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Abstract—Efficiently and reliably operating electric power
grids requires the frequent solution of optimization problems
such as the DC Optimal Power Flow (DC OPF) problem. Solution
of DC OPF problems can be challenging due to the large
number of operational constraints imposed in these problems,
especially limits on the line flows. Improving solver times can
be facilitated by a better understanding of the active line flow
constraints in DC OPF problems (i.e., the inequality constraints
limiting line flows that are satisfied with equality at the solution).
Considering a variety of test cases and a range of loading
scenarios, this paper empirically characterizes the sets of active
line flow constraints in DC OPF problems. Among other analyses,
the paper compares the sets of redundant line flow constraints
(i.e., constraints guaranteed to be inactive) that are identified
by previously proposed constraint screening methods to the line
flow constraints that are actually observed to be active over a
range of scenarios. The results indicate that a large fraction
of the line flow constraints which are not identified as being
redundant by these screening methods are nevertheless inactive
in the DC OPF solutions. This observation suggests the potential
for improvements to the constraint screening methods. Laying
the groundwork for achieving these improvements, this paper
also identifies which line characteristics tend to be associated
with active flow constraints and studies the relationships among
sets of simultaneously active line flow constraints.

Index Terms—DC Optimal Power Flow, constraint screening.

I. INTRODUCTION

Operating electric power grids requires continuous adapta-
tions to accommodate changes resulting from, e.g., seasonal
variations, disturbances, and imbalances associated with vary-
ing electricity consumption and fluctuating renewable energy
generation. The DC Optimal Power Flow (DC OPF) problem
is one of the most important optimization problems that is
solved in order to manage system operations.

The DC OPF problem uses the DC power flow approxima-
tion to reduce the complexity of AC power systems. The DC
power flow approximates the voltage magnitude at each bus
as 1 per unit (p.u.) and the phase angle differences between
any two adjacent buses are assumed to be small. The objective
of the DC OPF problem is to minimize the generation cost
while satisfying constraints that restrict the solutions to the
physical operating limits of the power grid. Typically, these
constraints can be classified into three categories:

1) Balancing constraint: The net power injected at each bus
equals the total power flowing into the adjacent lines.

2) Generation constraint: The power supplied by each gen-
erator is within its maximum and minimum capabilities.
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3) Transmission constraint: The power flowing through
each line is within a prescribed flow limit.

The computational complexity resulting from the large
number of transmission line constraints challenges DC OPF
solution algorithms, particularly when recurring computations
are required to operate a time-variant network with chang-
ing loads and renewable generation, when solving planning
problems that consider many possible scenarios [1], and
when solving more complex generalizations of the DC OPF
problems, such as DC unit commitment problems [2].

To address this challenge, a number of previously proposed
“constraint screening” methods remove redundant constraints
in order to speed up the computation of power system opti-
mization algorithms [3]–[7]. These methods rely on the ob-
servation that only a small fraction of the line flow constraints
are active at solutions to typical DC OPF problems, despite
large variations in the load demands and generation costs [8].
Exploiting this observation, the transmission constraints that
are statistically unlikely or analytically proven to be inactive
can be neglected when solving the optimization problem.
This approach saves computation time without introducing
inaccuracies in the resulting solutions.

To identify redundant transmission constraints, many con-
straint screening methods [3]–[7] solve a set of optimization
problems that maximize and minimize the power flowing in
each line while satisfying all of the DC OPF constraints. If
the most extreme achievable power flow on a line is within
the specified line flow limit, the corresponding line flow
constraint is guaranteed to be redundant (i.e., implied by the
other constraints in the DC OPF problem) and can therefore
be neglected. Related analytical screening methods can also
quickly identify redundant flow constraints on parallel lines
without solving optimization problems [6], [9]. Other recent
research applies learning techniques to identify the sets of
active constraints in DC OPF problems [8].

A range of operational conditions can be considered in
these constraint screening methods by modeling the net load
demands as variables contained within a specified load vari-
ability set [6]. For typical DC OPF problems, these constraint
screening methods are capable of identifying a large fraction
of the line flow constraints as being redundant, even when
considering a wide range of variation in the net loads [6].
Thus, these methods facilitate off-line analyses for a range
of operational conditions, the results of which are useful for
speeding up the solution of on-line DC OPF computations.

The computational advantages resulting from the removal
of redundant line constraints has already been demonstrated
in prior literature, e.g., a 20.7% to 95.6% speed improvement



is observed in [6]. Hence, rather than focus on these speed
improvements themselves, we aim to study the effectiveness
of the constraint screening algorithms. Specifically, this paper
compares and characterizes the sets of line flow constraints
that are potentially active (i.e., the constraints not identified
as redundant by a constraint screening method) and the sets
of line flow constraints that are actually observed to be active
as obtained from solving the DC OPF problem, for different
ranges of load variation.

First, an optimization-based constraint screening method
is implemented to identify the potentially active line flow
constraints for a range of load variations. A set of DC OPF
problems are then solved, sampling from the same range of
load variations while the generation cost is also varied. The
actually active line flow constraints are recorded from the
DC OPF solutions for each loading scenario. Based on our
results, we observe that a gap exists between the number
of potentially active line flow constraints identified by a
screening method and the number of observed active line
flow constraints. This gap is bigger for larger test cases.
We also identify some physical characteristics (based on the
lines’ reactances and flow limits) that indicate which line flow
constraints are likely to be inactive. Furthermore, we study the
relationships among the sets of lines that are simultaneously
active in various DC OPF solutions.

This paper is organized as follows: Section II reviews
the DC optimal power flow problem and introduces the
optimization-based constraint screening method we employ
in our analyses. Section III describes our methodology for
DC OPF calculation for a large number of load demands and
cost variations. Section IV discusses simulation results and
observations from the constraint screening method and from
the DC OPF solutions. Section V concludes the paper.

II. BACKGROUND REVIEW

This section briefly describes the fundamental concepts
used in this work. The standard DC OPF formulation is
described first, followed by a review of constraint screening
methods [3]–[7].

The DC power flow is based on the following assumptions:

sin(θi − θj) ≈ θi − θj (1a)
|gij | � |bij | (1b)
vi ≈ 1 (1c)

where θi and θj are the voltage angles at the connected buses
i and j, respectively; gij and bij denote the conductance and
susceptance, respectively, between buses i and j; and vi is the
voltage magnitude at bus i. Extensions to more detailed DC
power flow formulations [10] are straightforward.

A. DC Optimal Power Flow

We denote the set of buses by V and the set of transmission
lines by L. The set of generator buses is G ⊆ V . The
vector d encodes the load demand at each bus. The limits
on generator power outputs and line flows are pmax, pmin,
and fmax, respectively. By adjusting the decision variables
p and θ, where p denotes generator outputs, the objective

of the optimal power flow problem is to minimize the total
generation cost while satisfying the requirement of generation
and load balance, abiding by all constraints imposed by power
limits on generators and flow limits on transmission lines:

min
p,θ

∑
i∈G

c0,i + c1,i pi + c2,i p
2
i (2a)

subject to pi − di =
∑

j:(i,j)∈L

bij(θi − θj), ∀ i ∈ V (2b)

− fmaxij ≤ bij(θi − θj) ≤ fmaxij , ∀ ij ∈ L (2c)

pmini ≤ pi ≤ pmaxi , ∀ i ∈ G (2d)

The parameters c0,i, c1,i, and c2,i are specified constant, linear,
and quadratic coefficients for the cost of the power produced
by generator i ∈ G.

B. An Optimization-Based Constraint Screening Method

We next review the constraint screening method that is
employed in the remainder of this paper, which is closely
related to the approach in [6]. To identify the line flow
constraints that can potentially be active over a range of
varying load, we find the maximum and minimum power flows
that can potentially occur on each transmission line for any
loading scenario within a specified load variation set D. Thus,
in addition to p and θ, we consider d, which varies within D,
as another decision variable in order to identify the maximum
and minimum power flows on every line, denoted as f∗mn. For
each line (m,n) ∈ L, the constraint screening method solves
the following optimization problems to compute f∗mn:

max
p,θ,d

/min
p,θ,d

fmn (3a)

subject to fmn = bmn(θm − θn), (3b)

pi − di =
∑

j:(i,j)∈L

bij(θi − θj), ∀ i ∈ V (3c)

− fmaxij ≤ bij(θi − θj) ≤ fmaxij , ∀ ij ∈ L (3d)

pmini ≤ pi ≤ pmaxi , ∀ i ∈ G (3e)
d ∈ D (3f)

The following condition is sufficient to certify that the flow
limit on the line (m,n) ∈ L is inactive for all loading
conditions within the specified variability set D:

f∗mn < fmaxmn for the maximization problem and
f∗mn > −fmaxmn for the minimization problem

Hence, the line flow limit (2c) is redundant for this line and
can be neglected without affecting the solution to the DC OPF
problem. Repeating this process for every line (m,n) ∈ L
generates a set of redundant/inactive lines, which we denote
as R. Using the results of this optimization-based screening
method, we can solve the original DC OPF problem with a
reduced set of line constraints, i.e., L\R rather than L in (2c).

III. DC OPF SAMPLING METHODOLOGY

The objective of the above-mentioned constraint screening
method (3) is to maximize and minimize line flows without



violating any physical constraints. Since the cost function (2a)
is not considered in the screening method, the results of
this method only provide the potentially active line flow
limits, namely, the flow limits not identified as redundant by
the constraint screening method which can thus possibly be
reached. However, practically, some potentially active lines
may never reach their limits in the solutions to DC OPF
problems due to the flow patterns resulting from particular
generator costs. Excluding the line flow limits which may
potentially be active (according to the screening method) but
are not observed to be active in any DC OPF solutions,
the remaining lines are called actually/observed active lines,
which are a subset of potentially active lines. One objective of
this paper is to explore the gap between the sets of potentially
active and observed active line flow constraints.

To accomplish this, we will compare results from the
screening method and a DC OPF sampling method. Con-
cretely, the latter differs from the former in two aspects:

1) Generation costs are considered and the objective of
the optimization problem is to minimize generation cost
without violating any physical constraints.

2) The load demand is given as a discrete value, whereas
the screening method considers a load variation range.

Hence, to quantitatively analyze the sets of non-redundant line
constraints for each load range, we need to solve multiple
DC OPF problems with load demands sampled from the given
load variation range and compare the associated active line
flow constraints with the screening method results.

This sampling approach selects 1,000 random discrete load
scenarios of all load demands within the given load variation
range for each test case and each load variation range,
e.g., ±25% of the nominal load demands. Furthermore, we
consider ten randomly selected, non-negative linear generator
cost functions (i.e., c2,i = 0, c1,i ≥ 0 for all i ∈ G) for
each load variation range. Thus, in total, we solve DC OPF
problems for 103 · 10 = 104 load–cost combinations for each
test case. The active line flow limits are recorded for each
combination. The reason to choose loads and cost coefficients
randomly is to (i) disregard their ratios that may bias the
results and (ii) obtain a large collection of observed active
line flow constraints.

IV. RESULTS AND ANALYSIS

The constraint screening method in [6] is implemented
in MATLAB using CVX [11] and the DC OPF analysis is
implemented in MATPOWER [12]. We selected test cases from
PGLib v.19.05 [13] as summarized in Table I.

For the sake of brevity, only a subset of the test cases will
be discussed in detail. The other test cases give qualitatively
similar results. Note that in this work, the following load
variation ranges are considered for both the screening method
and the DC OPF solutions:

(1− δ)× dnomi ≤ di ≤ (1 + δ)× dnomi , (4)

where dnomi is the nominal load value at each bus i and δ is the
variation parameter with values of δ = {0, 0.25, 0.5, 0.75, 1}
that correspond to load variations of 0%, ±25%, ±50%,
±75%, and ±100%, respectively.

TABLE I: Summary of Test Cases.

Case Name Number of Lines
case3_lmbd 3
case5_pjm 6

case24_ieee_rts 38
case30_as 41
case30_fsr 41

case30_ieee 41
case39_epri 46
case57_ieee 80

case73_ieee_rts 120
case89_pegase 210
case118_ieee 186

case162_ieee_dtc 284
case179_goc 263

case200_tamu 245
case240_pserc 448
case300_ieee 411

case2383wp_k 2896

A. Visual Representation of Redundant and Active Constraints

Fig. 1 and Fig. 2 represent the network diagrams for the
IEEE 24-bus reliability test system (RTS) and the IEEE 118-
bus system, respectively. The lines identified as potentially
active by the constraint screening method are shown in yellow.
The lines that are both potentially active and actually observed
to be active in at least one DC OPF solution are shown in red.
All other lines, shown in green, are identified as redundant
by the constraint screening method. Note that, as expected,
all of the actually active lines were also identified as being
potentially active by the screening method.

Although it is difficult to predict which of the potentially
active lines will be observed to be actually be active after
repeated DC OPF simulations, we make several observations.
In the IEEE 24-bus system shown in Fig. 1, bus 7 is a
generator bus, whereas other buses in the vicinity (3, 4, 5,
6, 8, 9, and 10) are all load buses. Since there is a single line
connecting bus 7 to bus 8, it is not surprising that this line
has an active constraint in the DC OPF solutions. The next set
of lines from bus 8, lines 8-9 and 8-10, also have active flow
constraints. Because buses 1, 2, and 7 are the only generator
buses in this part of the system, the constraint screening
method identifies that most of the lines surrounding them may
be active constraints. However, the DC OPF analysis reveals
that not all these lines are actually active constraints.

In the IEEE 118-bus system shown in Fig. 2, the lines
connecting clusters of buses are both identified as potentially
active and observed to be actually active constraints. Examples
include lines 38-65, 49-66, 100-103, etc. Most buses that have
four or more connecting lines also have at least one or more
active line flow limits (e.g., buses 49, 69, 77, 80, 100, etc.).

While such analytical observations using the network lay-
outs are possible for small cases, this approach is challenging
for larger systems. The following subsections discuss other
analyses and patterns observable in the potentially active,
actually active, and redundant line constraints for larger cases.

B. Number of Active Constraints for Varying Ranges of Load

In this analysis, both the constraint screening method and
the DC OPF are run for the five different load variation ranges



Fig. 1: Case24_ieee_rts: green – redundant, yellow – potentially active, and
red – potentially and actually active line flow constraints.

Fig. 2: Case118_ieee: green – redundant, yellow – potentially active, and red
– potentially and actually active line flow constraints.

mentioned earlier. For each load range, the number of poten-
tially active constraints identified by the screening method
and actually active constraints observed in the 10,000 random
samples of DC OPF problems is demonstrated in Fig. 3 for
case39_epri, case57_ieee, case118_ieee, and case2383wp_k.

Firstly, all the plots in Fig. 3 show that both the number of
potentially active line flow limits (obtained from the constraint
screening method) and the actually active line flow limits
(obtained from repeated DC OPF solves) increase with larger
ranges of load variation. This is expected because when the
load constraint is relaxed, the loads can vary over a large
range and have substantial differences from normal operating
conditions. This enlarges the feasible space of (3) and may
lead to higher line flows in some lines, resulting in these line
flow limits becoming active.

We also observe that the gap between the number of
potentially and actually active line flow limits (i.e., the gap
between the red and blue lines) becomes larger as load
variation range increases in all test cases with more than 100
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Fig. 3: Number of active lines at each load variation range for (a) case39_epri,
(b) case57_ieee, (c) case118_ieee, and (d) case2383wp_k.



buses, as depicted by Fig. 3c (118-bus system) and Fig. 3d
(2383-bus system). However, the trend is less apparent in
cases with fewer buses, such as case39 (Fig. 3a) and case57
(Fig. 3b), where the gap between the potentially and actually
active line flow limits is small regardless of the load variation
range. For large systems, this can be explained by noticing
that the constraint screening method may identify potentially
active line flow limits that are associated with very impractical
generator outputs (i.e., choices of generator outputs that are
feasible with respect to the DC OPF constraints but very
suboptimal in terms of their cost). In comparison, the feasible
spaces associated with small systems may not admit the same
extremity of impractical generation outputs.

In addition to sampling from a range of load variation
as described above, we also considered the number of po-
tentially and actually observed active flow constraints at a
set of specific loading conditions, i.e., nominal and heavily
loaded (every bus at its maximum load). The heavily loaded
condition resulted in more line limits being active compared to
the nominal loading. However, both the constraint screening
method and the sampling approach found potentially active
and observed active line flow limits, respectively, that were
not active in either the heavily loaded or the nominal cases.

Overall, the observations show that the number of actually
active line flow constraints may be much less than the number
identified by constraint screening methods, especially in large
systems where the screening methods are most useful. For
example, for case2383wp_k with ±100% load variation, the
screening method identified 982 potentially active line flow
constraints, whereas only 82 active line flow limits were ob-
served in the actual DC OPF results. Even though the screen-
ing method has successfully eliminated 1914 redundant line
constraints for this system, there remain 900 line flow limits
that appear to be inactive for typical objective functions. These
results thus suggest the potential for further improvements in
identifying inactive line flow limits beyond the capabilities of
existing optimization-based constraint screening methods.

C. Characteristics of Redundant and Active Line Constraints

To investigate the sets of redundant and active line flow
constraints, we categorized the lines in each test case based
on the following two criteria:

1) Frequency of activeness: If a line is identified by the
screening method as having a non-redundant flow con-
straint in all five load variation scenarios (0%, ±25%,
±50%, ±75%, and ±100% of the nominal load), then
we say that it has a “frequency of activeness” of
five. Similarly, if a line is screened to be never active
(redundant) for all the load ranges, its frequency of
activeness is equal to zero. Hence, six frequency bins
can be established for all the transmission lines in each
test case.

2) Potentially-active / actually-active / redundant status:
Section IV-B shows that there are a number of lines that
are identified as being potentially active by the screening
method, but are never observed to be active in the sam-
pled DC OPF results. Therefore, we separate lines into
three categories: (i) potentially active, (ii) potentially

and actually active (active in at least one of the sampled
DC OPF solutions), and (iii) redundant/inactive.

From Section II, the power flow on the line between buses
m and n is directly proportional to the line’s susceptance,
bmn, and must be within the line flow limit, fmaxmn . In this
work, bmn is defined as

bmn =
1

xmn
, (5)

where xmn is the line reactance. Therefore, the line flow is
inversely proportional to xmn.

We hypothesize the following relationships between a line’s
power flow, rated flow limit (fmaxmn ), and reactance (xmn):

1) A smaller rated limit, fmaxmn , makes it more likely that
the line’s flow limit is an active constraint. Small values
of fmaxmn shrink the feasible space for the maximum
line flow. Hence, lines with relatively small fmaxmn would
have a greater chance of reaching the line flow limit.

2) A smaller reactance, xmn, increases the possibility that
the line’s flow limit is an active constraint. Small values
of xmn increase the power flow in line mn for a
given angle difference since the line flow is inversely
proportional to xmn. Therefore, lines with relatively
small xmn may have larger power flows, reaching their
flow limit and thus being identified as active.

3) If both fmaxmn and xmn for a particular line are small,
i.e., fmaxmn × xmn is small, then this line has a greater
chance of being an active constraint.

4) Conversely, redundant lines tend to have larger values of
fmaxmn or xmn (and hence, larger values of fmaxmn ×xmn)
compared to the rest of the lines.

To test this hypothesis, we plot the mean, maximum, and
minimum values of fmaxmn , xmn, and fmaxmn × xmn for all
the transmission lines in each test case with respect to their
frequency of activeness. A selected subset of the results is
shown in Figs. 4–8. As explained before, the frequency of
activeness is obtained from the constraint screening method
where five indicates a line is identified to be active in all
five load scenarios and zero indicates that a line is identified
to be redundant in all scenarios. The plots include lines that
are identified as potentially active and redundant from the
constraint screening method as well as those that are actually
active from repeated DC OPF solutions. In these plots, the
square marker, top whisker, and bottom whisker represent the
mean, maximum, and minimum values of the quantities of
interest, i.e., fmaxmn , xmn, and fmaxmn × xmn, respectively.

We first observe that lines that are actually active in
DC OPF results have a frequency of activeness greater than
or equal to 2. This means that they have been identified by
the screening method in two or more load variation scenarios.
This observation is expected since the feasible space of the
screening method is larger compared to DC OPF, and some
of the screening results can be non-achievable in solutions to
DC OPF problems. The potentially active lines that have a
low frequency of activeness of 1, i.e., only identified in one
loading scenario, may represent rare or extreme conditions
identified by the screening method.



Secondly, we see that the results based on the test cases
selected in this work corroborate our hypothesis:
• For case24_ieee_rts, Figs. 4a and 4b show that even

though both fmaxmn and xmn do not exhibit significant
difference between redundant and active lines, the range
of fmaxmn × xmn, in Fig. 4c, spans higher values for the
redundant lines than the rest of the lines.

• In case30_ieee (Fig. 5), all three quantities of fmaxmn , xmn,
and fmaxmn × xmn are noticeably larger for the redundant
lines than the active lines.

• fmaxmn is significantly higher in non-active lines than the
rest as demonstrated by Fig. 6a for case240_pserc.

• Both fmaxmn (Fig. 7a) and xmn (Fig. 7b) are larger in
redundant lines than the rest for case300_ieee.

• Fig. 8b for case case2383wp_k shows that the range of
xmn spans higher values in redundant lines than the rest.

Overall, it can be seen that lines are more likely to be
redundant if at least one of the quantities fmaxmn , xmn, or
fmaxmn ×xmn are significantly larger than the rest of the lines.

Hence, as future work, it may be possible to design a
pre-screening method to identify redundant lines based on
examining fmaxmn , xmn, and fmaxmn ×xmn to reduce the burden
of optimizing every branch’s power flow in the constraint
screening method. However, the following extensions are nec-
essary to have an accurate and robust pre-screening method:

1) Testing the hypothesis regarding fmaxmn , xmn, and
fmaxmn × xmn on a broader range of test cases.

2) Quantifying how large, relatively, these indicators need
to be for a line to be reliably classified as redundant.

3) Investigating other indicators that can be potentially
used in conjunction with the three studied in this work
to provide better pre-screening results. As one avenue
for future work, the observations in this paper could be
combined with machine learning techniques developed
for similar constraint screening purposes [14].

D. Active Lines Observed in DC OPF Cases

In addition to the patterns between potentially and actually
active lines, several other patterns are noticeable within the
actually active lines themselves. In the 10,000 DC OPF
solutions for each load variation range, some lines were active
more often than other lines. The graphs in Fig. 9 and Fig. 10
represent the observed active line data from the DC OPF
simulations, at ±100% load variation, for the IEEE 39-bus
and the PEGASE 89-bus systems, respectively.

In these figures, each node represents a set of line flow limits
that are simultaneously active in some load-cost combination
scenario. The size of the node represents the number of scenar-
ios where the active flow constraints consist of that particular
set of lines. A larger node size indicates that this particular
set of line flow constraints is active in many scenarios. Each
edge indicates the number of lines that are common between
the two sets of active lines represented by each terminal
node. The thickness of an edge corresponds to the number
of common lines between the two nodes. The thickest edges,
shown in purple, indicate multiple common lines between the
sets of active lines on either end node. The centers of these
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Fig. 4: Line characteristics for case24_ieee_rts: (a) line flow limit, (b)
reactance, and (c) line flow limit multiplied by reactance.
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Fig. 5: Line characteristics for case30_ieee: (a) line flow limit, (b) reactance,
and (c) line flow limit multiplied by reactance.
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Fig. 6: Line characteristics for case240_pserc: (a) line flow limit, (b) reac-
tance, and (c) line flow limit multiplied by reactance.
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Fig. 7: Line characteristics for case300_ieee: (a) line flow limit, (b) reactance,
and (c) line flow limit multiplied by reactance.
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Fig. 8: Line characteristics for case2383wp_k: (a) line flow limit, (b)
reactance, and (c) line flow limit multiplied by reactance.

Fig. 9: Case39_epri: sets of actually active lines for every load-cost scenario
within the ±100% load variation.

graphs are denser because of the many common active lines.
Interestingly, even though DC OPF simulations are conducted
over a wide ranges of load variation (±100%) and generator
costs, certain sets of line constraints are repeatedly observed
to be active. A similar pattern was observed in the constraint
screening method as indicated by the frequency of activeness
in the previous subsection. These results mean that certain
sets of active line flow limits are “more active” than others
in most operating conditions. Analyzing which sets of lines
lie in the center of these graphs can help operators to narrow
down the active constraints to an even smaller subset for most



Fig. 10: Case89_pegase: sets of actually active lines for every load-cost
scenario within the ±100% load variation.

operating conditions. Moreover, future extensions which apply
graph theoretic tools to analyze the diagrams in Figs. 9–10
hold potential for better understanding relationships among
different operational behaviors of power grids.

V. CONCLUSIONS

This paper has investigated both redundant and active line
flow constraints in DC OPF problems under a range of
load demand and cost function variations. By applying a
constraint screening method to identify potentially active line
constraints and observing which lines actually reach their
flow limits in DC OPF solutions, we have observed that a
significant number of line constraints are redundant in all load
variation scenarios. Moreover, the number of actually active
line constraints is much smaller than the number of potentially
active lines in typical large-scale systems. This suggests the
potential for further improvements in identifying active line
flow constraints beyond the capabilities of existing constraint
screening methods.

In addition, we observe the following: (i) lines with redun-
dant constraints typically have larger flow limits and/or line
reactances compared to active lines, and (ii) certain sets of line
constraints are repeatedly observed to be active even over a
large range of load and cost variations. These findings suggest
that it may be possible to eliminate redundant line constraints
by examining the physical characteristics of each line as a
pre-screening step. This can potentially improve the speed of
constraint screening methods since such a fast pre-screening
step would reduce the number of optimization problems that
are solved in the actual screening step.

Future work includes extending the analyses in this paper
to consider the impacts of security constraints [15] as well
as modifying constraint screening methods to achieve the
potential benefits suggested by our results. Inspired by the
success of optimality-based bound tightening techniques that
have been applied to relaxations of AC optimal power flow
problems [16], [17], one avenue for improving constraint

screening methods is to incorporate information from the cost
function into constraint screening methods.
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