (3a)

x̄[k+1] = argmin
x̄

Lρ(x
[k+1], x̄, y[k]) (3b)

y[k+1] = argmin
y

Lρ(x
[k+1], x̄[k+1], y) (3c)

This iterative process continues until the 2-norms of the primal
and dual residuals, which represent the feasibility of the primal
and dual problems, have met their convergence thresholds,
εp > 0 and εd > 0, respectively:∥∥∥r[k]

p

∥∥∥
2
≤ εp and

∥∥∥r[k]
d

∥∥∥
2
≤ εd, (4)

where r[k]
p and r[k]

d are the primal and dual residuals:

r[k]
p = Ax[k] +Bx̄[k] − c (5)

r
[k]
d = 2ΩATB

(
x̄[k] − x̄[k−1]

)
. (6)

Reference [13] proposes a method to decompose the
ACOPF problem (1), based on the observation that compo-
nents can be decoupled by duplicating variables connecting
them. Generators and buses are coupled through the pgi and
qgi variables, and branches and buses are coupled through
the pij , qij , pji, qji, wi, θi, wj , and θj variables for a given

branch (i, j). By duplicating these variables and enforcing a
consensus through coupling constraints, we can reformulate
the problem as the composition of small sub-problems, which
can be written in the form of (2) with proper choices of A,B
and c = 0. Applying ADMM to the reformulation permits
massively parallel computations that can be accelerated using
GPUs. In this work, we use the GPU-based solver developed
in [5], which has achieved the state-of-the-art performance in
terms of computation speed for solving ADMM problems.

Note that the i-th coupling constraint in the ADMM formu-
lation is associated with penalty parameter ρi. In [8], improved
convergence performance is observed for ACOPF when ρi
values are assigned based on the type of coupling constraint
they are penalizing. Therefore, we categorize the coupling
constraints into two different types: constraints that correspond
to the real (p) and reactive (q) power flows, and constraints
that correspond to voltage magnitudes (v) and angles (θ). We
use npq and nvθ to denote the number of the two types of
constraints, respectively. We use ρpq ∈ Rnpq for the penalty
parameters for the p or q coupling constraints and ρvθ ∈ Rnvθ
for the penalty parameters for the v or θ coupling constraints.

III. REINFORCEMENT LEARNING OVERVIEW

From the perspective of accelerating convergence, we seek
the optimal parameter ρ throughout the ADMM iterations to
encourage the primal and dual residuals to reach the conver-
gence thresholds in as few iterations as possible. The choice of
ρ in the k-th ADMM iteration is based on the current iterates
x[k], x̄[k], y[k], and in turns affects x[k+1], x̄[k+1], y[k+1], the
iterates of the next iteration. This naturally makes the problem
a sequential decision making problem, which motivates us to
approach it using RL. In this section, we provide an overview
of RL modeled as a Markov Decision Process (MDP) and
discuss Q-learning, an effective class of RL algorithms that
we will use in this work.

A. Reinforcement Learning & Markov Decision Process

Reinforcement learning is a framework for sequential deci-
sion making that involves an agent interacting with an envi-
ronment. The agent observes the state and reward information
from the environment and selects an action in response. The
action makes the environment transition from the current state
to the next state and reveal the next reward. The goal of the
agent is to choose the optimal actions to maximize the dis-
counted cumulative reward it receives from the environment.

Mathematically, we consider the Markov Decision Process
(MDP), characterized by the 5-tuple M = (S,A,P, R, γ). S
and A denote the state and action space. P : S × A → ∆S
(with ∆K denoting the probability simplex over a set K) is the
transition probability kernel that specifies the distribution of
the next state given the current state and action. R : S×A → R
is the reward function. γ ∈ (0, 1) is the discount factor that
discounts rewards received in the future. Due to the Markovian
nature of the environment, selecting the optimal sequence of
actions can be equivalently expressed as finding a policy π :
S → ∆A. The policy is a mapping from the state space to the
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probability simplex over the action space, and we use π(a | s)
to represent the probability of choosing action a in state s.
The RL agent seeks to maximize the discounted cumulative
reward by solving the optimization problem

max
π

E

[ ∞∑
k=0

γkR(s[k], a[k])

]
(7)

s.t. a[k]∼π(· | s[k]), s[k+1]∼P(· | s[k], a[k]), ∀k = 0, 1, . . .

where x ∼ d denotes drawing a sample x uniformly from the
distribution d.

Two main classes of methods to solve the RL problem (7)
are the policy gradient algorithm and Q-learning. The method
used in this work is a variant of Q-learning, which we briefly
review in the following subsection.

B. Q-Learning
In RL, the “value” of a state-action pair under a policy π

is measured by the discounted cumulative reward obtained by
applying action a in state s and then following the policy π:

Qπ(s, a) = Eπ

[ ∞∑
k=1

γkR(s[k], a[k]) | s[0] = s, a[0] = a

]
.

This is commonly known as the Q function under policy π.
Under mild assumptions on the reward function, there always
exists a deterministic optimal policy π∗ [24], which has a Q
function obeying the Bellman equation for all s ∈ S, a ∈ A:

Qπ∗(s, a) = R(s, a) + γEs′∼P(·|s,a)[max
a′∈A

Qπ∗(s
′, a′)].

On the other hand, π∗ can be determined from its Q function.
Defining a∗(s) = argmaxa∈AQπ∗(s, a), we have

π∗(a | s) =

{
1, if a = a∗(s),

0, otherwise.

In other words, the optimal policy π∗ is to always take
the action with the largest Q value. This suggests that to
learn π∗, we can equivalently learn its Q function through
stochastic approximation [25], where we maintain a table
Q[k] ∈ R|S|×|A| to track Qπ∗ and update it iteratively as

Q[k+1]
(
s[k], a[k]

)
= Q[k]

(
s[k], a[k]

)
+ α[k]

(
R
(
s[k], a[k]

)
+ γmax

a∈A
Q[k]

(
s[k+1], a

)
−Q[k]

(
s[k], a[k]

))
,

where s[k], a[k], s[k+1] are samples collected when the agent
interacts with the environment in the k-th iteration and α[k] is
the step size. As the dimension of the Q table grows linearly in
the cardinality of the state and action space, function approxi-
mation is introduced to parameterize it in large-scale problems.
In this work, we use a neural network to parameterize the Q
function. We will use ψ to denote the parameters of the neural
network and Qψ : R|S|×|A| → R to denote the Q function
parameterized by ψ. We also employ standard techniques
such as double Q-learning [26] and prioritized experience
replay [27] to stabilize and accelerate training. More detailed
introduction and theoretical treatment of Q learning can be
found in [28]–[30].

IV. ALGORITHM DESIGN

In this section, we use the RL framework in Section III to
develop a method that learns the penalty parameter ρ in the
ACOPF ADMM algorithm to accelerate its convergence.

While our objective is to reduce the number of ADMM
iterations until convergence, the goal of an RL agent is to
maximize the discounted cumulative reward it collects from
the environment. To translate our objective to that of the RL
agent, we have to model our ADMM parameter selection
problem as a suitable RL problem, which includes identifying
the environment and dynamics and making the proper choice
of the state space, action space, and reward function.

Fig. 1. ADMM Solver and RL Agent Interaction

A. RL Environment & Reward Function

We regard the ADMM solution process as the RL envi-
ronment. Each iteration of the ADMM algorithm corresponds
to one RL iteration. In iteration k = 0, 1, . . ., the agent
observes the current state of the ADMM solver s[k]. Based
on s[k], the agent selects an action a[k], which is simply a
choice of ρ[k], the penalty parameter of the k-th iteration, and
receives a reward R(s[k], a[k]), which we will design to reflect
the value of the current state to the ADMM convergence.
The parameter ρ[k] is then fed back to the ADMM solver
for another ADMM iteration. This process is repeated until
both the primal and dual residuals from the ADMM solve
drop below the thresholds, i.e., (4). The interaction of the
environment and the agent in ADMM solving process is shown
in Figure 1.
State space: The state is an important source of information
that should summarize the progress of the ADMM algorithm
and include key factors necessary for the agent to make
decisions about ρ. In this problem, we naturally expect the
primal and dual residuals to contain information about the
optimal choice of ρ. To ensure that s[k] sufficiently represents
the state of the ADMM solving process, we include the past
n-point history of the residuals in s[k].

s[k] =[(r[k−n+1]
p , r

[k−n+1]
d ), · · · , (r[k]

p , r
[k]
d )]∈ R2n×(npq+nvθ).

Action space: The algorithm used in this paper is a variant
of Q-learning, which by design requires a discrete and finite
action space. Since ρ is only restricted to being positive, ρ
can be chosen from a continuous and infinitely large range of
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values. However, in the context of ACOPF problems, existing
literature shows that ρ values picked from a much smaller
range result in superior convergence speed. Specifically, [13]
suggests using two different ρ for the two types of constraints:
for constraints related to real and reactive power, ρpq = 400
is used for IEEE 9-bus, 30-bus, and 118-bus systems; for
constraints related to voltage, ρvθ = 40000 is used for IEEE
9-bus and 30-bus systems and ρvθ = 4000 is used for the 118-
bus system. Though this particular choice of the parameters
may not be optimal, it suggests a reasonable range for ρ to
provide to the RL agent. We select [100, 1000] as the range
of ρpq , and [500, 70000] for ρvθ in the 9-bus and 30-bus
systems and [500, 7000] in the 118-bus system, discretized to
10 possible actions for each constraint (see Table I). We note
that the action space may be more challenging to design for
power networks in which we lack extensive prior knowledge.
One solution for such networks is to determine by trial and
error reasonable ρpq and ρvθ values that lead to convergence,
as commonly practiced in the existing works in distributed
OPF [8], [13]. Then an action space can be formed around
these values.

TABLE I
RL ACTION SPACE (ρ) & INITIAL ρ VALUES

ρ Category Initial Value Action Space

ρpq 400 {100, 200, 300, 400, 500, 600, 700,
800, 900, 1000}

ρvθ (9-, 30-bus) 40000 {500, 2000, 5000, 10000, 20000,
30000, 40000, 50000, 60000, 70000}

ρvθ (118-bus) 4000 {500, 1000, 1500, 2000, 2500, 3000,
3500, 4000, 5500, 7000}

Reward function: The reward function is a crucial signal
that affects the behavior of the agent. We have to carefully
design the reward function to translate our objective, which is
to accelerate ADMM convergence, correctly to the agent. The
reward function R should be chosen such that R(s, a) is large
if taking action a while in state s leads to fast convergence
and small if taking action a while in state s leads to slow
convergence. With this in mind, a natural choice of the reward
function is a large bonus given only to the convergence state;
for instance,

Rconv(s[k], a[k]) =

{
200, if

∥∥∥r[k+1]
p

∥∥∥
2
≤εp and

∥∥∥r[k+1]
d

∥∥∥
2
≤εd,

0, else.

Due to the presence of the discount factor γ ∈ (0, 1), the
reward received further in the future becomes less valuable.
Therefore, to maximize the discounted cumulative reward
under this reward function, the agent will aim to reach the
convergence state in as few iterations as possible.

Though this design of the reward function encodes our
objective very well, it causes the agent to receive extremely
sparse reward signals in the training process. Until the very
last iteration, the agent will not receive any useful reward

Algorithm 1: Parameter Learning Through Q-Learning
in ADMM ACOPF Solver

1: ADMM initialization: Initial parameters
x[0] ∈ Rn1 , x̄[0] ∈ Rn1 , y[0] ∈ Rn3 , ρ[0] ∈ Rn3

2: RL initialization: Initial Q function parameter ψ[0],
step size sequence α[k], greedy policy parameter
sequence ε[k], length of state vector n, action space A

3: for k = 0, 1, 2, ... do
4: if k ≥ n then
5: Compute residuals r[k]

d , r[k]
p from x[k], x̄[k] and

form state vector
s[k] = [(r

[k−n+1]
p , r

[k−n+1]
d ), · · · , (r[k]

p , r
[k]
d )]

6: Select action a[k]∼π̂[k](·|s[k]) and translate to ρ[k]

7: else
8: Use the initial ρ value: ρ[k] = ρ[0]

9: end if
10: Perform an ADMM update (3) with the current

penalty parameter ρ[k]

11: if k ≥ n then
12: Receive reward R(s[k], a[k]), observe the next

state s[k+1], and compute the Q target

Qtarget = R(s[k], a[k]) + max
a

Qψ[k](s[k+1], a)

13: Update the Q function parameter

ψ[k+1] =ψ[k]−α[k]∇ψ(Qψ(s[k], a[k])−Qtarget)
2 |ψ=ψ[k]

14: Update the ε-greedy policy

π̂[k+1](a | s)=

{
1− (|A|−1)ε[k]

|A| , if a= â[k+1](s)
ε[k]

|A| , otherwise

where â[k+1](s) = argmaxaQψ[k+1](s, a).
15: end if
16: Terminate if ADMM has converged
17: end for

throughout the hundreds or thousands of iterations that are
typically required for ADMM algorithms to converge for
moderately sized ACOPF problems. Sparse rewards commonly
cause exploration and credit assignment issues in RL [31] and
significantly slow down the learning process.

To offer a denser signal to the RL agent, we add the resid-
uals in the reward function. Specifically, the reward received
by the agent in state s[k] is proportional to the reduction in
‖r[k+1]
p ‖2 and ‖r[k+1]

d ‖2 from ‖r[k]
p ‖2 and ‖r[k]

d ‖2:

Rres(s
[k], a[k])

=
1

Zp
(‖r[k+1]

p ‖2 − ‖r[k]
p ‖2) +

1

Zd
(‖r[k+1]

d ‖2 − ‖r[k]
d ‖2),

where Zp and Zd are normalizing factors that balance the mag-
nitude difference between the primal and dual residuals. This
reward function makes sense, as achieving fast convergence is
equivalent to quickly driving the residuals to the thresholds.
This reward is non-zero in every ADMM iteration.
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While we observe that the combination of Rconv and Rres
works well in this problem, we further innovate the reward
function design by taking advantage of the non-counterfactual
nature of the environment. We note that in most RL problems,
the environment transition is irreversible, that is, once an
action a[k] is deployed in state s[k], the environment moves
forward to the next state s[k+1], and the consequence of se-
lecting a different action in s[k] is never observable. However,
in this problem, the progress of every ADMM iteration can
be saved and we can therefore try different actions in the
same state and compare their outcomes. This feature of the
environment affords more flexibility in the reward design.

In this work, we use a reward function computed with the
help of a baseline policy π̃. In state s[k], we select the baseline
action ã[k] ∼ π̃(· | s[k]) and observe the resulting next state
s̃[k+1] including primal and dual residuals r̃[k+1]

p and r̃
[k+1]
d .

We note that this baseline action is only used to compute
the residuals. We roll back to state s[k] once the residuals
are collected. From state s[k], we then deploy the RL policy,
making the environment transition to s[k+1] and reveal r[k+1]

p

and r[k+1]
d . The reward is defined as the relative advantage of

the RL policy over the baseline:

Rb(s
[k], a[k])=

‖r[k+1]
p ‖2−‖r̃[k+1]

p ‖2
‖r̃[k+1]
p ‖2

+
‖r[k+1]
d ‖2−‖r̃[k+1]

d ‖2
‖r̃[k+1]
d ‖2

.

This reward function essentially aims to achieve the same
goal as Rres, but can have much smaller variance. To see
this, note that ‖r[k+1]

p ‖2−‖r[k]
p ‖2 and ‖r[k+1]

d ‖2−‖r[k]
d ‖2 can

fluctuate across several orders of magnitude through ADMM
iterations regardless of the choice of ρ. The reward function
Rb effectively removes the impact of the natural fluctuation
of the residuals and makes the variance of Rb significantly
smaller than that of Rres. It has been observed that reducing
the variance of the reward is critical in accelerating learning
and is also the motivation behind popular algorithms such as
the advantage actor-critic (A2C) [32]. We emphasize that the
sole purpose of the baseline policy is to offset the fluctuation
in the norm of the residuals over iterations. Therefore, the
baseline policy can be very simple. In the experiments of this
work, the baseline policy is to always use ρpq = 500 and
ρvθ = 500. Accordingly, the reward function we choose in
this work combines rconv and rb:

R(s[k], a[k]) = Rconv(s[k], a[k]) +Rb(s
[k], a[k]).

B. Factorized Entry-wise Policy

We have discussed the transformation of the ADMM pa-
rameter selection problem into a RL problem where the policy
selects a vector ρ given the state vector. With the ten possible
choices of ρ values for each constraint, the total cardinality of
the action space is 10npq+nvθ , which grows exponentially in
the number of constraints and quickly becomes computation-
ally intractable. To address this issue, we reduce the action
space by simplifying the policy using its structure.

We observe that the dimension of the ρ vector is equal to
the number of constraints. Let πi be the policy for updating

parameter ρi with respect to the constraint i. We assume that
each policy function (i.e., conditional probability distribution)
is independent of the others. Then, if every entry of the state
vector contains enough information to optimally determine the
corresponding entry of ρ, the policy can be factorized as

π(a | s) =

npq+nvθ∏
i=1

πi(ai | si),

which means that we can equivalently train smaller policies
πi for each i = 1, . . . , (npq + nvθ), whose effective action
space has a cardinality of 10. Learning the set of small policies
with its size scaling up linearly in the number of constraints,
however, can still be computationally expensive. Therefore,
we take one more step to simplify the policy by assuming
that there exists two entry-wise policies πpq and πvθ that
can optimally determine the mappings from the entries of
state vector to the entries of ρ for all power and voltage
constraints, respectively. This means that the policy can be
further factorized as

π(a | s) =

npq∏
i=1

πpq(apq,i | spq,i)
nvθ∏
i=1

πvθ(avθ,i | svθ,i).

As a result of this factorization, we only need to learn and
maintain two small entry-wise policies. Since we use the Q-
learning algorithm in this work with an action space of size 10
for each constraint, this amounts to learning two Q functions
Qpq, Qvθ : R2n × R10 → R.

In the ACOPF ADMM algorithm, we expect it to be
generally impossible to determine the optimal ρ entry for
a particular constraint without information from the other
constraints. Moreover, there may not exist two unified policies
πpq and πvθ that work optimally for all power and voltage
constraints. However, simplifying the policy in this manner
effectively reduces the learning complexity, and as we will
show in Section V, the policy pair (ρpq, ρvθ) achieves good
empirical performance.

Along with advantages in computational tractability, another
important benefit of the factorized entry-wise policy lies in
its ability to be deployed to ACOPF ADMM problems with
different numbers of constraints from the one seen by the
RL agent in training. This means that the entry-wise policy
pair trained under one power network can be flexibly applied
to various other network structures. Later in Section V, we
will discuss an important generalization of the learned policy
to minor system modifications, where it is necessary for the
policy to adapt to a change in the number of constraints.

V. NUMERICAL EXPERIMENTS

We demonstrate the performance of our RL model by
training the parameter selection policy and testing its per-
formance on the 9-bus, 30-bus, and 118-bus IEEE networks
in the MATPOWER format [33]. Two additional evaluation
tasks are carried out to validate the generalization of the
learning performance to the practical scenarios in power
system operations. In the first task, the RL policy is evaluated
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TABLE II
ADMM ITERATIONS OF RL POLICY UNDER TRAINING LOADS

[Mhanna 2019] RL policy Iteration Reduction
9-bus 879 358 59.3%
30-bus 1400 738 47.3%
118-bus 525 343 34.7%

for its effectiveness in unseen load profiles in the original
network. This is an important task as the loads of a power
system change frequently, requiring the ACOPF problem to
be solved repeatedly in an efficient way. The second task tests
the RL policy on a slightly modified version of the system by
removing generators and/or disconnecting transmission lines.
This task is more challenging and also important in practice
since we need to solve ACOPF problems under generator and
line outages.

Two small-sized neural networks of identical structure (4
fully-connected layers with hidden dimension 256) are used
to approximate Qpq and Qvθ. The action space has dimension
10, and we choose the number of residual history points n =
20. This makes the input and output dimension of the neural
network 40 and 10, respectively. We take the initial ρpq and
ρva to be the values suggested by [13] (provided in Table I).
Each test instance is solved from a cold-start in ADMM.

A. Performance on Training Scheme

The RL policy is trained under the default loading for 1000
RL episodes, where one episode is a complete ADMM solu-
tion process. Compared with the state-of-the-art ρ adjustment
scheme in [13] that results in ADMM convergence in 879,
1400, and 525 iterations for 9-bus, 30-bus, and 118-bus sys-
tems, the RL policy reduces the number of ADMM iterations
by at least 30% (Table II). To understand the mechanism
behind the fast convergence under the RL policy, Fig. 2 shows
the primal and dual residuals over ADMM iterations under
the RL policy and the scheme in [13] for the 9-bus system.
While the scheme in [13] leads to frequent fluctuations of the
residuals which prolong the ADMM solving process, the RL
policy avoids these fluctuations. Although this trend is not as
obvious in 30-bus and 118-bus systems, we still observe that
the RL policy allows the residuals to drop more smoothly.

Fig. 2. Convergence of Residuals with RL Policy for the 9-bus System

B. Generalization of RL Policy to Varying Loads

We also test the generalization of the RL policy to varying
loads. Note that the RL policy has only been trained on the

default loads from MATPOWER, not on any other loading
schemes. We create a dataset of 50 test instances by randomly
perturbing the default loads in the range [−10%, 10%] at
each bus. We summarize the number of ADMM iterations to
convergence in Table III. The RL policy reduces the ADMM
iterations relative to the scheme in [13] by 28% to 50% across
test cases.

TABLE III
ADMM ITERATIONS OF RL POLICY UNDER VARYING LOADS

ρ selection method
[Mhanna 2019] RL policy
mean std mean std

Iteration Reduction

9-bus 813.4 20.4 407 9.9 50.0%
30-bus 1414.3 43.6 772.5 18.9 45.4%
118-bus 486.6 8 346 7.2 28.9%

C. Generalization of RL Policy to Generator and Line Outages

In practical situations, we may need to solve the ACOPF
problem after generator and line outages. Thus, it is of interest
to investigate the performance of the RL policy in a modified
network. In this section, we evaluate the ADMM convergence
speed when applied to systems with 1) one generator removed
and 2) one line disconnected.1 Again, we note that the RL
policies were trained on the original MATPOWER networks,
without considering line or generator losses. Tables IV and V
summarize the performance of the RL policy and its compar-
ison with the state-of-the-art method in [13].

TABLE IV
ADMM ITERATIONS OF RL POLICY UNDER GENERATOR OUTAGES

ρ selection method
[Mhanna 2019] RL policy

No.
of instances

mean std mean std

Iteration
Reduction

9-bus 3 856.0 221.4 654.0 119.9 23.6%
30-bus 6 1325.8 404.3 695.8 78.9 47.5%
118-bus 54 483.8 17.7 340.0 8.8 29.7%

TABLE V
ADMM ITERATIONS OF RL POLICY UNDER LINE OUTAGES

ρ selection method
[Mhanna 2019] RL policy

No.
of instances

mean std mean std

Iteration
Reduction

9-bus 6 698.7 218.5 367.3 31.1 47.4%
30-bus 10 1455.5 225.6 800.4 93.2 45.0%
118-bus 50 486.5 6.0 346.1 6.1 28.9%

In the 9-bus system, there are three generator buses and
six lines that can be disconnected while avoiding islands. In
Figure 3, we detail the ADMM convergence under the RL
policy for each outage scenario, and note that the proposed
method always outperforms [13] by a large margin.

1We consider all possible generator outage scenarios. Line outages are
sampled in a uniformly random manner such that they do not island the
network. We exclude line outages that lead to infeasible solutions under the
method in [13].
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Fig. 3. ADMM Convergence with RL Policy for the 9-bus System with
Generator and Line Outages

Remark 1: The RL policy and the method in [13] achieve
similar performance in terms of the converged objective
function value in the experiments in Section V-A through
Section V-C. In most cases, the difference is within 1%.

D. Generalization of RL Policy to Unseen Network Structures

We also performed experiments on the generalization of
the RL policy to networks that were not seen during training.
For example, one may be interested in training a RL policy
for a 9-bus system and deploying it to a 30-bus system.
Accordingly, we trained RL policies for several systems and
tested them on several others. Though our policy factorization
described in Section IV-B makes it possible to apply the RL
policy to an ACOPF problem with a different number of
constraints, experimentally, we found that policies trained in
one network perform poorly in a completely different network.
This observation strengthens our belief that there may not
exist a universally optimal strategy that works for any ADMM
problem, and thus supports the need for specialized approaches
like the RL policies in this paper.

Remark 2: We note that the computational complexity
of the RL policy for each constraint does not change with
the dimension of system, as the dimension of the neural
network is the same. However, the ADMM solver usually
slows down as the system grows. Therefore, the computational
time of deploying the RL policy should become increas-
ingly negligible as the problem scales up. The training of
the RL policy requires running 1000 episodes of complete
ADMM solves, which involves a substantial amount of time
but consists of offline computations that will not affect the
online computational speed of deploying the RL policy. In
addition, while local primal and dual residuals need to be
shared between computational nodes to train the RL policy, the
policy runs completely locally once deployed, which reduces
the leakage of local information during online operations.
Mitigating privacy concerns in distributed OPF is an active
research topic. We note that techniques in [2], [34] may help
to further enhance the privacy preservation of our algorithm.

VI. CONCLUSION & FUTURE WORK

The choice of penalty parameters is key for accelerating the
convergence of the ACOPF ADMM algorithm. By recognizing
this task as a sequential decision making problem, we propose
a RL framework in which we properly design the state

space, action space, and reward function. We demonstrate the
superior performance of the learned RL policy over the state-
of-the-art method in a range of scenarios. To the best of our
knowledge, this is the first work to use machine learning
for penalty parameter selection in distributed optimization
for power systems applications. By reducing the number
of ADMM iterations by up to 59%, this paper provides a
successful proof of concept for using RL to enhance ADMM
algorithms for power systems.

Future directions of the work include scaling up the method
to larger systems and refining the RL training scheme to
further improve ADMM convergence. We also plan to ex-
plore adapting this method to other distributed optimization
algorithms beyond ADMM where local convergence can be
theoretically guaranteed [10], [35], [36].
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